Nuclear Physics Open Laboratory of the São Paulo University

N. H. Medina

Instituto de Física da Universidade de São Paulo, Brazil.

BRASIL-JINR FORUM

FRONTIERS IN NUCLEAR, ELEMENTARY PARTICLE AND CONDENSED MATTER PHYSICS

Dubna, June 15-19, 2015

Outline

- The Pelletron accelerator
- Experimental setups
- Research and Results
- The new LINAC accelerator
- Concluding remarks

Nuclear Physics Open Laboratory Laboratório Aberto de Física Nuclear (LAFN)

South America

São Paulo State

São Paulo University

About 90000 students

Nuclear Physics Open Laboratory Laboratório Aberto de Física Nuclear (LAFN)

Physics Institute

8UD Pelletron Accelerator

Control Room

1100 undergraduated students290 graduated students

Electrostatic 8UD Tandem Accelerator Project of 1970 (Prof. Oscar Sala) Initiated the activities in 1972 About 100 Master thesis, 80 PhD thesis and 220 articles in scientific magazines. 12 technicians (accelerator maintenance, ion beam source, vacuum, target maker, electronics, mechanical workshop)

Main research areas

Nuclear Reaction Mechanisms Nuclear Structure In-flight radioactive beams Applied Nuclear Physics

Program Advisory Committee (PAC)

About 100 users 30 proposals approved (190 days) From 100 to 150 used days per year

http://portal.if.usp.br/fnc/node/368

O. Sala and G. Spalek, Nucl. Inst. Meth. 112 (1974) 213

Airton Deppman Luiz Carlos Chamon Manfredo Tabacniks Paulo Roberto Gomes Roberto V. Ribas

Beam lines

Large scattering chambers to study reaction mechanisms and applied nuclear physics

Beam lines

The RIBRAS (Radioactive Ion Beams in Brasil) Facility

Transfer reactions

Enge split-pole Facility

Beam lines

Applied Nuclear Physics studies

γ -ray spectrometer

Nuclear structure and reaction mecanism studies

New beam line with three scattering chambers

The Radioactive Ion Beam Facility in Brazil

- RIB in the world
- The RIBRAS (Radioactive Ion Beams in Brasil) system
- Experiments with the single solenoid:

elastic scattering measurements, α -particle production, total reaction cross section

• Experiments with the double solenoid system:

resonant scattering measurements

Alinka Lepine-Szily Rubens Lichtenthaler Rubens@if.usp.br Valdir Guimarães

<u>Alinka@if.usp.br</u> valdirg@if.usp.br

The study of nuclei out of the line of stability is one of the most active fields in low energy nuclear physics

Fig. 1. Isotopic chart showing stable or very long-lived (half-life > 109 year) nuclides as filled squares and known radioactive nuclides as open squares. The curves $B_n = 0$ and $B_n = 0$ correspond to zero proton and neutron binding energy, respectively.

1965

~1200 known nuclides

Presently, more than 3000 known nuclei and increasing ...

http://www.physics.fsu.edu/users/roberts/roberts_weak.html

The physics out of the stability line

Halos and skins Borromean nuclei (3-body systems) New magic numbers and quenching of the shell gaps. Importance in astrophysics – overcoming the A=5,8 gap synthesis of elements heavier than Fe New shapes and deformations – fundamental symmetries Superheavy elements

Light exotic nuclei

Halos, skins, 3-body systems

The RIBRAS system

Two superconducting solenoids with 6.5 T Three scattering chambers.

The focusing system for 1 solenoid

The secondary beam is produced in 1 and focused in 7 by the first solenoid

2- collimator

- 3- Faraday cup
- 4- solenoid

6-collimator 7- scattering chamber, secondary target and detectors

High acceptance

 $\Delta\Omega$ =30 msr Important at low energies where the production cross sections are low

Bp selection

Secondary beams and production reactions at RIBRAS

Energy of the secondary beams 9-32 MeV depending on the beam.

Identification spectrum

cocktail beam

Elastic scattering measurements: angular distributions

E=18.05 Me

E=20.5 MeV

100

100

50

 $\theta_{c.m.}^{50}(deg)$

⁶He+¹²⁰Sn

Ruth

100

d/d 0,5

100

E=17.40 MeV

E=19.80 MeV

Exp. Data

OM (see to 4b-CDCC

3b-CDCC

50

 $\theta_{c.m.}^{50}(deg)$

Calculations Optical Model CDCC 3 and 4 body (Continuum and discretized coupled-channel method)

A. Lépine-Szily, R. Lichtenthaler, and V. Guimarães Eur. Phys. J. A. 50 (2014)

Total reaction cross section obtained from the elastic scattering

P. N. DE FARIA et al.

PHYSICAL REVIEW C 81, 044605 (2010)

TABLE II. Total reaction cross sections for the ${}^{6}\text{He} + {}^{120}\text{Sn}$ system obtained from the OM and CDCC calculations. The fourth column is the average between the second and third columns (see text for more details).

E (MeV)	$\sigma_{\rm reac}^{\rm OM}~({\rm mb})$	$\sigma_{\rm reac}^{\rm CDCC}$ (mb)	$\sigma_{\rm reac}^{\rm av}~({\rm mb})$	$\sigma^{\rm halo}~({\rm mb})$	$\sigma_{\rm fus} = \sigma_{\rm reac}^{\rm av} - \sigma^{\rm halo} \; (\rm mb)$	$\sigma_{\rm fus}^{\rm Bass}~({\rm mb})$
17.40	1451	1491	1471	768	703	618
18.05	1445	1592	1519	763	756	703
19.80	1475	1834	1655	739	916	900
20.50	1579	1916	1748	762	986	1065

The double solenoid system - since 2011

⁶He Beam purity

1 solenoid

2 solenoids

Excitation function measurements. Experiments with the thick target method -resonances in ⁶He+p=⁷Li and ⁸Li+p=⁹Be.

p(⁶He,p)⁶He

p(⁶He,p)⁶He excitation functions

Enge-Split-Pole-Spectograph Facility

Marcia Rodrigues: marciadr@if.usp.br

Pelletron-Enge-Split-Pole-Spectograph facility

Pelletron-Enge-Split-Pole-Spectograph facility High resolution measurements

 $u_{\text{DOOOO}} = 47^{0}$

⁷²Ge(⁶Li, ⁶Li') ⁷²Ge $E_{6Li} = 28$ MeV Surface barrier position-sensitive Detector (PSD), 500 μ m thick with an area of 47 × 8 mm², beam defining slits of 1.0 × 2.0 mm² ⁷²Ge self-suported target 30 μ g/cm² E/ Δ E ~ 800

¹⁰⁴Pd(d, d') ¹⁰⁴Pd $E_d = 13 \text{ MeV}$ Fuji G7D nuclear emulsion plates, 50 μm thick, 25 cm along focal plane, beam defining slits of $1.2 \times 3.0 \text{ mm}^2$ ¹⁰⁴Pd target 20 $\mu g/cm^2$ with a C backing 10 $\mu g/cm^2$ E/ $\Delta E \sim 1850$

Research lines:

Transitional mass regions

Evolution of the nuclear structure scenario along isotopic chains

 transfer reactions and Coulomb-Nuclear Interference in the inelastic scattering using isoscalar (T=0) projectiles

 α -cluster phenomenon on light mass nuclei

 α -clustering on (x α) and (x α + n) nuclei through (⁶Li,d) reaction

resonant states near the thresholds.

Coulomb-Nuclear Interference - A ~ 70

Inelastic scattering angular distributions ⁶Li of 28 MeV on ^{70,72,74,76}Ge <u>DWBA-D</u>OMP prediction

Zhang et al., IOP Conference Series (accepted) (2015).

C is the charge to isoscalar deformation lengths neutron role is strongly enhanced in 74 Ge (C<1)

Barbosa et al., Phys. Rev. C 71, 024303 (2005)

Saci-Perere γ -ray Spectrometer

Perere: 4 Compton supressed germanium detectors **Pequeno Espectrômetro de Radiação Eletromagnética com Rejeição de Espalhamento Saci:** 11 ΔE-E plastic scintillator detectors. **Sistema Ancilar de Cintiladores**

J.A. Alcántara-Nuñez et al., Nucl. Inst. Meth. Phys. Res. A 497, 429 (2003)

Odd-odd nuclei

A = 130 $\pi h_{11/2} \times n h_{11/2} \gamma$ -driving force competition J.R.B. Oliveira et al., Phys. Rev. C 39 (1989) 2250 Cranking Shell Model A = 50⁵⁸Co nuclear structure M.A.G. Silveira Phys. Rev. C 74 (2006) 064312 Large Scale Shell Model A = 70The role of the $g_{9/2}$ orbital in the odd-odd 64,66,68,70 Ga isotopes P.R.P. Allegro, PhD thesis 2013 Large Scale Shell Model

Odd-nuclei

A=100 Chiral bands in ¹⁰⁵Rh J.A. Alcántara-Núñez et al., Phys. Rev. C 69 (2004) 02431. Tilted Axis Cranking Shell Model

Chiral Bands

Degenerate bands Strong M1 transitions Triaxial nuclei high-j particles high-j holes

Chiral Symmetry in the Nuclear Intrinsic System

triaxial deformation

J.A. Alcántara-Núñez et al., Phys. Rev. C 69, 024317 (2004)

Nearly degenerate bands

Chiral configuration $\pi g_{9/2} \circ \nu h_{11/2} \otimes \nu g_{7/2}$ axis (1) (3) (2)

Total Routhian surface calculations at $\hbar \omega = 0,19$ MeV in ¹⁰⁵Rh. $\beta=0.21$ and $-30^{\circ} \le \gamma \le 30^{\circ}$

⁵⁸Ni(¹¹B,2pn)⁶⁶Ga 45 MeV beam energy

 γ – γ –proton matrix

Lifetime measurement

D.L. Toufen et al., Rev. Sci. Inst. 85 (2014) 073501

B(E2) for the ⁶⁶Ga 7⁻ Isomeric State Large Scale Shell Model

$$B_{EXP}(E2) = \frac{\ln(2) \times I\gamma}{1.23 \times 10^9 \times T_{1/2} I_{\text{total}} E\gamma^5}$$

Good description for ^{64,66,68,70}Ga level schemes, and reduced transition probabilities by the Large Scale Shell Model FPG and JUN45 effective interactions.

$$B(E2,J_iM_i\zeta \rightarrow J_fM_f\xi) = \frac{1}{2J_i+1} |\langle J_f\xi || \mathbf{O}_{E2} || J_i\zeta \rangle|$$

$$B_{JUN45}(E2) = 301 \ e^2 fm^4 \qquad B_{FPG}(E2) = 259 \ e^2 fm^4$$

Antoine Code: CAURIER, E; NOWACKI, F. , Acta Physica Polonica B, v. 30, n. 3, p. 705, 1999. FPG residual interaction: SORLIN, O. et al., Physical Review Letters **88**, 092501 (2002). JUN45 residual interaction HONMA, H. et al., Physical Review C **80**, 064323 (2009).

γ-ray spectroscopy and reaction mechanisms

Inelastic scattering
Inelastic transfer
Complete or incomplete fusion
Multiple transfer DIC
Inelastic *Break-up*

Particle-gamma coincidence measurements

V.B. Zagatto et al., Nuclear Instruments and Methods in Physics Research A 749 (2014) 19–26

 α -particle coincidence measurement

⁷Li+ ¹²⁰Sn @ 24 MeV (1p-pickup) \rightarrow ⁸Be ($\rightarrow \alpha + \alpha$) + ¹¹⁹In + γ

(2n-stripping) \rightarrow ⁵Li (\rightarrow p + α) + ¹²²Sn + γ

3/2 - state at 0.604 MeV of ¹¹⁹In

5⁻ state at 2.245 MeV of ¹²²Sn

V.B. Zagatto, PhD Thesis (2015)

Study of the ⁹Be + ¹²⁰Sn reaction

Identified reaction processes:

Inelastic excitation with and without breakup of ⁹Be (γ -rays of ¹²⁰Sn in coincidence with Z=4 and α -particles); Complete fusion (γ -rays of ¹²⁶Xe); Incomplete fusion (γ -rays of ¹²³Te and ¹²⁴Te in coincidence with α -particles); n-stripping (γ -rays of ¹²¹Sn in coincidence with α -particles).

Leandro Gasques: <u>lgasques@if.usp.br</u> André Freitas: <u>ihsou@ig.com.br</u> Inelastic cross section supression due to breakup of ⁹Be.

 $^{9}Be + ^{120}Sn @ 28 MeV$

A.S. Freitas, Master thesis (2014)

Applied Nuclear Physics

SEU measurements in a p-channel MOSFET transistor (3N163)

Single Event Upsets using ³⁵Cl heavy ion beam at 75 MeV.

Sampling rate 10 G samples/s 1-GHz Rohde & Schwarz RTO1012 scope

First SEU measurement with heavy ions in Brazil

 ^{12}C , ^{16}O , ^{19}F , ^{28}Si , ^{35}Cl , ^{63}Cu , and ^{107}Ag beams

N.H. Medina et al., proc. 2014 IEEE Radiation Effects Data Workshop, Paris, France, 2015 Nemitala Added: nemitala@if.usp.br

Linear Superconductiong Accelerator - LINAC

Concluding remarks

8MV Tandem accelerator Large scattering chambers Radioactive Ion beam Facility (RIBRAS) Enge split-pole spectrograph γ-ray spectrometer Linac accelerator

Basic nuclear physics Applied nuclear physics

Experiment design, electronics, target, vacuum, beam transport, data acquisition system, programming, data analysis, result interpretation, theoretical models, etc.

Nilberto H. Medina Universidade de São Paulo, Brazil