

Laboratory of Radiation Biology

LRB structure

Department of Radiation Biology and Physiology:

- Molecular Radiobiology Sector;
- Radiation Cytology Sector;
- Radiation Physiology Sector;
- Radiation Neurochemistry Sector;
- Mathematical Modeling Sector;
- Lower Eukaryote Radiation Genetics Group.

Department of Radiation Research:

Group for Modeling Ionizing Radiation Interaction with Matter;

 Group for Studying Radiation Fields of JINR's Basic Facilities and Environment.

Astrobiology Sector

The LRB's full-time staff is 101

The LRB staff includes 3 Members of the Russian Academy of Sciences (RAS), 6 Doctors of Biological Sciences, 2 Doctors of Medical Sciences, 2 Doctors of Physical and Mathematical Sciences, 9 Candidates of Biological Sciences, and 8 Candidates of Physical and Mathematical Sciences.

First radiobiological experiments at the Phasotron

Protons with energy up to 660 MeV

Laboratory of Radiation Biology

- □ 1978 Sector of biological research in LNP
- **1988 D**ivision of biophysics in LNP
- **1995 D**epartment of Radiation and Radiobiological Research of JINR

2005 Laboratory of Radiation Biology

The main field of research:

THE BIOLOGICAL ACTION OF HEAVY CHARGED PARTICLES OF DIFFERENT ENERGIES

What radiobiological problems can be solved at use of accelerated heavy particles?

A. Heavy ions is a powerful tool for solving problems in radiation genetics

The RBE problem

DNA repair capacity of the living cells determines the type of RBE on LET dependence

Single DNA damage

Clustered DNA damage

Radiation dose distribution in matter

1 unit of the dose

1 unit of the dose

Fe ion

"Comet assay" for detection of DNA lesions

Page 13

Human cells exposed to γ -rays and ¹¹B ions

Human cells exposed to ¹¹B ions at 10°

3D visualization of DNA foci streaks

Kinetics of the formation and disappearance of γ H2AX/53BP1 foci

Higher-order clustered γH2AX/53BP1 foci after ¹¹B irradiation

γ H2AX/53BP1 53BP1 γ H2AX

Radiation induced mutagenesis

The frequency of gene and structural mutation induction after γ -ray and heavy ion irradiation

Mutagenic belt

Mutagenic belt of heavy particle track

Formation of unstable chromosomal aberration in human cells after heavy ion irradiation

Formation of stable chromosomal aberrations in human cells after heavy ion irradiation

Dose, Gy

B.

Accelerated heavy ions as a tool for modeling of biological action of space radiation

The GCR energy spectrum

The integral flux of GCR particles of carbon and iron groups equals to $\sim 10^5 part/cm^2 per year$

Particle flux density interplanetary space Z≥20 160 per day per cm²

Consequences of Galactic heavy ion action

- □ Induction of cancer;
- □ Formation of gene and structural mutations;
- □ Violation of visual functions:
- □ *lesions of retina;*
- □ cataract induction;
- **CNS** violation

Gardner tumors

Worgul et al., 2006

Accelerated heavy ions and CNS

Cosmic ray hit frequencies in CNS critical areas

- **CNS in General**
 - 2 or 13% cells will be hit at least one Fe particle
 - 8 or 46% would be hit by at least one particle with Z≥15
- Every nucleus will be traversed by a proton once every 3 days and a alpha particle once every 30 days.

FE ION TRACKS VISUALIZED BY MARKERS OF DNA DSBs (yH2AX)

Тест К. Барнс

Behavioral deficits measured 1.5 and 3 months after charged particle exposure

Studying the level of neurotransmitters in different rat brain areas

Irradiation with 1 Gy of 500 MeV/u carbon ions

Radiation-induced decrease in the level of neurotransmitters is observed in the brain regions responsible for the *emotional and motivational state*

3 months after irradiation

First experiments with monkeys

Irradiation with a proton medical beam, 170 MeV

Irradiation with ¹²C ions, 500 MeV/u, at the Nuclotron 17th Meeting of the US/Russian Joint Working Group on Space Biomedical and Biological Sciences Research Houston, NASA (6-9 June 2015)

Astrobiology

Gas-dust cloud Sagittarius B2, where formamide was found. Photo courtesy NASA

НТС ОИЯИ 17 апреля 2015

A model of the abundance and location of molecular clouds (the dotted line) containing formamide (black circles) in our Galaxy

Astrobiology

Collaboration: University of Viterbo, Sapienza University of Rome (Italy), and LRB

Astrobiology

The study was published in PNAS on 14.03.2015

Meteorite-catalyzed syntheses of nucleosides and of other prebiotic compounds from formamide under proton irradiation

Raffaele Saladino, Eleonora Carota, Giorgia Botta, Michail Kapralov, Gennady N. Timoshenko, Alexei Rozanov, Eugene Krasavin, and Ernesto Di Mauro. PNAS 10.1073/pnas.1422225112, 1-10

JINR's Accelerators for Radiobiology

Phasotron: protons 660 MeV

U-400M: heavy ions 50 MeV/u

Nuclotron: heavy ions up to 4 GeV/u

Thank you for your attention!