Vector meson dominance, axial anomaly and mixing

Yaroslav Klopot ${ }^{1}$, Armen Oganesian ${ }^{1,2}$ and Oleg Teryaev ${ }^{1}$
${ }^{1}$ Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna, Russia
${ }^{2}$ Institute of Theoretical and Experimental Physics, Moscow, Russia

Brazil-JINR Forum
"Frontiers in Nuclear, Elementary Particle, and Condensed Matter Physics"
JINR, Dubna, June 15-19, 2015

Outline

(1) Introduction
(2) Anomaly Sum Rule
(3) Isovector channel: π^{0}

4 Possible corrections to ASR
(5) Octet channel: η, η^{\prime}
(6) Mixing
(7) Time-like region and VMD
(8) Summary

π^{0} TFF: theoretical and experimental status

Pion transition form factor: available data

- The current experimental status of the pion transition form factor (TFF) $F_{\pi \gamma}$ is rather controversial.
- The measurements of the BABAR collaboration [Aubert et al. '09] show a steady rise of $Q^{2} F_{\pi \gamma}$, surpassing the PQCD predicted asymptote $Q^{2} F_{\pi \gamma} \rightarrow \sqrt{2} f_{\pi}, f_{\pi}=130.7 \mathrm{MeV}$ at $Q^{2} \simeq 10 \mathrm{GeV}^{2}$ and questioning the collinear factorization.

Axial anomaly: real and virtual photons

- Axial anomaly determines the $\pi^{0} \rightarrow \gamma \gamma$ decay width: a unique example of a low-energy process, precisely predicted from QCD.
- The dispersive approach to axial anomaly leads to the anomaly sum rule (ASR) providing a handy tool to study the meson transition form factors - $M \rightarrow \gamma \gamma^{*}$ (even beyond the factorization hypothesis).

$$
\begin{equation*}
\int_{4 m^{2}}^{\infty} A_{3}\left(s, Q^{2} ; m^{2}\right) d s=\frac{1}{2 \pi} N_{c} C^{(a)} \tag{1}
\end{equation*}
$$

- Holds for any Q^{2} and any m^{2}.
- It has neither α_{s} corrections (Adler-Bardeen theorem) nor non-perturbative corrections (t'Hooft's consistency principle).
- Exact nonperturbative relation - powerful tool.

Axial anomaly

In QCD, for a given flavor q, the divergence of the axial current $J_{\mu 5}^{(q)}=\bar{q} \gamma_{\mu} \gamma_{5} q$ acquires both electromagnetic and gluonic anomalous terms:

$$
\begin{equation*}
\partial_{\mu} J_{\mu 5}^{(q)}=m_{q} \bar{q} \gamma_{5} q+\frac{e^{2}}{8 \pi^{2}} e_{q}^{2} N_{c} F \tilde{F}+\frac{\alpha_{s}}{4 \pi} N_{c} G \tilde{G} \tag{2}
\end{equation*}
$$

An octet of axial currents

$$
J_{\mu 5}^{(a)}=\sum_{q} \bar{q} \gamma_{5} \gamma_{\mu} \frac{\lambda^{a}}{\sqrt{2}} q
$$

Singlet axial current $J_{\mu 5}^{(0)}=\frac{1}{\sqrt{3}}\left(\bar{u} \gamma_{\mu} \gamma_{5} u+\bar{d} \gamma_{\mu} \gamma_{5} d+\bar{s} \gamma_{\mu} \gamma_{5} s\right)$:
$\partial^{\mu} J_{\mu 5}^{(0)}=\frac{1}{\sqrt{3}}\left(m_{u} \bar{u} \gamma_{5} u+m_{d} \bar{d} \gamma_{5} d+m_{s} \bar{s} \gamma_{5} s\right)+\frac{\alpha_{e m}}{2 \pi} C^{(0)} N_{c} F \tilde{F}+\frac{\sqrt{3} \alpha_{s}}{4 \pi} N_{c} G \widetilde{G}$,

The diagonal components of the octet of axial currents
$J_{\mu 5}^{(3)}=\frac{1}{\sqrt{2}}\left(\bar{u} \gamma_{\mu} \gamma_{5} u-\bar{d} \gamma_{\mu} \gamma_{5} d\right)$,
$J_{\mu 5}^{(8)}=\frac{1}{\sqrt{6}}\left(\bar{u} \gamma_{\mu} \gamma_{5} u+\bar{d} \gamma_{\mu} \gamma_{5} d-2 \bar{s} \gamma_{\mu} \gamma_{5} s\right)$
acquire an electromagnetic anomalous term only:

$$
\begin{align*}
& \partial^{\mu} J_{\mu 5}^{(3)}=\frac{1}{\sqrt{2}}\left(m_{u} \bar{u} \gamma_{5} u-m_{d} \bar{d} \gamma_{5} d\right)+\frac{\alpha_{e m}}{2 \pi} C^{(3)} N_{c} F \tilde{F}, \tag{4}\\
& \partial^{\mu} J_{\mu 5}^{(8)}=\frac{1}{\sqrt{6}}\left(m_{u} \bar{u} \gamma_{5} u+m_{d} \bar{d} \gamma_{5} d-2 m_{s} \bar{s} \gamma_{5} s\right)+\frac{\alpha_{e m}}{2 \pi} C^{(8)} N_{c} F \tilde{F} . \tag{5}
\end{align*}
$$

The electromagnetic charge factors $C^{(a)}$ are

$$
\begin{align*}
& C^{(3)}=\frac{1}{\sqrt{2}}\left(e_{u}^{2}-e_{d}^{2}\right)=\frac{1}{3 \sqrt{2}}, \\
& C^{(8)}=\frac{1}{\sqrt{6}}\left(e_{u}^{2}+e_{d}^{2}-2 e_{s}^{2}\right)=\frac{1}{3 \sqrt{6}}, \\
& C^{(0)}=\frac{1}{\sqrt{3}}\left(e_{u}^{2}+e_{d}^{2}+e_{s}^{2}\right)=\frac{2}{3 \sqrt{3}} . \tag{6}
\end{align*}
$$

Anomaly sum rule

The matrix element for the transition of the axial current $J_{\alpha 5}$ with momentum $p=k+q$ into two real or virtual photons with momenta k and q is:

$$
\begin{equation*}
T_{\alpha \mu \nu}(k, q)=\int d^{4} x d^{4} y e^{(i k x+i q y)}\langle 0| T\left\{J_{\alpha 5}(0) J_{\mu}(x) J_{\nu}(y)\right\}|0\rangle ; \tag{7}
\end{equation*}
$$

Kinematics:

$$
k^{2}=0, Q^{2}=-q^{2}
$$

The VVA triangle graph amplitude can be presented as a tensor decomposition

$$
\begin{align*}
T_{\alpha \mu \nu}(k, q)= & F_{1} \varepsilon_{\alpha \mu \nu \rho} k^{\rho}+F_{2} \varepsilon_{\alpha \mu \nu \rho} q^{\rho} \\
& +F_{3} k_{\nu} \varepsilon_{\alpha \mu \rho \sigma} k^{\rho} q^{\sigma}+F_{4} q_{\nu} \varepsilon_{\alpha \mu \rho \sigma} k^{\rho} q^{\sigma} \tag{8}\\
& +F_{5} k_{\mu} \varepsilon_{\alpha \nu \rho \sigma} k^{\rho} q^{\sigma}+F_{6} q_{\mu} \varepsilon_{\alpha \nu \rho \sigma} k^{\rho} q^{\sigma}
\end{align*}
$$

$F_{j}=F_{j}\left(p^{2}, k^{2}, q^{2} ; m^{2}\right), p=k+q$.
Dispersive approach to axial anomaly leads to [Horéjší,Teryaev'95]:

$$
\begin{gather*}
\int_{4 m^{2}}^{\infty} A_{3}\left(s, Q^{2} ; m^{2}\right) d s=\frac{1}{2 \pi} N_{c} C^{(a)}, \tag{9}\\
A_{3} \equiv \frac{1}{2} \operatorname{lm}\left(F_{3}-F_{6}\right), N_{c}=3 ; \\
C^{(3)}=\frac{1}{\sqrt{2}}\left(e_{u}^{2}-e_{d}^{2}\right)=\frac{1}{3 \sqrt{2}}, \\
C^{(8)}=\frac{1}{\sqrt{6}}\left(e_{u}^{2}+e_{d}^{2}-2 e_{s}^{2}\right)=\frac{1}{3 \sqrt{6}}, \\
C^{(0)} \quad=\frac{1}{\sqrt{3}}\left(e_{u}^{2}+e_{d}^{2}+e_{s}^{2}\right)=\frac{2}{3 \sqrt{3}} . \tag{10}
\end{gather*}
$$

ASR and meson contributions

Saturating the I.h.s. of the 3-point correlation function (7) with the resonances and singling out their contributions to ASR (1) we get the (infinite) sum of resonances with appropriate quantum numbers:

$$
\begin{equation*}
\pi \sum f_{M}^{a} F_{M \gamma}=\int_{4 m^{2}}^{\infty} A_{3}\left(s, Q^{2} ; m^{2}\right) d s=\frac{1}{2 \pi} N_{c} C^{(a)} \tag{11}
\end{equation*}
$$

where the coupling (decay) constants f_{M}^{a} :

$$
\begin{equation*}
\langle 0| J_{\alpha 5}^{(a)}(0)|M(p)\rangle=i p_{\alpha} f_{M}^{a}, \tag{12}
\end{equation*}
$$

and form factors $F_{M \gamma}$ of the transitions $\gamma \gamma^{*} \rightarrow M$ are:

$$
\begin{equation*}
\int d^{4} x e^{i k x}\langle M(p)| T\left\{J_{\mu}(x) J_{\nu}(0)\right\}|0\rangle=\epsilon_{\mu \nu \rho \sigma} k^{\rho} q^{\sigma} F_{M \gamma} \tag{13}
\end{equation*}
$$

- Sum of finite number of resonances decreasing $F_{M \gamma}^{\text {asymp }}\left(Q^{2}\right) \propto \frac{f_{M}-}{Q^{2}}$ infinite number of states are needed to saturate ASR (collective effect). [Y.K.,A.Oganesian,O.Teryaev' 10]

Isovector channel: π^{0}

$J_{\mu 5}^{(3)}=\frac{1}{\sqrt{2}}\left(\bar{u} \gamma_{\mu} \gamma_{5} u-\bar{d} \gamma_{\mu} \gamma_{5} d\right), C^{(3)}=\frac{1}{\sqrt{2}}\left(e_{u}^{2}-e_{d}^{2}\right)=\frac{1}{3 \sqrt{2}}$.

- $\pi^{0}+$ higher contributions ("continuum"):

$$
\begin{equation*}
\pi f_{\pi} F_{\pi \gamma}\left(Q^{2}\right)+\int_{s_{0}}^{\infty} A_{3}\left(s, Q^{2}\right)=\frac{1}{2 \pi} N_{c} C^{(3)} \tag{14}
\end{equation*}
$$

The spectral density $A_{3}\left(s, Q^{2}\right)$ can be calculated from VVA triangle diagram:

$$
\begin{equation*}
A_{3}\left(s, Q^{2}\right)=\frac{1}{2 \sqrt{2} \pi} \frac{Q^{2}}{\left(Q^{2}+s\right)^{2}} . \tag{15}
\end{equation*}
$$

The pion TFF:

$$
\begin{equation*}
F_{\pi \gamma}\left(Q^{2}\right)=\frac{1}{2 \sqrt{2} \pi^{2} f_{\pi}} \frac{s_{0}}{s_{0}+Q^{2}} \tag{16}
\end{equation*}
$$

$$
\begin{equation*}
F_{\pi \gamma}\left(Q^{2}\right)=\frac{1}{2 \sqrt{2} \pi^{2} f_{\pi}} \frac{s_{0}}{s_{0}+Q^{2}} \tag{17}
\end{equation*}
$$

The limit $Q^{2} \rightarrow \infty+\mathrm{pQCD}$ prediction $Q^{2} F_{\pi \gamma}=\sqrt{2} f_{\pi}$ gives

$$
s_{0}=4 \pi^{2} f_{\pi}^{2}=0.67 \mathrm{GeV}^{2}
$$

- fits perfectly the value extracted from SVZ (two-point) QCD sum rules $s_{0}=0.7 \mathrm{GeV}^{2}$ [Shifman,Vainshtein, Zakharov'79].
- reproduces BL interpolation formula[Brodsky,Lepage'81]:

$$
\begin{equation*}
F_{\pi \gamma}^{\mathrm{BL}}\left(Q^{2}\right)=\frac{1}{2 \sqrt{2} \pi^{2} f_{\pi}} \frac{1}{1+Q^{2} /\left(4 \pi^{2} f_{\pi}^{2}\right)} . \tag{18}
\end{equation*}
$$

Corrections interplay

- The full integral is exact

$$
\frac{1}{2 \pi}=\int_{0}^{\infty} A_{3}\left(s, Q^{2}\right) d s=I_{\pi}+I_{c o n t}
$$

- The continuum contribution $I_{\text {cont }}=\int_{s_{0}}^{\infty} A_{3}\left(s, Q^{2}\right) d s$ may have perturbative as well as power corrections.
- $\delta I_{\pi}=-\delta I_{\text {cont }}$: small relative correction to continuum - due to exactness of ASR - must be compensated by large relative correction to the pion contribution!

Possible corrections to A_{3}

- Perturbative two-loop corrections to spectral density A_{3} are zero [Jegerlehner\&Tarasov'06]
- Nonperturbative corrections to A_{3} are possible: vacuum condensates, instantons, short strings.
- General requirements for the correction $\delta I=\int_{s_{0}}^{\infty} \delta A_{3}\left(s, Q^{2}\right) d s$: $\delta I=0$
- at $s_{0} \rightarrow \infty$ (the continuum contribution vanishes),
- at $s_{0} \rightarrow 0$ (the full integral has no corrections),
- at $Q^{2} \rightarrow \infty$ (the perturbative theory works at large Q^{2}),
- at $Q^{2} \rightarrow 0$ (anomaly perfectly describes pion decay width).

$$
\begin{gather*}
\delta I=\frac{1}{2 \sqrt{2} \pi} \frac{\lambda s_{0} Q^{2}}{\left(s_{0}+Q^{2}\right)^{2}}\left(\ln \frac{Q^{2}}{s_{0}}+\sigma\right) \tag{19}\\
\delta F_{\pi \gamma}=\frac{1}{\pi f_{\pi}} \delta I_{\pi}=\frac{1}{2 \sqrt{2} \pi^{2} f_{\pi}} \frac{\lambda s_{0} Q^{2}}{\left(s_{0}+Q^{2}\right)^{2}}\left(\ln \frac{Q^{2}}{s_{0}}+\sigma\right) \tag{20}
\end{gather*}
$$

Correction vs. experimental data

CELLO+CLEO+BABAR: $\lambda=0.14, \sigma=-2.43, \chi^{2} /$ n.d.f. $=1.08$

Octet channel $\left(\eta, \eta^{\prime}\right)$

$$
\begin{gather*}
J_{\alpha 5}^{(8)}=\frac{1}{\sqrt{6}}\left(\bar{u} \gamma_{\alpha} \gamma_{5} u+\bar{d} \gamma_{\alpha} \gamma_{5} d-2 \bar{s} \gamma_{\alpha} \gamma_{5} s\right), \\
\int_{4 m^{2}}^{\infty} A_{3}\left(s, Q^{2} ; m^{2}\right) d s=\frac{1}{2 \pi} N_{c} C^{(8)}, \tag{21}\\
\quad C^{(8)} \equiv \frac{1}{\sqrt{6}}\left(e_{u}^{2}+e_{d}^{2}-2 e_{s}^{2}\right)=\frac{1}{3 \sqrt{6}}
\end{gather*}
$$

ASR in the octet channel:

$$
\begin{equation*}
f_{\eta}^{8} F_{\eta \gamma}\left(Q^{2}\right)+f_{\eta^{\prime}}^{8}, F_{\eta^{\prime} \gamma}\left(Q^{2}\right)=\frac{1}{2 \sqrt{6} \pi^{2}} \frac{s_{0}}{s_{0}+Q^{2}} . \tag{22}
\end{equation*}
$$

- Significant mixing.
- η^{\prime} decays into two real photons, so it should be taken into account explicitly along with η meson.

Large Q^{2}

$$
\begin{align*}
& Q^{2} F_{\eta \gamma}^{a s}=2\left(C^{(8)} f_{\eta}^{8}+C^{(0)} f_{\eta}^{0}\right) \int_{0}^{1} \frac{\phi^{a s}(x)}{x} d x, \tag{23}\\
& Q^{2} F_{\eta^{\prime} \gamma}^{a s}=2\left(C^{(8)} f_{\eta^{\prime}}^{8}+C^{(0)} f_{\eta^{\prime}}^{0}\right) \int_{0}^{1} \frac{\phi^{a s}(x)}{x} d x, \tag{24}
\end{align*}
$$

$\phi^{a s}(x)=6 x(1-x)$. Then the ASR at $Q^{2} \rightarrow \infty:$

$$
\begin{equation*}
4 \pi^{2}\left(\left(f_{\eta}^{8}\right)^{2}+\left(f_{\eta^{\prime}}^{8}\right)^{2}+2 \sqrt{2}\left[f_{\eta}^{8} f_{\eta}^{0}+f_{\eta^{\prime}}^{8} f_{\eta^{\prime}}^{0}\right]\right)=s_{0} \tag{25}
\end{equation*}
$$

The ASR takes the form:

$$
\begin{equation*}
f_{\eta}^{8} F_{\eta \gamma}(0)+f_{\eta^{\prime}}^{8} F_{\eta^{\prime} \gamma}(0)=\frac{1}{2 \sqrt{6} \pi^{2}}, \tag{26}
\end{equation*}
$$

where

$$
F_{M \gamma}(0)=\sqrt{\frac{4 \Gamma_{M \rightarrow \gamma \gamma}}{\pi \alpha^{2} m_{M}^{3}}} .
$$

Additional constraint - $R_{J / \Psi}$.
The radiative decays $J / \Psi \rightarrow \eta\left(\eta^{\prime}\right) \gamma$ are dominated by non-perturbative gluonic matrix elements, and the ratio of the decay rates $R_{J / \Psi}=\left(\Gamma(J / \Psi) \rightarrow \eta^{\prime} \gamma\right) /(\Gamma(J / \Psi) \rightarrow \eta \gamma)$ can be expressed as follows [Novikov'79]:

$$
\begin{equation*}
R_{J / \Psi}=\left|\frac{\langle 0| G \widetilde{G}\left|\eta^{\prime}\right\rangle}{\langle 0| G \widetilde{G}|\eta\rangle}\right|^{2}\left(\frac{p_{\eta^{\prime}}}{p_{\eta}}\right)^{3} \tag{27}
\end{equation*}
$$

where $p_{\eta\left(\eta^{\prime}\right)}=M_{J / \Psi}\left(1-m_{\eta\left(\eta^{\prime}\right)}^{2} / M_{J / \Psi}^{2}\right) / 2$.

$$
\begin{gather*}
\partial_{\mu} J_{\mu 5}^{8}=\frac{1}{\sqrt{6}}\left(m_{u} \bar{u} \gamma_{5} u+m_{d} \bar{d} \gamma_{5} d-2 m_{s} \bar{s} \gamma_{5} s\right) \tag{28}\\
\partial_{\mu} J_{\mu 5}^{0}=\frac{1}{\sqrt{3}}\left(m_{u} \bar{u} \gamma_{5} u+m_{d} \bar{d} \gamma_{5} d+m_{s} \bar{s} \gamma_{5} s\right)+\frac{1}{2 \sqrt{3}} \frac{3 \alpha_{s}}{4 \pi} G \widetilde{G} . \tag{29}\\
R_{J / \psi}=\left(\frac{f_{\eta^{\prime}}^{8}+\sqrt{2} f_{\eta^{\prime}}^{0}}{f_{\eta}^{8}+\sqrt{2} f_{\eta}^{0}}\right)^{2}\left(\frac{m_{\eta^{\prime}}}{m_{\eta^{\prime}}}\right)^{4}\left(\frac{p_{\eta^{\prime}}}{p_{\eta}}\right)^{3} \tag{30}
\end{gather*}
$$

From experiment this ratio is: $R_{J / \Psi}=4.67 \pm 0.15$ [PDG 2012].

Mixing

Octet-singlet basis (of currents):

$$
\begin{equation*}
J_{\mu 5}^{(8)}=\frac{1}{\sqrt{6}}\left(\bar{u} \gamma_{\mu} \gamma_{5} u+\bar{d} \gamma_{\mu} \gamma_{5} d-2 \bar{s} \gamma_{\mu} \gamma_{5} s\right), J_{\mu 5}^{(0)}=\frac{1}{\sqrt{3}}\left(\bar{u} \gamma_{\mu} \gamma_{5} u+\bar{d} \gamma_{\mu} \gamma_{5} d+\bar{s} \gamma_{\mu} \gamma_{5} s\right) . \tag{31}
\end{equation*}
$$

$$
\begin{equation*}
\langle 0| J_{\alpha 5}^{(a)}(0)|M(p)\rangle=i p_{\alpha} f_{M}^{a}, \tag{32}
\end{equation*}
$$

Matrix of decay constants (32)

$$
\mathbf{F}=\left(\begin{array}{cc}
f_{\eta}^{8} & f_{\eta^{\prime}}^{8} \tag{33}\\
f_{\eta}^{0} & f_{\eta^{\prime}}^{0}
\end{array}\right)
$$

- Octet-singlet (SU(3)) mixing scheme: $f_{\eta}^{8} f_{\eta}^{0}+f_{\eta^{\prime}}^{8} f_{\eta^{\prime}}^{0}=0$.

$$
\mathbf{F}=\left(\begin{array}{cc}
f_{8} \cos \theta & f_{8} \sin \theta \tag{34}\\
-f_{0} \sin \theta & f_{0} \cos \theta
\end{array}\right) .
$$

For quark-flavour basis one explores the definitions of axial currents with decoupled light and strange quark composition:

$$
\begin{gather*}
J_{\mu 5}^{q}=\frac{1}{\sqrt{2}}\left(\bar{u} \gamma_{\alpha} \gamma_{5} u+\bar{d} \gamma_{\alpha} \gamma_{5} d\right), J_{\mu 5}^{s}=\bar{s} \gamma_{\alpha} \gamma_{5} s, \tag{35}\\
\binom{J_{\mu 5}^{8}}{J_{\mu 5}^{0}}=\mathbf{V}(\alpha)\binom{J_{\mu 5}^{q}}{J_{\mu 5}^{s}}, \mathbf{V}(\alpha)=\left(\begin{array}{cc}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha
\end{array}\right), \tag{36}
\end{gather*}
$$

where $\tan \alpha=\sqrt{2}$.

- Quark-flavour mixing scheme: [Feldmann,Kroll,Stech'97]

$$
\begin{gather*}
f_{\eta}^{q} f_{\eta}^{s}+f_{\eta^{\prime}}^{q} f_{\eta^{\prime}}^{s}=0 \\
\mathbf{F}_{\mathbf{q s}}=\left(\begin{array}{cc}
f_{q} \cos \phi & f_{q} \sin \phi \\
-f_{s} \sin \phi & f_{s} \cos \phi
\end{array}\right) . \tag{37}
\end{gather*}
$$

$$
\begin{equation*}
4 \pi^{2}\left(\left(f_{\eta}^{8}\right)^{2}+\left(f_{\eta^{\prime}}^{8}\right)^{2}+2 \sqrt{2}\left[f_{\eta}^{8} f_{\eta}^{0}+f_{\eta^{\prime}}^{8} f_{\eta^{\prime}}^{0}\right]\right)=s_{0} \tag{38}
\end{equation*}
$$

$$
\begin{equation*}
f_{\eta}^{8} F_{\eta \gamma}(0)+f_{\eta^{\prime}}^{8} F_{\eta^{\prime} \gamma}(0)=\frac{1}{2 \sqrt{6} \pi^{2}} \frac{s_{0}}{s_{0}+Q^{2}} \tag{39}
\end{equation*}
$$

$$
\begin{equation*}
R_{J / \Psi}=\left(\frac{f_{\eta^{\prime}}^{8}+\sqrt{2} f_{\eta^{\prime}}^{0}}{f_{\eta}^{8}+\sqrt{2} f_{\eta}^{0}}\right)^{2}\left(\frac{m_{\eta^{\prime}}}{m_{\eta^{\prime}}}\right)^{4}\left(\frac{p_{\eta^{\prime}}}{p_{\eta}}\right)^{3} \tag{40}
\end{equation*}
$$

Black curve: $\chi^{2} /$ n.d.f. $=1$, green curve: $f_{\eta}^{8} f_{\eta}^{0}+f_{\eta^{\prime}}^{8} f_{\eta^{\prime}}^{0}=0$, orange curve: $f_{\eta}^{q} f_{\eta}^{s}+f_{\eta^{\prime}}^{q} f_{\eta^{\prime}}^{s}=0$.

Octet-siglet scheme: mixing parameters

$$
\left(\begin{array}{cc}
f_{\eta}^{8} & f_{\eta^{\prime}}^{8} \tag{41}\\
f_{\eta}^{0} & f_{\eta^{\prime}}^{0}
\end{array}\right)=\left(\begin{array}{cc}
1.11 & -0.42 \\
0.16 & 1.04
\end{array}\right) f_{\pi}
$$

ASR in octet channel (space-like region, $\left.Q^{2}>0\left(q^{2}<0\right)\right)$

η, η^{\prime} TFFs

Add the hypothesis: the TFFs of the state $|q\rangle \equiv \frac{1}{\sqrt{2}}(|\bar{u} u\rangle+|\bar{d} d\rangle)$ is related to the pion form factor as $F_{q \gamma}\left(Q^{2}\right)=(5 / 3) F_{\pi \gamma}\left(Q^{2}\right)$ (numerical factor comes from the quark charges $\left.\left(e_{u}^{2}+e_{d}^{2}\right) /\left(e_{u}^{2}-e_{d}^{2}\right)=5 / 3\right)$. QF mixing scheme:

$$
\begin{equation*}
|q\rangle=\cos \phi|\eta\rangle+\sin \phi\left|\eta^{\prime}\right\rangle,|s\rangle=-\sin \phi|\eta\rangle+\sin \phi\left|\eta^{\prime}\right\rangle . \tag{42}
\end{equation*}
$$

Then one can relate the form factors:

$$
\begin{gather*}
\frac{5}{3} F_{\pi \gamma}=F_{\eta \gamma} \cos \phi+F_{\eta^{\prime} \gamma} \sin \phi \tag{43}\\
F_{\eta \gamma}\left(Q^{2}\right)=\frac{5}{12 \pi^{2} f_{s} f_{\pi}} \frac{s_{0}^{(3)}\left(\sqrt{2} f_{s} \cos \phi-f_{q} \sin \phi\right)}{s_{0}^{(3)}+Q^{2}}+\frac{1}{4 \pi^{2} f_{s}} \frac{s_{0}^{(8)} \sin \phi}{s_{0}^{(8)}+Q^{2}} \tag{44}\\
F_{\eta^{\prime} \gamma}\left(Q^{2}\right)=\frac{5}{12 \pi^{2} f_{s} f_{\pi}} \frac{s_{0}^{(3)}\left(\sqrt{2} f_{s} \sin \phi+f_{q} \cos \phi\right)}{s_{0}^{(3)}+Q^{2}}-\frac{1}{4 \pi^{2} f_{s}} \frac{s_{0}^{(8)} \cos \phi}{s_{0}^{(8)}+Q^{2}} \tag{45}
\end{gather*}
$$

where $s_{0}^{(3)}=4 \pi^{2} f_{\pi}^{2}, s_{0}^{(8)}=(4 / 3) \pi^{2}\left(5 f_{q}^{2}-2 f_{s}^{2}\right)$.

η, η^{\prime} TFF in the space-like region $\left(Q^{2}>0\left(q^{2}<0\right)\right)$

Time-like region: $q^{2}>0\left(Q^{2}<0\right)$ and VMD

The ASR for time-like q^{2} is given by the double dispersive integral:

$$
\begin{equation*}
\int_{0}^{\infty} d s \int_{0}^{\infty} d y \frac{\rho^{(a)}(s, y)}{y-q^{2}+i \epsilon}=N_{c} C^{(a)}, a=3,8 \tag{46}
\end{equation*}
$$

The real and imaginary parts of the ASR read:

$$
\begin{array}{r}
\text { p.v. } \int_{0}^{\infty} d s \int_{0}^{\infty} d y \frac{\rho^{(a)}(s, y)}{y-q^{2}}=N_{c} C^{(a)} \\
\int_{0}^{\infty} d s \rho^{(a)}\left(s, q^{2}\right)=0, a=3,8 \tag{48}
\end{array}
$$

$\operatorname{Re} F_{\pi \gamma}\left(q^{2}\right)=\frac{N_{c} C^{(3)}}{2 \pi^{2} f_{\pi}}\left[\right.$ p.v. $\left.\int_{0}^{s_{3}} d s \int_{0}^{\infty} d y \frac{\rho^{(a)}(s, y)}{y-q^{2}}\right]=\frac{1}{2 \sqrt{2} \pi^{2} f_{\pi}} \frac{s_{0}}{s_{0}-q^{2}}$.
The TFF in the time-like region at $q^{2}=s_{3}$ has a pole, which is numerically close to the ρ meson mass squared, $m_{\rho}^{2} \simeq 0.59 \mathrm{GeV}^{2}-$ VMD model.

$$
\begin{aligned}
& F_{\eta \gamma}\left(q^{2}\right)=\frac{5}{12 \pi^{2} f_{s} f_{\pi}} \frac{s_{3}\left(\sqrt{2} f_{s} \cos \phi-f_{q} \sin \phi\right)}{s_{3}-q^{2}}+\frac{1}{4 \pi^{2} f_{s}} \frac{s_{8} \sin \phi}{s_{8}-q^{2}}, \\
& F_{\eta^{\prime} \gamma}\left(q^{2}\right)=\frac{5}{12 \pi^{2} f_{s} f_{\pi}} \frac{s_{3}\left(\sqrt{2} f_{s} \sin \phi+f_{q} \cos \phi\right)}{s_{3}-q^{2}}-\frac{1}{4 \pi^{2} f_{s}} \frac{s_{8} \cos \phi}{s_{8}-q^{2}}, \\
& s_{3}=4 \pi^{2} f_{\pi}^{2}, s_{8}=(4 / 3) \pi^{2}\left(5 f_{q}^{2}-2 f_{s}^{2}\right) .
\end{aligned}
$$

η TFF in the time-like region vs. data

Summary

- Meson TFFs are unique quantities which link (seemingly different) important ideas: axial anomaly, mixing and VMD model.
- The ASR in the isovector channel gives the anomaly-based ground for the BL interpolation formula for the pion TFF in the space-like region, and for the VMD model in the time-like region.
- In order to describe the BABAR data on pion TFF, ASR requires a new nonperturbative correction to the spectral density. At the same time, the BELLE data can be described well without such a correction. This correction is absent in the local OPE and possibly originates from instantons or short strings.
- Mixing parameters of η and η^{\prime} meson can be extracted from TFFs using the ASR.
- ASR in the time-like region of TFFs substantiate the VMD model.

Thank you for your attention!

