On steering of entangled Particles STATES IN AN INTENSE LASER FIELD

Arsen Khvedelidze

Institute of Quantum Physics and Engineering Technology, Georgian Technical University, Tbilisi, Georgia Laboratory of Information Technologies, JINR, Dubna, Russia Mathematical Institute,Tbilisi State University, Tbilisi, Georgia

Brazil-JINR Forum
Dubna, June 15-19, 2015

Plan

(1) Motivation
(2) Classical dynamics

- Low intensity; the electric dipole approximation
- Beyond the dipole approximation
(3) Quantum mechanics in laser background
- Semi-classical approximation
- Separation \& Superposition
(4) Quantal expositions in a strong laser field
- Spin flipping oscillation
- Non-linearities in quantum phase
- Spins of a bound state in a strong laser

Laser modeled by a monochromatic plane wave

- Laser beam as transverse, monochromatic, elliptically polarised plane wave with pulse-shape factor

$$
A^{\mu}=a(\xi)\left(0, \varepsilon \cos \left(\omega_{L} \xi\right), \sqrt{1-\varepsilon^{2}} \sin \left(\omega_{L} \xi\right), 0\right)
$$

- $a(\xi)$ - smooth and slowly varying function, vanishing at $\xi:=(t-z / c) \rightarrow \pm \infty$.
- As example: $a(\xi)=a \operatorname{sech}(\alpha \xi)$, with constant α determining a pulse interval; if $\alpha \ll \omega_{L}$, pulse is long.
- Infinitely long pulse, $a(\xi)=a$ - constant
- Constant $0 \leq \varepsilon \leq 1$ measures a laser beam polarisation:
- $\varepsilon=0,1$ - linear polarisation;
- $\varepsilon^{2}=1 / 2$ - circular polarisation;

Classical View on a Laser- Charge Interaction

Dipole Approximation and Beyond

INTENSITIES REGIMES

Three regimes for a charged (-e), massive (m) particle interacting with a laser field A, determined by a laser field strength parameter:

$$
\eta^{2}=-2 \frac{e^{2}}{m^{2} c^{4}}\left\langle\left\langle A_{\mu} A^{\mu}\right\rangle\right\rangle,
$$

- $\eta \ll 1$ - low intensity regime;
- $\eta \sim 1$ - semi-relativistic intensity regime;
- $\eta \gg 1$ - ultra relativistic regime.
$\langle\langle\ldots\rangle\rangle$ - denotes time overage over the laser oscillations.

The field strength parameter

The laser field strength is

$$
\eta^{2}=\frac{2}{\pi} \frac{e^{2}}{m^{2} c^{5}} \lambda_{L}^{2} I_{L},
$$

λ_{L} - laser wavelength,
$I_{L}:=c E_{0}{ }^{2} / 8 \pi$ - laser peak intensity,
E_{0} - the electric field amplitude.

Numerically, $\eta^{2}=3 \times 10^{-11} I_{L} \lambda_{L}^{2},\left[I_{L}\right]=\frac{W}{c m^{2}}$ and $\left[\lambda_{L}\right]=\mathrm{cm}$.
$\sqrt{ } \sqrt{ }$ For $\lambda_{L}=10^{-4} \mathrm{~cm}$, an intensity of $I_{L}=3 \times 10^{18} \frac{\mathrm{~W}}{\mathrm{~cm}^{2}}$ is necessary to achieve $\eta^{2}=1$;
$\sqrt{ } \sqrt{ }$ An ordinary light bulb corresponds to $\eta^{2} \approx 10^{-18}$.

Strong Optical Laser Sources

Chirped Pulse Amplification (CPA) and Optical Parametric OPCPA

- The new Quantum Era
- Multipetawatt optical lasers
- Physics of intensive laser-matter interaction
$\sqrt{ }$ From single photon to coherent photons;
$\sqrt{ }$ Non-linear QED ;
$\sqrt{ }$ Relativistic optics

Picture: G.A.Mourou et al. Optics Communications 285 (2012) 720-724

Charge + low intensity radiation

- The Newton equation with the Heaviside-Lorentz force

$$
m \frac{\mathrm{~d}^{2} \mathbf{x}(t)}{\mathrm{d} t^{2}}=e \mathbf{E}(t, \mathbf{x}(t))+\frac{e}{c} \frac{\mathrm{~d} \mathbf{x}}{\mathrm{~d} t} \times \mathbf{B}(t, \mathbf{x}(t))
$$

- Admits the linearization under assumptions:
$\sqrt{ }$ dipole approximation $-\omega_{L} t-\mathbf{k}_{L} \cdot \mathbf{x} \approx \omega_{L} t$
$\sqrt{ }$ magnetic force ignored $-\frac{v}{c}\left\|\mathbf{B}_{0}\right\| \ll\left\|\mathbf{E}_{0}\right\|$
- In a weak monochromatic wave background the Newton equation simplifies

$$
m \frac{\mathrm{~d}^{2} \mathbf{x}(t)}{\mathrm{d} t^{2}}=e \mathbf{E}_{0} \cos \omega_{L} t
$$

- As result the electron executes harmonic motion at the same laser frequency ω_{L} :

$$
x=-\frac{e}{m \omega_{L}^{2}} \mathbf{E}_{0} \cos \omega_{L} t
$$

When does the approximation work?

- The magnetic field can be neglected only for non-relativistic velocities;
- Since $v_{\max }=e| | \mathbf{E}_{0} \| / m \omega_{L}$ the condition $v \ll c$ holds true as long as

$$
\eta^{2}=\frac{e^{2}}{\omega_{L}^{2} m^{2} c^{2}} \mathbf{E}_{0}^{2}=\frac{v_{\max }^{2}}{c^{2}} \ll 1,
$$

- The intensity scale is set by the dimensionless parameter η^{2}

Classical trajectories beyond the dipole approximation

Tackle the problem:

$\triangleright \quad$ Solve the Newton equations of motion for a charged spinless particle travelling in the plane electromagnetic wave:

$$
A^{\mu}:=(0, \mathbf{A}(c t-\mathbf{n} \cdot \mathbf{x})), \quad \mathbf{n} \cdot \mathbf{A}=0, \quad \mathbf{n}^{2}=1
$$

- Can that problem be solved analytically
\checkmark not using the dipole approximation,
\checkmark taking into account the magnetic part of the Lorentz force ?
- Surprisingly, one cannot find the solution in textbooks !!!

How one can solve the equations of motion?

- Start with the "non-relativistic" Lagrange function

$$
\mathcal{L}\left(\mathbf{x}, \frac{\mathrm{d} \mathbf{x}}{\mathrm{~d} t}, t\right)=\frac{m}{2} \frac{\mathrm{~d} x^{i}}{\mathrm{~d} t} \frac{\mathrm{~d} x^{i}}{\mathrm{~d} t}+\frac{e}{c} \frac{\mathrm{~d} x^{i}}{\mathrm{~d} t} A_{i}(\xi)-e \Phi(\xi),
$$

- Perform the Dirac trick:
i). Introduce an auxiliary parameter s and consider a time t as a new dynamical coordinate $t(s)$,
ii). Define the new Lagrangian \mathcal{L}^{*} on the extended space $t(s), \mathbf{x}(s)$

$$
\mathcal{L}^{*}(\mathbf{x}(s), t(s), \dot{\mathbf{x}}(s), \dot{t}(s)):=\dot{t}(s) \mathcal{L}\left(\mathbf{x}(s), \frac{\dot{\mathbf{x}}(s)}{\dot{t}(s)}, t(s)\right) .
$$

- P.Jameson and A.Khvedelidze, (2008)

The Hamilton-Jacobi solution; generating function

- The generating function of classical evolution reads

$$
\mathcal{F}_{C l .}^{ \pm}=\mp c\left(m c-\Pi_{z}\right) \xi \pm c \int_{0}^{\xi} \mathrm{d} u \sqrt{\left(m c-\Pi_{z}\right)^{2}+W\left(u, \boldsymbol{\Pi}_{\perp}\right)} .
$$

- where

$$
W\left(u, \boldsymbol{\Pi}_{\perp}\right):=-\frac{e^{2}}{c^{2}} \mathbf{A}_{\perp}(u)^{2}+2 \frac{e}{c} \mathbf{A}_{\perp}(u) \cdot \boldsymbol{\Pi}_{\perp}
$$

Π_{z}, Π_{\perp} - constant 3-vector.

Particle's orbits in an arbitrary plane wave

- The parametric solution to the Newton's equation

$$
\begin{aligned}
t(s) & =m c \int_{0}^{s} \mathrm{~d} u \frac{1}{\sqrt{\left(\Pi_{z}-m c\right)^{2}+W\left(u, \boldsymbol{\Pi}_{\perp}\right)}} \\
z(s) & =-c s+m c^{2} \int_{0}^{s} \mathrm{~d} u \frac{1}{\sqrt{\left(\Pi_{z}-m c\right)^{2}+W\left(u, \boldsymbol{\Pi}_{\perp}\right)}} \\
\mathbf{x}_{\perp}(s) & =c \int_{0}^{s} \mathrm{~d} u \frac{\boldsymbol{\Pi}_{\perp}-\frac{e}{c} \mathbf{A}_{\perp}(u)}{\sqrt{\left(\Pi_{z}-m c\right)^{2}+W\left(u, \boldsymbol{\Pi}_{\perp}\right)}}
\end{aligned}
$$

$\checkmark s$ is an auxiliary time variable.

The monochromatic background radiation

How the explicit form of a trajectory as function of LAB frame time looks like?

- For the monochromatic background radiation the LAB frame time - an elliptic integral:

$$
t(s)=\frac{2}{\omega_{L}} \int_{0}^{\tan \left(\omega_{L} s / 2\right)} \mathrm{d} x \frac{1}{\sqrt{4^{\text {th order polynomial }}}}
$$

- Therefore an auxiliary time s is expressible via the Weierstrass doubly periodic function: $\wp\left(\omega_{L} t / 2 ; g_{2}, g_{3}\right)$.

Constants of motion and reference frame fixing

In the formulae above the vanishing position $\mathbf{x}(0)=0$, at LAB time $t=0$, has been fixed, while the initial velocity is encoded in the integrals of motion $\beta_{+}:=1+\Pi_{z} / m c$, and $\boldsymbol{\beta}_{\perp}=\Pi_{\perp} / m c$

$$
\begin{aligned}
v_{\perp}(0) & =c\left(\boldsymbol{\beta}_{\perp}-\eta \boldsymbol{\epsilon}_{\perp}\right) \\
v_{z}(0) & =c-c \sqrt{\beta_{+}^{2}+\boldsymbol{\beta}_{\perp}^{2}-\left(\boldsymbol{\beta}_{\perp}-\eta \boldsymbol{\epsilon}_{\perp}\right)^{2}}
\end{aligned}
$$

where $\boldsymbol{\epsilon}_{\perp}=(\varepsilon, 0)$.

- The formulae can be simplified by fixing the reference frame:
$\sqrt{ }$ Transverse motion average rest frame $\left\langle\boldsymbol{v}_{\perp}\right\rangle=\boldsymbol{\beta}_{\perp}=0$, $\sqrt{ } \sqrt{ }$ Longitudinal motion average rest frame $\left\langle v_{z}\right\rangle=0$.

Auxiliary time s as function of LAB frame time

- LAB frame time with a vanishing $\boldsymbol{\beta}_{\perp}=0$ is

$$
t(s)=\frac{1}{\omega_{L}\left(1-\beta_{z}\right)} \int_{0}^{\omega_{L} s} \mathrm{~d} u \frac{1}{\sqrt{1-\mu^{2} \sin ^{2} u}}
$$

where

$$
\mu^{2}:=\frac{1-2 \varepsilon^{2}}{\left(1-\beta_{z}\right)^{2}} \eta^{2} .
$$

and the laser field strength $\eta^{2}=-2 \frac{e^{2}}{m^{2} c^{4}}\left\langle A_{\mu} A^{\mu}\right\rangle=\left(\frac{a e}{m c^{2}}\right)^{2}$.

- Consider three allowed domains:
(I) $0<\mu^{2}<1$,
(II) $\mu^{2}>1$,
(III) $\mu^{2}<0$.
- Special, degenerate cases $\mu^{2}=0$, and $\mu^{2}=1$.

"Fundamental solution"

- In the "fundamental domain" $\left(0<\mu^{2}<1\right)$, LAB frame time $t(s)$ is recognised as inverse of the Jacobi amplitude function:

$$
\omega_{L} s=\operatorname{am}\left(\omega_{L}^{\prime} t, \mu\right),
$$

where μ stands for the modulus.

- Frequency is non-relativistically Doppler shifted:

$$
\omega_{L}^{\prime}:=\omega_{L}\left(1-\beta_{z}\right)
$$

- If $-\pi / 2 \leq \omega_{L} s \leq \pi / 2$ the amplitude am is single-valued function on the interval

$$
-\mathbb{K}(\mu) \leq \omega_{L}^{\prime} t \leq \mathbb{K}(\mu)
$$

\mathbb{K} - "real" quarter period of Jacobi functions .

The explicit form of trajectories

- The trajectory as function of the LAB frame time

$$
\begin{aligned}
x(t) & =-\frac{c}{\omega_{L}} \sqrt{\frac{\varepsilon^{2}}{1-2 \varepsilon^{2}}} \arcsin \left[\sqrt{\mu^{2}} \operatorname{sn}\left(\omega_{L}^{\prime} t, \mu\right)\right] \\
y(t) & =\frac{c}{\omega} \sqrt{\frac{1-\varepsilon^{2}}{1-2 \varepsilon^{2}}} \ln \left[\frac{\sqrt{\mu^{2}} \operatorname{cn}\left(\omega_{L}^{\prime} t, \mu\right)+\operatorname{dn}\left(\omega_{L}^{\prime} t, \mu\right)}{1+\sqrt{\mu^{2}}}\right] \\
z(t) & =c t-\frac{c}{\omega} \operatorname{am}\left(\omega_{L}^{\prime} t, \mu\right)
\end{aligned}
$$

- Periodic motion in the plane orthogonal to the wave propagation

$$
T_{P}:=\frac{2 \pi}{\omega_{P}} .
$$

- The fundamental frequency:

$$
\omega_{\mathrm{P}}:=\frac{\pi}{2 \mathbb{K}} \omega_{L}^{\prime}
$$

Expansion over harmonics

$$
\begin{aligned}
& x(t)=\frac{4 c \varepsilon}{\omega_{L} \sqrt{1-2 \epsilon^{2}}} \sum_{n=1}^{\infty} \frac{q^{n-1 / 2}}{(2 n-1)\left(1+q^{2 n-1}\right)} \sin (2 n-1) \omega_{P} t \\
& y(t)=\frac{8 c \sqrt{1-\varepsilon^{2}}}{\omega_{L}} \sum_{n=1}^{\infty} \frac{q^{n-1 / 2}}{(2 n-1)\left(1-q^{2 n-1}\right)} \sin ^{2}\left(n-\frac{1}{2}\right) \omega_{P} t \\
& z(t)=\left\langle v_{z}\right\rangle t-\frac{c}{\omega_{L}} \sum_{n=1}^{\infty} \frac{2 q^{n}}{n\left(1+q^{2 n}\right)} \sin 2 n \omega_{P} t
\end{aligned}
$$

where q is the so-called nome parameter $\quad q:=\exp \left(-\pi \frac{\mathbb{K}^{\prime}}{\mathbb{K}}\right)$.
The nome q for small intensities is approximately

$$
q \approx \frac{1-2 \varepsilon^{2}}{16\left(1-\beta_{z}\right)^{2}} \eta^{2}+O\left(\eta^{4}\right)
$$

Velocity and Average Rest Frame (ARF)

- A particle velocity reads

$$
\begin{aligned}
& v_{x}(t)=-c \eta \varepsilon \operatorname{cn}\left(\omega_{L}^{\prime} t, \mu\right), \\
& v_{y}(t)=-c \eta \sqrt{1-\varepsilon^{2}} \operatorname{sn}\left(\omega_{L}^{\prime} t, \mu\right) \\
& v_{z}(t)=c-c\left(1-\beta_{z}\right) \operatorname{dn}\left(\omega_{L}^{\prime} t, \mu\right) .
\end{aligned}
$$

- The drift in the direction of propagation is a nonlinear function of laser beam intensity

$$
\left\langle\beta_{z}\right\rangle=1-\frac{\pi}{2} \frac{\left(1-\beta_{z}\right)}{\mathbb{K}(\mu)} .
$$

- The vanishing drift velocity $\left\langle v_{z}\right\rangle=0$ for small intensity corresponds to fixation

$$
\beta_{z}=-\frac{1}{4}\left(1-2 \epsilon^{2}\right) \eta^{2}+\ldots,
$$

Beyond the dipole approximation

Low-intensity region

- Trajectory in the leading intensity order:

$$
\begin{aligned}
& x=-\frac{c \varepsilon}{\omega_{L}^{\prime}} \eta \sin \left(\omega_{L}^{\prime} t\right)+o\left(\eta^{3}\right) \\
& y=-\frac{2 c \sqrt{1-\varepsilon^{2}}}{\omega_{L}^{\prime}} \eta \sin ^{2}\left(\frac{\omega_{L}^{\prime} t}{2}\right)+o\left(\eta^{3}\right) \\
& z=-\frac{c}{\omega} \frac{1-2 \varepsilon^{2}}{8\left(1-\beta_{z}\right)^{2}} \eta^{2} \sin \left(2 \omega_{L}^{\prime} t\right)+o\left(\eta^{4}\right)
\end{aligned}
$$

High-low intensities duality

- High-low intensity transformation:

$$
\mu \rightarrow \mu^{\prime}:=\frac{1}{\mu}
$$

- Duality: Solution in the "fundamental domain" determines all possible solutions. Any trajectory can be obtained from the "fundamental solutions" by modular transformation; combination of inversion $\mu \rightarrow 1 / \mu$, and rotation to the imaginary axis $\mu \rightarrow \imath \mu$.
- The useful modular parameter is: $\tau:=i \frac{\mathbb{K}^{\prime}(\mu)}{\mathbb{K}(\mu)}$.

Modular transformations

- Under the modular transformation

$$
\tau \rightarrow \tau^{\prime}:=\frac{a+b \tau}{c+d \tau}, \quad a, b, c, d \in \mathbb{Z}
$$

elliptic functions are expressible through each other, e.g.:

- Jacobi imaginary transformation $\tau \rightarrow \tau^{\prime}=-1 / \tau$

$$
\operatorname{sn}(i z, \mu)=i \frac{\operatorname{sn}\left(z, \mu^{\prime}\right)}{\operatorname{cn}\left(z, \mu^{\prime}\right)}, \quad \operatorname{dn}(i z, \mu)=\frac{\operatorname{dn}\left(z, \mu^{\prime}\right)}{\operatorname{cn}\left(z, \mu^{\prime}\right)}
$$

- The shift transformation $\tau \rightarrow \tau^{\prime}=\tau \pm 1$

$$
\operatorname{sn}\left(\mu^{\prime} z, \pm \frac{i \mu}{\mu^{\prime}}\right)=\mu^{\prime} \frac{\operatorname{sn}\left(z, \mu^{\prime}\right)}{\operatorname{dn}\left(z, \mu^{\prime}\right)}, \quad \operatorname{dn}\left(\mu^{\prime} z, \pm \frac{i \mu}{\mu^{\prime}}\right)=\mu^{\prime} \frac{\operatorname{dn}\left(z, \mu^{\prime}\right)}{\operatorname{cn}\left(z, \mu^{\prime}\right)}
$$

The \pm signs of modulus correspond to $\operatorname{Re}(\tau) \lessgtr 0$ respectively.

A Laser- Charge Interaction

Quantum mechanical View

- The Dipole Approximation and Beyond

A.Khvedelidze

Quantum mechanics of a charged spinning particle

- Charge \& Spin quantum decomposition

$$
\Psi \subset L^{2}\left(\mathbb{R}^{3}\right) \otimes \mathbb{C}^{2}
$$

- The "composite" Hamilton operator

$$
\hat{\mathrm{H}}(t):=\hat{\mathrm{H}}_{\mathrm{C}}(t) \otimes \mathrm{I}_{\mathrm{S}}+\mathrm{I}_{\mathrm{C}} \otimes \hat{\mathrm{H}}_{\mathrm{S}}(t)
$$

\checkmark with the charge-radiation Hamiltonian $\hat{\mathrm{H}}_{\mathrm{C}}$

$$
\hat{\mathrm{H}}_{\mathrm{C}}(t)=\frac{1}{2 m}\left(\hat{\mathbf{p}}-\frac{e}{c} \mathbf{A}(t, \mathbf{x})\right)^{2}, \quad \hat{\mathbf{p}}=-\imath \hbar \boldsymbol{\nabla}
$$

\checkmark and the spin-radiation Hamiltonian $\hat{\mathrm{H}}_{\mathrm{S}}$

$$
\hat{\mathrm{H}}_{\mathrm{S}}(t):=-\frac{\hbar}{2} \kappa \mathbf{B}(t, \mathbf{x}) \cdot \boldsymbol{\sigma}
$$

Separation \& Superposition

The WKB spin-charge decomposition

Charged spin- $1 / 2$ particle's pure state admits the semiclassical spin-charge degrees decomposition

$$
|\Psi\rangle=a\left|\psi_{+}\right\rangle \otimes\left|\chi_{0}\right\rangle+b\left|\psi_{+}\right\rangle \otimes\left|\chi_{1}\right\rangle+c\left|\psi_{-}\right\rangle \otimes\left|\chi_{0}\right\rangle+d\left|\psi_{-}\right\rangle \otimes\left|\chi_{1}\right\rangle .
$$

$\checkmark\left|\psi_{ \pm}\right\rangle$- two independent WKB solutions to the Schrödinger equation for spinless charge

$$
i \hbar \frac{\partial}{\partial_{t}}|\psi\rangle=-\frac{\hbar^{2}}{2 m}\left(\nabla-\frac{i e}{\hbar c} \mathbf{A}(t, \mathbf{x})\right)^{2}|\psi\rangle .
$$

$\checkmark\left|\chi_{0,1}\right\rangle$ - independent solutions to the spin precession equation.

The semi-classical solution for a spinless charged particle

The WKB solution to the Schrödinger equation for spinless particle

- As we will see in the leading semiclassical order

$$
\left\langle\mathbf{x}, t \mid \psi_{ \pm}\right\rangle=\frac{1}{\sqrt{\mid \partial_{\xi} \mathcal{F}_{C l}^{ \pm} .} \mid} e^{ \pm \frac{i}{\hbar} \frac{\Pi^{2}}{2 m} t} e^{ \pm \frac{i}{\hbar} \boldsymbol{\Pi} \cdot \mathbf{x}} \exp \frac{i}{\hbar} \mathcal{F}_{C l .}^{ \pm}\left(t-\frac{z}{c}, \boldsymbol{\Pi}\right),
$$

\checkmark The phase $\mathcal{F}_{\overline{C l} \text {. }}^{ \pm}$is the Hamilton-Jacobi generating function written above.
$\checkmark \Pi$ - constant 3 -vector, classical integrals of motion.

Separation \& Superposition

The spin-precession equation

For a particle at REST the Spin Precession equation is

$$
i \hbar \frac{\partial}{\partial t}|\chi\rangle=-g \mu_{B} \mathbf{B}_{\mathrm{REST}}(t) \cdot \mathbf{S}|\chi\rangle .
$$

\checkmark While for a spin S moving in electromagnetic field (E,B) with the velocity \mathbf{v} and acceleration a the interaction Hamiltonian reads

$$
\mathcal{H}^{\prime}=-g \mu_{B} \underbrace{\left(\mathbf{B}-\frac{1}{c}[\mathbf{v} \times \mathbf{E}]\right) \cdot \mathbf{S}}-\underbrace{\frac{1}{2 c^{2}}[\mathbf{v} \times \mathbf{a}] \cdot \mathbf{S}}
$$

\checkmark N.B. Galiei boost \& $\omega_{\mathrm{T}} \cdot$ S—Thomas precession

Three laser intensity induced effects

SPIN-FLIP INTENSITY RESONANCE

NON-LINEARITY OF A CHARGED PARTICLE's PHASE

Creation of entanglement between constituents spins

A.Khvedelidze

Spin evolution in dipole approximation

- In the non-relativistic limit

$$
\mathbf{B}^{\prime \text { Dipole }}=\frac{a \omega_{L}}{c}\left(\sqrt{1-\varepsilon^{2}} \cos \left(\omega_{L} t\right), \varepsilon \sin \left(\omega_{L} t\right), 0\right) .
$$

- The probability for a spin to flip in this field with the circular polarization, $\left(\varepsilon^{2}=1 / 2\right)$, is vanishing in the linear, $\eta \ll 1$, approximation:

$$
\mathcal{P}_{\downarrow \uparrow}^{\text {Dipole }}=\frac{1}{1+2 / g^{2} \eta^{2}} \sin ^{2} \frac{\omega_{L}}{2 g} t \Rightarrow 0 .
$$

Beyond the dipole approximation, due to several factors: the retardation effect + magnetic part of Heaviside-Lorentz force distortion of a particle's classical orbit as well as the Thomas correction new effect appears.

Effective magnetic field for particle's spin

- Effective magnetic field = alternating field + "almost constant" magnitude field along the laser.
- In formulae:

$$
\begin{aligned}
\mathrm{B}_{x}^{\prime} & =\frac{a \omega_{L}^{\prime}}{g c} \sqrt{1-\varepsilon^{2}}\left[(g+1) \operatorname{dn}(u, \mu)-\gamma_{z}\right] \operatorname{cn}(u, \mu), \\
\mathrm{B}_{y}^{\prime} & =\frac{a \omega_{L}^{\prime}}{g c} \varepsilon\left[(g+1) \operatorname{dn}(u, \mu)-\gamma_{z}\left(1-\mu^{2}\right)\right] \operatorname{sn}(u, \mu) \\
\mathrm{B}_{z}^{\prime} & =-\eta \frac{a \omega_{L}}{g c} \varepsilon \sqrt{1-\varepsilon^{2}}\left[g-\gamma_{z} \operatorname{dn}(u, \mu)\right] .
\end{aligned}
$$

where

$$
\gamma_{z}^{2} \mu^{2}=\left(1-2 \varepsilon^{2}\right) \eta^{2}
$$

Laser-spin interaction — Rabbi oscillation

Laser circularly polarized

$$
\begin{aligned}
\mathbf{B}_{\text {Circular }}(t) & =\left(\mathcal{H}_{0} \cos \left(\omega_{L}^{\prime} t\right), \quad \mathcal{H}_{0} \sin \left(\omega_{L}^{\prime} t\right), \quad \mathcal{H}_{z}\right) \\
\mathcal{H}_{0} & :=\frac{\eta \omega_{L}^{\prime} g}{2 \sqrt{2}}, \quad \mathcal{H}_{z}:=\frac{\eta^{2} \omega_{L}^{\prime}(1-g)}{4}
\end{aligned}
$$

The effective Laser-Spin interaction is famous NMR interaction via the rotated magnetic with field !

A.Khvedelidze

Spin flipping intensity resonance

The spin-flipping probability is

$$
\mathrm{P}_{\downarrow \uparrow}=\frac{\kappa^{2} \eta^{2}}{\kappa^{2} \eta^{2}+\left(\eta^{2}-\eta_{*}^{2}\right)^{2}} \sin ^{2}\left(\omega_{S} t\right)
$$

$$
\omega_{S}:=\frac{\omega_{L}|1-g|}{8} \sqrt{\kappa^{2} \eta^{2}+\left(\eta^{2}-\eta_{*}^{2}\right)^{2}}, \quad \kappa^{2}:=\frac{2 g^{2}}{(1-g)^{2}},
$$

The spin flip resonance occurs at intensity

$$
\eta_{*}^{2}:=\frac{4}{g-1}
$$

Spin-flip in an elliptically polarised laser

- The evolution operator $U\left(t, t_{0}\right)$ in the factor form

$$
U(t, 0)=\exp \left(a S_{+}\right) \exp \left(b S_{0}\right) \exp \left(c S_{-}\right)
$$

where $S_{ \pm}=1 / 2\left(\sigma_{1} \pm \imath \sigma_{2}\right)$ and $S_{0}=1 / 2 \sigma_{3}$.

- Unknown $a(t), b(t)$ and $c(t)$ determine spin- $1 / 2$ state

$$
|\chi(t)\rangle=U(t, 0)|\chi(0)\rangle
$$

- Probabilities of transitions between states

$$
\mathcal{P}_{\uparrow \uparrow}=\frac{1}{1+|a|^{2}}, \quad \mathcal{P}_{\uparrow \downarrow}=\frac{|a|^{2}}{1+|a|^{2}} .
$$

- Unknown $a(t)$ is subject to the Riccati equation:

$$
\dot{a}=\imath\left(-\mathrm{B}_{-}+\mathrm{B}_{0} a+\mathrm{B}_{+} \mathrm{a}^{2}\right),
$$

with functions $\mathrm{B}_{ \pm}=1 / 2\left(\mathrm{~B}_{x} \pm \imath \mathrm{B}_{y}\right)$ and $\mathrm{B}_{0}=1 / 2 \mathrm{~B}_{z}$.

Spin flipping oscillation

Figures: Spin-flip probability

Probability vs. Intensity; $g=6$

Spin flipping oscillation

Figures: Spin-flip probability

Probability vs. Intensity; $g=20$

Quantum mechanics in laser background

Spin flipping oscillation

Figures: Spin-flip probability

Probability vs. Gyromagnetic ration

Spin flipping oscillation

Figures: Spin-flip probability

Resonance curve: Intensity vs. Gyromagnetic ration

A.Khvedelidze

Quantum phase v.s. cyclic change of the environment

Laser linearly polarized

- Periodicity of radiation $t \rightarrow t+\frac{2 \pi}{\omega_{L}}$
- Reply of particle's spin-1/2:

$$
U\left(t+2 \pi / \omega_{P}\right)=U(t) M
$$

Appearance of the monodromy matrix, M.

- The simplest diagonal monodromy matrix

$$
M_{D}=\left(\begin{array}{cc}
e^{i \pi \varphi} & 0 \\
0 & e^{-i \pi \varphi}
\end{array}\right)
$$

Quantum phase depends nonlinearly on a laser intensity

$$
\varphi=\frac{g \eta}{\sqrt{2}} \sqrt{1+\frac{2}{g^{2}}\left(\frac{1}{\eta}+\frac{1-g}{2} \eta\right)^{2}}
$$

Quantum Phase \& Laser Intensity

Deviation of quantum phase from its non-relativistic value $\phi=1$

Model for a laser-bound state interaction

MODEL ASSUMPTIONS:

$$
\text { HILBERT } \quad \text { SPACE: } \quad \mathcal{H}=\mathcal{H}_{\mathrm{CM}} \otimes \mathcal{H}_{\mathrm{RM}} \otimes \mathcal{H}_{\text {SPIN }}
$$

Bound state: Mass - $\left(M_{B}\right)$, Charge $-\left(-q_{B}\right)$;
Constituents: Masses - $\left(m^{(n)}, m^{(p)}\right)$, Charges - $\left(e^{(n)}, e^{(p)}\right)$,

$$
\text { Spins }-(1 / 2,1 / 2), \text { Gyromagnetic ratios - }\left(g^{(n)}, g^{(p)}\right) .
$$

- Laser-charge interaction $V_{C L}$ (Bound state charge is point-like piked at its center of mass R):

$$
V_{C L}:=\frac{q_{B}}{c} \boldsymbol{v}_{R} \cdot \mathbf{A}(t, \mathbf{R}), \quad \boldsymbol{v}_{R}=d \mathbf{R} / d t .
$$

- Inter constituents interaction V_{B} :

$$
V_{B}=V_{0}(r)+V_{S S}(r), \quad V_{S S}(r):=V_{S}(r) \mathbf{S} \otimes \mathbf{S}
$$

$V_{0}(r)$ and $V_{S}(r)$ - a scalar functions of $r=\left|\mathbf{r}_{\bar{n}}-\mathbf{r}_{\bar{p}}\right|$.

Model for a laser-bound state interaction (continuation)

- The spin-laser coupling $V_{S L}$:

$$
V_{S L}:=-\boldsymbol{\Omega}^{(n)}\left(t, \mathbf{r}_{n}\right) \cdot \mathbf{s}^{(n)}-\boldsymbol{\Omega}^{(p)}\left(t, \mathbf{r}_{p}\right) \cdot \mathbf{s}^{(p)},
$$

where the vector $\Omega^{(i)}$ reads

$$
\Omega^{(i)}:=\frac{e^{(i)} \mathrm{g}^{(i)}}{2 m^{(i)} c}\left(\mathbf{B}-\frac{1}{c}\left[\mathbf{v}^{(i)} \times \mathbf{E}\right]\right)+\frac{1}{2 c^{2}}\left[\mathbf{v}^{(i)} \times \mathbf{a}^{(i)}\right] .
$$

E and B are the electric and magnetic component of a laser field evaluated along the i-th particle in the LAB frame.

Solving the problem

Step one

Evolution of center-mass motion of bound state

Step two

Evolution of spin degrees

Step three

Dynamics of spin degrees entanglement

Center-mass motion of bound state

- The semi-classical picture: The laser-spin interaction $V_{S L}$ contribution to the phase of wave function is negligible small in the leading approximation.
- In the leading semi-classical order the density matrix admits charge \& spin decomposition

$$
\rho=\sum_{\alpha= \pm} c_{\alpha}\left|\psi_{\alpha}\right\rangle \otimes \varrho_{\alpha},
$$

where ϱ_{α} is the constituents spin density, $\left|\psi_{ \pm}\right\rangle$, - two linearly independent WKB solutions to the Schrödinger equation with the Hamiltonian $H_{0}+V_{S S}+V_{C L}$.

- Separation of the relative and center-mass motion: Trajectory of the bound state's center of mass is similar to considered above a single charged particle

The evolution of spin degrees

- Spin density matrix ϱ satisfy the spin evolution equation

$$
\dot{\varrho}(t)=-\frac{i}{\hbar}\left[H_{S}(t), \varrho(t)\right] .
$$

H_{S} is defined as projection of $V_{S S}+V_{S L}$:

$$
H_{S}(t)=V_{S S}+\left.V_{S L}\right|_{\text {Constituents classical trajectory }}
$$

- Born-Oppenheimer approximation - "freeze" the relative motion of constituents $<r(t)>=r_{0}$ and neglect $o\left(v_{r} / c\right)$

An effective spin-laser Hamiltonian

- Effective laser-spin Hamiltonian reads:

$$
\begin{aligned}
H_{S} & =-\mathfrak{B}^{(n)}(t) \cdot \mathbf{S} \otimes I-I \otimes \mathbf{S} \cdot \mathfrak{B}^{(p)}(t)+H_{l}, \\
\mathfrak{B}^{(i)}(t), i & =(n, p) \text { for } \widetilde{\mathrm{g}}^{(i)}=\left(e^{(i)} / m^{(i)}\right)\left(M_{B} / q_{B}\right) \mathrm{g}^{(i)}, \\
\mathfrak{B}_{x}^{(i)}(t) & =\eta \frac{\omega_{L}^{\prime}}{2} \sqrt{1-\varepsilon^{2}}\left[\left(\widetilde{\mathrm{~g}}^{(i)}+1\right) \operatorname{dn}(u, \mu)-\gamma_{z}\right] \operatorname{cn}(u, \mu), \\
\mathfrak{B}_{y}^{(i)}(t) & =\eta \frac{\omega_{L}^{\prime}}{2} \varepsilon\left[\left(\widetilde{\mathrm{~g}}^{(i)}+1\right) \operatorname{dn}(u \mu)-\gamma_{z}\left(1-\mu^{2}\right)\right] \operatorname{sn}(u, \mu), \\
\mathfrak{B}_{z}^{(i)}(t) & =-\eta^{2} \frac{\omega_{L}}{2} \varepsilon \sqrt{1-\varepsilon^{2}}\left[\widetilde{\mathrm{~g}}^{(i)}-\gamma_{z} \operatorname{dn}(u, \mu)\right] .
\end{aligned}
$$

- H_{l} - spin-spin interaction originates from $V_{S S}$ under the same static approximation :

$$
\hbar H_{l}=g \mathbf{S} \otimes \mathbf{S} . \quad g:=\hbar V_{S}\left(r_{0}\right)
$$

The evolution operator

- "Interaction picture" for the evolution operator:

$$
U(t)=X(t) W(t) .
$$

- $W(t):=U^{(n)}(t) \otimes U^{(p)}(t)$ describes the unitary evolution of non-interacting spins.

$$
U^{(i)}(t)=\exp \left(\frac{i}{2} \vartheta^{(i)}(t) \sigma_{1}\right)
$$

where the phase factor for linearly polarized laser reads

$$
\vartheta^{(i)}(t)=\frac{\eta}{2}\left[\widetilde{\mathrm{~g}}^{(i)}+1\right] \operatorname{sn}(u, \mu)-\frac{1}{2} \arcsin [\mu \operatorname{sn}(u, \mu)]
$$

For $\eta \ll 1$ it reduces to the non-relativistic precession:

$$
2 \vartheta_{N R}=\eta \widetilde{\mathrm{g}}^{(n)} \sin \left(\omega_{L} t\right) .
$$

- The factor $X(t)$ affects the entanglement.

Composite systems

Bipartite system - system $A \otimes B$ composed from A and B subsystems

PRINCIPLE OF SUPERPOSITION

- The Hilbert space $\mathcal{H}_{A \otimes B}$ for bipartite system is the tensor product of the Hilbert spaces of its subsystems $\mathcal{H}_{A}^{d_{A}}$ and $\mathcal{H}_{B}^{d_{B}}$:

$$
\mathcal{H}_{A \otimes B} \sim \mathcal{H}_{A}^{d_{A}} \otimes \mathcal{H}_{B}^{d_{B}}
$$

where $d_{A}=\operatorname{dim} \mathcal{H}_{A}^{d_{A}}$ and $d_{B}=\operatorname{dim} \mathcal{H}_{B}^{d_{B}}$.

- The joint system's density matrix ϱ acts on $\mathcal{H}_{A} \otimes \mathcal{H}_{B}$

A.Khvedelidze

Separable \& Entangled density matrices

Classical vs Quantum correlations

ABSENCE OF CORRELATION:

$$
\varrho_{A \otimes B}=\varrho_{A} \otimes \varrho_{B}
$$

CLASSICAL CORRELATIONS $=$ SEPARABILITY:

- A bipartite system is in separable state $\varrho_{\text {SEP }}$ if

$$
\varrho_{\mathrm{SEP}}=\sum_{k}^{r} p_{k} \varrho_{A}^{k} \otimes \varrho_{B}^{k}, \quad \sum_{k}^{r} p_{k}=1, \quad p_{k} \in[0,1],
$$

where $\left\{\varrho_{A}^{k}\right\}$ and $\left\{\varrho_{B}^{k}\right\}$ are states on \mathcal{H}_{A} and \mathcal{H}_{B} for some r.

- Otherwise the state is entangled.

Example: 2 spins pure states

- One spin $1 / 2$ state

$$
|1\rangle=\alpha_{\uparrow}|\uparrow\rangle+\beta_{\downarrow}|\downarrow\rangle,
$$

- Two spin $1 / 2$ state

$$
|2\rangle=c_{\uparrow \uparrow}|\uparrow \uparrow\rangle+c_{\uparrow \downarrow}|\uparrow \downarrow\rangle+c_{\downarrow \uparrow}|\downarrow \uparrow\rangle+c_{\downarrow \downarrow}|\downarrow \downarrow\rangle,
$$

Question: When $|2\rangle$ is separable, i.e., $|2\rangle=|1\rangle \otimes\left|1^{\prime}\right\rangle$?
Answer: If and only if the concurrence is vanishing:

$$
C:=\operatorname{det}\left(\begin{array}{ll}
c_{\uparrow \uparrow} & c_{\uparrow \downarrow} \\
c_{\downarrow \uparrow} & c_{\downarrow \downarrow}
\end{array}\right)=0 .
$$

Example: 2 spins mixed states

- One spin $1 / 2$ state: $\quad \varrho_{1 / 2}=\frac{1}{2}[1+\alpha \cdot \sigma]$.
- Two spin $1 / 2$ state:

$$
\begin{gathered}
\varrho_{1 / 2,1 / 2}=\frac{1}{4} R_{\mu \nu} \sigma_{\mu} \otimes \sigma_{\nu}, \quad \mu, \nu=0,1,2,3 . \\
\sigma_{\mu}=(I, \sigma) .
\end{gathered}
$$

Concurrence:

$$
C(R):=\max \left(0, \frac{1}{2}\left(-s_{0}+s_{1}+s_{2}-s_{3}\right)\right)
$$

$s_{0}, \ldots s_{3}$-Lorentz singular values of $R=L_{1} \operatorname{diag}\left(s_{0}, s_{1}, s_{2}, s_{3}\right) L_{2}$.

Dynamics of entanglement

- Initial Werner state

$$
\varrho_{W}:=\frac{1}{4}(I+p \boldsymbol{\sigma} \otimes \boldsymbol{\sigma}),
$$

that for $\frac{1}{3}<p \leq 1$ describes the mixed entangled state.

- In the leading order in laser intensity the concurrence is stable under the influence of laser background:

$$
C\left(\varrho_{W}\right)=\max \left(0, \frac{3 p-1}{2}\right)
$$

Dynamics of entanglement

- Initially uncorrelated spins

$$
\varrho_{0}=\frac{1}{4}\left(\mathrm{I}+\alpha \frac{1}{2}\left(\sigma_{03}+\sigma_{30}\right)+\beta \frac{1}{2}\left(\sigma_{03}-\sigma_{30}\right)\right)
$$

- The concurrence averaged over the period of laser field oscillations $2 \pi / \omega_{L}$, in the leading order in laser intensity η

$$
\left\langle C\left(\varrho_{0}\right)\right\rangle=\max \left(0, \eta \frac{2 \beta \omega_{L} g \Delta}{\pi\left(\omega_{L}^{2}-16 g^{2}\right)}\left[1-\sin \left(\frac{2 \pi g}{\omega_{L}}\right)\right]-\sqrt{1-\alpha^{2}}\right)
$$

where $\Delta=\widetilde{\mathrm{g}}^{(p)}-\widetilde{\mathrm{g}}^{(n)}$.

THANK YOU FOR ATTENTION!

A.Khvedelidze

