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Laser modeled by a monochromatic plane wave

Laser beam as transverse, monochromatic, elliptically
polarised plane wave with pulse-shape factor

Aµ = a(ξ)

(
0 , ε cos(ωLξ) ,

√
1− ε2 sin(ωLξ) , 0

)
,

a(ξ) — smooth and slowly varying function, vanishing at
ξ : = (t − z/c)→ ±∞ .

As example: a(ξ) = a sech
(
αξ
)
, with constant α determining

a pulse interval; if α� ωL, pulse is long.
Infinitely long pulse , a(ξ) = a— constant

Constant 0 ≤ ε ≤ 1 measures a laser beam polarisation:

ε = 0 , 1 — linear polarisation;
ε2 = 1/2 — circular polarisation;
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Classical View on a Laser- Charge Interaction

Dipole Approximation and Beyond

Intensities regimes

Three regimes for a charged (-e), massive (m) particle interacting
with a laser field A, determined by a laser field strength parameter:

η2 = −2
e2

m2c4
〈〈Aµ Aµ〉〉 ,

η << 1 – low intensity regime;

η ∼ 1 – semi-relativistic intensity regime;

η >> 1 – ultra relativistic regime.

〈〈. . . 〉〉 - denotes time overage over the laser oscillations.
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The field strength parameter

The laser field strength is

η2 =
2

π

e2

m2c5
λ2LIL ,

λL- laser wavelength,
IL := c E0

2/8π- laser peak intensity,
E0 - the electric field amplitude.

√
Numerically, η2 = 3× 10−11 ILλ

2
L, [IL] = W

cm2 and [λL] = cm.
√√

For λL = 10−4cm, an intensity of IL = 3× 1018 W
cm2 is

necessary to achieve η2 = 1 ;
√√√

An ordinary light bulb corresponds to η2 ≈ 10−18.
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Strong Optical Laser Sources

Chirped Pulse Amplification (CPA) and Optical Parametric OPCPA

The new Quantum Era

Multipetawatt optical lasers

Physics of intensive
laser-matter interaction
√

From single photon to
coherent photons;√
Non-linear QED ;√
Relativistic optics

Picture: G.A.Mourou et al. Optics Communications 285 (2012) 720-724
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Low intensity; the electric dipole approximation

Charge + low intensity radiation

The Newton equation with the Heaviside-Lorentz force

m
d2x(t)

dt2
= e E(t, x(t)) +

e

c

dx

dt
× B(t, x(t)) .

Admits the linearization under assumptions:√
dipole approximation — ωLt − kL · x ≈ ωLt√
magnetic force ignored —

v

c
||B0|| � ||E0||

In a weak monochromatic wave background the Newton
equation simplifies

m
d2x(t)

dt2
= e E0 cosωLt .

As result the electron executes harmonic motion at the same
laser frequency ωL:

x = − e

mω2
L

E0 cosωLt .
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Low intensity; the electric dipole approximation

When does the approximation work?

The magnetic field can be neglected only for non-relativistic
velocities;

Since vmax = e||E0||/mωL the condition v � c holds true as
long as

η2 =
e2

ω2
Lm

2c2
E2
0 =

v2max

c2
� 1 ,

The intensity scale is set by the dimensionless parameter η2
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Beyond the dipole approximation

Classical trajectories beyond the dipole approximation

Tackle the problem:

. Solve the Newton equations of motion for a charged spinless
particle travelling in the plane electromagnetic wave:

Aµ :=
(
0 ,A(ct − n·x)

)
, n·A = 0 , n2 = 1 .

Can that problem be solved analytically

X not using the dipole approximation,

X taking into account the magnetic part of the Lorentz force ?

Surprisingly, one cannot find the solution in textbooks !!!

A.Khvedelidze ...Steering in Laser ...



Motivation Classical dynamics Quantum mechanics in laser background Quantal expositions in a strong laser field

Beyond the dipole approximation

How one can solve the equations of motion ?

Start with the “non-relativistic” Lagrange function

L
(

x ,
dx

dt
, t

)
=

m

2

dx i

dt

dx i

dt
+

e

c

dx i

dt
Ai (ξ)− e Φ(ξ) ,

Perform the Dirac trick:

i). Introduce an auxiliary parameter s and consider a time t as a
new dynamical coordinate t(s) ,

ii). Define the new Lagrangian L∗ on the extended space t(s), x(s)

L∗
(

x(s) , t(s) , ẋ(s) , ṫ(s)

)
:=ṫ(s)L

(
x(s) ,

ẋ(s)

ṫ(s)
, t(s)

)
.

P.Jameson and A.Khvedelidze, (2008)
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Beyond the dipole approximation

The Hamilton-Jacobi solution; generating function

The generating function of classical evolution reads

F±Cl . = ∓c(mc −Πz) ξ± c

∫ ξ

0
du
√

(mc − Πz)2 + W (u,Π⊥) .

where

W (u,Π⊥) := −e2

c2
A⊥(u)2 + 2

e

c
A⊥(u) ·Π⊥

Πz ,Π⊥ — constant 3-vector.
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Beyond the dipole approximation

Particle’s orbits in an arbitrary plane wave

The parametric solution to the Newton’s equation

t(s) = mc

∫ s

0
du

1√
(Πz −mc)2 + W (u,Π⊥)

z(s) = −cs + mc2
∫ s

0
du

1√
(Πz −mc)2 + W (u,Π⊥)

,

x⊥(s) = c

∫ s

0
du

Π⊥ −
e

c
A⊥(u)√

(Πz −mc)2 + W (u,Π⊥)

X s is an auxiliary time variable.
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Beyond the dipole approximation

The monochromatic background radiation

How the explicit form of a trajectory as function of LAB frame
time looks like ?

For the monochromatic background radiation the LAB frame
time — an elliptic integral:

t(s) =
2

ωL

∫ tan(ωLs/2)

0
dx

1√
4th order polynomial

,

Therefore an auxiliary time s is expressible via the Weierstrass
doubly periodic function: ℘ (ωLt/2 ; g2 , g3).
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Beyond the dipole approximation

Constants of motion and reference frame fixing

In the formulae above the vanishing position x(0) = 0 , at LAB
time t = 0 , has been fixed, while the initial velocity is encoded in
the integrals of motion β+ := 1 + Πz/mc , and β⊥ = Π⊥/mc

υ⊥(0) = c(β⊥ − ηε⊥) ,

υz(0) = c − c
√
β2+ + β2

⊥ − (β⊥ − ηε⊥)2 ,

where ε⊥ = (ε, 0) .

The formulae can be simplified by fixing the reference frame:
√

Transverse motion average rest frame 〈υ⊥〉 = β⊥ = 0,√√
Longitudinal motion average rest frame 〈υz〉 = 0.
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Beyond the dipole approximation

Auxiliary time s as function of LAB frame time

LAB frame time with a vanishing β⊥ = 0 is

t(s) =
1

ωL(1− βz)

∫ ωLs

0
du

1√
1− µ2 sin2 u

,

where

µ2 :=
1− 2 ε2

(1− βz)2
η2 .

and the laser field strength η2 = −2 e2

m2c4
〈Aµ Aµ〉 =

(
ae
mc2

)2
.

Consider three allowed domains:

(I) 0 < µ2 < 1 , (II) µ2 > 1 , (III) µ2 < 0 .

Special, degenerate cases µ2 = 0 , and µ2 = 1 .
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Beyond the dipole approximation

“Fundamental solution”

In the “fundamental domain” (0 < µ2 < 1), LAB frame time
t(s) is recognised as inverse of the Jacobi amplitude function:

ωLs = am
(
ω′Lt, µ

)
,

where µ stands for the modulus.

Frequency is non-relativistically Doppler shifted:

ω′L := ωL (1− βz) .

If −π/2 ≤ ωLs ≤ π/2 the amplitude am is single-valued
function on the interval

−K(µ) ≤ ω′Lt ≤ K(µ) ,

K - “real” quarter period of Jacobi functions .
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Beyond the dipole approximation

The explicit form of trajectories

The trajectory as function of the LAB frame time

x(t) = − c

ωL

√
ε2

1− 2ε2
arcsin

[√
µ2 sn(ω′Lt , µ)

]
,

y(t) =
c

ω

√
1− ε2

1− 2ε2
ln

[√
µ2 cn(ω′Lt , µ) + dn(ω′Lt , µ)

1 +
√
µ2

]
,

z(t) = ct − c

ω
am(ω′Lt , µ) .

Periodic motion in the plane orthogonal to the wave
propagation

TP :=
2π

ωP
.

The fundamental frequency: ωP :=
π

2K
ω′L
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Beyond the dipole approximation

Expansion over harmonics

x(t) =
4cε

ωL

√
1− 2 ε2

∞∑
n=1

qn−1/2

(2n − 1)(1 + q2n−1)
sin(2n − 1)ωP t ,

y(t) =
8c
√

1− ε2
ωL

∞∑
n=1

qn−1/2

(2n − 1)(1− q2n−1)
sin2

(
n − 1

2

)
ωP t ,

z(t) = 〈υz〉 t −
c

ωL

∞∑
n=1

2qn

n(1 + q2n)
sin 2nωP t ,

where q is the so-called nome parameter q := exp
(
−π K′

K

)
.

The nome q for small intensities is approximately

q ≈ 1− 2 ε2

16(1− βz)2
η2 + O(η4)
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Beyond the dipole approximation

Velocity and Average Rest Frame (ARF)

A particle velocity reads

υx(t) = −cηε cn
(
ω′Lt, µ

)
,

υy (t) = −cη
√

1− ε2 sn
(
ω′Lt, µ

)
,

υz(t) = c − c(1− βz) dn
(
ω′Lt, µ

)
.

The drift in the direction of propagation is a nonlinear
function of laser beam intensity

〈βz〉 = 1− π

2

(1− βz)

K(µ)
.

The vanishing drift velocity 〈υz〉 = 0 for small intensity
corresponds to fixation

βz = −1

4
(1− 2 ε2) η2 + . . . ,
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Beyond the dipole approximation

Low-intensity region

Trajectory in the leading intensity order:

x = − cε

ω′L
η sin

(
ω′Lt
)

+ o(η3) ,

y = −2c
√

1− ε2
ω′L

η sin2

(
ω′Lt

2

)
+ o(η3) ,

z = − c

ω

1− 2ε2

8(1− βz)2
η2 sin

(
2ω′Lt

)
+ o(η4) .
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Beyond the dipole approximation

High-low intensities duality

High-low intensity transformation:

µ 99K µ′ :=
1

µ

Duality: Solution in the “fundamental domain” determines all
possible solutions. Any trajectory can be obtained from the
“fundamental solutions ” by modular transformation;
combination of inversion µ→ 1/µ, and rotation to the
imaginary axis µ→ ıµ .

The useful modular parameter is: τ := i
K′(µ)

K(µ)
.
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Beyond the dipole approximation

Modular transformations

Under the modular transformation

τ → τ ′ :=
a + bτ

c + dτ
, a, b, c, d ∈ Z ,

elliptic functions are expressible through each other, e.g.:

Jacobi imaginary transformation τ → τ ′ = −1/τ

sn(iz , µ) = i
sn(z , µ′)

cn(z , µ′)
, dn(iz , µ) =

dn(z , µ′)

cn(z , µ′)
,

The shift transformation τ → τ ′ = τ ± 1

sn(µ′z ,± iµ

µ′
) = µ′

sn(z , µ′)

dn(z , µ′)
, dn(µ′z ,± iµ

µ′
) = µ′

dn(z , µ′)

cn(z , µ′)
.

The ± signs of modulus correspond to Re(τ) ≶ 0 respectively.
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A Laser- Charge Interaction

Quantum mechanical View

– The Dipole Approximation and Beyond
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Semi-classical approximation

Quantum mechanics of a charged spinning particle

Charge & Spin quantum decomposition

Ψ ⊂ L2(R3)⊗ C2

The “composite” Hamilton operator

Ĥ(t) := ĤC(t)⊗ IS + IC ⊗ ĤS(t) ,

X with the charge-radiation Hamiltonian ĤC

ĤC(t) =
1

2m

(
p̂− e

c
A(t, x)

)2

, p̂ = −ı~∇ ,

X and the spin-radiation Hamiltonian ĤS

ĤS(t) := −~
2
κB(t, x) · σ ,
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Separation & Superposition

The WKB spin-charge decomposition

Charged spin-1/2 particle’s pure state admits the semiclassical
spin-charge degrees decomposition

|Ψ〉 = a|ψ+〉⊗ |χ0〉+ b|ψ+〉⊗ |χ1〉+ c |ψ−〉⊗ |χ0〉+ d |ψ−〉⊗ |χ1〉 .

X |ψ±〉 – two independent WKB solutions to the Schrödinger
equation for spinless charge

i~
∂

∂t
|ψ〉 = − ~2

2m

(
∇− ıe

~c
A(t, x)

)2

|ψ〉 .

X |χ0,1〉 – independent solutions to the spin precession equation.
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Separation & Superposition

The semi-classical solution for a spinless charged particle

The WKB solution to the Schrödinger equation for spinless particle

As we will see in the leading semiclassical order

〈x, t|ψ±〉 =
1√
|∂ξF±Cl .|

e±
i
~

Π2

2m
te±

i
~Π·x exp

i

~
F±Cl .(t −

z

c
,Π) ,

X The phase F±Cl . is the Hamilton-Jacobi generating function
written above.

X Π – constant 3-vector, classical integrals of motion.
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Separation & Superposition

The spin-precession equation

For a particle at REST the Spin Precession equation is

i~
∂

∂t
|χ〉 = −gµB BREST(t) · S|χ〉 .

X While for a spin S moving in electromagnetic field (E,B) with
the velocity v and acceleration a the interaction Hamiltonian
reads

H′ = −gµB
(

B− 1

c
[v × E]

)
· S︸ ︷︷ ︸ −

1

2c2
[v × a] · S︸ ︷︷ ︸

X N.B. Galilei boost & ωT · S—Thomas precession
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Three laser intensity induced effects

Spin-flip intensity resonance

Non-linearity of a charged particle’s phase

Creation of entanglement between constituents spins
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Spin flipping oscillation

Spin evolution in dipole approximation

In the non-relativistic limit

B′Dipole =
aωL

c

(√
1− ε2 cos(ωLt), ε sin(ωLt), 0

)
.

The probability for a spin to flip in this field with the circular
polarization, (ε2 = 1/2) , is vanishing in the linear, η � 1 ,
approximation:

PDipole
↓↑ =

1

1 + 2/g2η2
sin2 ωL

2g
t ⇒ 0 .

Beyond the dipole approximation , due to several factors: the
retardation effect + magnetic part of Heaviside-Lorentz force
distortion of a particle’s classical orbit as well as the Thomas
correction new effect appears.
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Spin flipping oscillation

Effective magnetic field for particle’s spin

Effective magnetic field = alternating field + “almost
constant” magnitude field along the laser.

In formulae:

B′x =
aω′L
gc

√
1− ε2[(g + 1)dn(u, µ)− γz ]cn(u, µ),

B′y =
aω′L
gc

ε
[
(g + 1)dn(u, µ)− γz(1− µ2)

]
sn(u, µ)

B′z = −η aωL

gc
ε
√

1− ε2 [g − γz dn(u, µ)] .

where
γ2z µ

2 = (1− 2 ε2) η2 .

A.Khvedelidze ...Steering in Laser ...



Motivation Classical dynamics Quantum mechanics in laser background Quantal expositions in a strong laser field

Spin flipping oscillation

Laser-spin interaction — Rabbi oscillation

Laser circularly polarized

BCircular(t) =
(
H0 cos(ω′Lt) , H0 sin(ω′Lt) , Hz

)

H0 :=
ηω′Lg

2
√

2
, Hz :=

η2ω′L(1− g)

4

The effective Laser-Spin interaction is famous NMR interaction via
the rotated magnetic with field !
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Spin flipping oscillation

Spin flipping intensity resonance

The spin-flipping probability is

P↓↑ =
κ2η2

κ2η2 + (η2 − η2∗)2
sin2(ωS t) ,

ωS :=
ωL|1− g |

8

√
κ2η2 + (η2 − η2∗)2 , κ2 :=

2g2

(1− g)2
,

The spin flip resonance occurs at intensity

η2∗ :=
4

g − 1
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Spin flipping oscillation

Spin-flip in an elliptically polarised laser

The evolution operator U(t, t0) in the factor form

U(t, 0) = exp (aS+) exp (bS0) exp (cS−) ,

where S± = 1/2 (σ1 ± ı σ2) and S0 = 1/2σ3 .

Unknown a(t), b(t) and c(t) determine spin-1/2 state

|χ(t)〉 = U(t, 0)|χ(0)〉 .

Probabilities of transitions between states

P↑↑ =
1

1 + |a|2
, P↑↓ =

|a|2

1 + |a|2
.

Unknown a(t) is subject to the Riccati equation:

ȧ = ı(−B− + B0a + B+a
2) ,

with functions B± = 1/2 (Bx ± ıBy ) and B0 = 1/2Bz .
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Spin flipping oscillation

Figures: Spin-flip probability

Probability vs. Intensity; g = 6
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Spin flipping oscillation

Figures: Spin-flip probability

Probability vs. Intensity; g = 20

0.0 0.2 0.4 0.6 0.8 1.0
η0.0

0.2

0.4

0.6

0.8

1.0
P

ϵ = 0.6 ϵ = 0.4 ϵ = 0.65

A.Khvedelidze ...Steering in Laser ...



Motivation Classical dynamics Quantum mechanics in laser background Quantal expositions in a strong laser field

Spin flipping oscillation

Figures: Spin-flip probability

Probability vs. Gyromagnetic ration
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Spin flipping oscillation

Figures: Spin-flip probability

Resonance curve: Intensity vs. Gyromagnetic ration
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Non-linearities in quantum phase

Quantum phase v.s. cyclic change of the environment

Laser linearly polarized

Periodicity of radiation t → t + 2π
ωL

Reply of particle’s spin-1/2:

U (t + 2π/ωP) = U (t)M ,

Appearance of the monodromy matrix, M.
The simplest diagonal monodromy matrix

MD =

(
e iπϕ 0

0 e−iπϕ

)
.

Quantum phase depends nonlinearly on a laser intensity

ϕ =
gη√

2

√
1 +

2

g2

(
1

η
+

1− g

2
η

)2

.
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Non-linearities in quantum phase

Quantum Phase & Laser Intensity

Deviation of quantum phase from its non-relativistic value φ = 1
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Spins of a bound state in a strong laser

Model for a laser-bound state interaction

Model assumptions:

HILBERT SPACE: H = HCM ⊗HRM ⊗HSPIN .

Bound state: Mass – (MB) , Charge – (−qB) ;
Constituents: Masses – (m(n),m(p)) , Charges – (e(n), e(p)) ,

Spins – (1/2, 1/2) , Gyromagnetic ratios – (g (n), g (p)) .

Laser-charge interaction VCL (Bound state charge is point-like
piked at its center of mass R):

VCL :=
qB
c
υR · A(t, R) , υR = dR/dt .

Inter constituents interaction VB :

VB = V0(r) + VSS(r) , VSS(r) := VS(r) S⊗ S ,

V0(r) and VS(r) – a scalar functions of r = |rn − rp| .
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Spins of a bound state in a strong laser

Model for a laser-bound state interaction (continuation)

The spin-laser coupling VSL:

VSL := −Ω(n)(t, rn) · s(n) −Ω(p)(t, rp) · s(p) ,

where the vector Ω(i) reads

Ω(i) :=
e(i) g(i)

2m(i)c

(
B− 1

c

[
v(i) × E

])
+

1

2 c2

[
v(i) × a(i)

]
.

E and B are the electric and magnetic component of a laser
field evaluated along the i-th particle in the LAB frame.
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Spins of a bound state in a strong laser

Solving the problem

Step one

Evolution of center-mass motion of bound state

Step two

Evolution of spin degrees

Step three

Dynamics of spin degrees entanglement
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Center-mass motion of bound state

The semi-classical picture: The laser-spin interaction VSL

contribution to the phase of wave function is negligible small
in the leading approximation.

In the leading semi-classical order the density matrix admits
charge & spin decomposition

ρ =
∑
α=±

cα|ψα〉 ⊗ %α ,

where %α is the constituents spin density, |ψ±〉 , – two linearly
independent WKB solutions to the Schrödinger equation with
the Hamiltonian H0 + VSS + VCL .

Separation of the relative and center-mass motion: Trajectory
of the bound state’s center of mass is similar to considered
above a single charged particle

A.Khvedelidze ...Steering in Laser ...



Motivation Classical dynamics Quantum mechanics in laser background Quantal expositions in a strong laser field

Spins of a bound state in a strong laser

The evolution of spin degrees

Spin density matrix % satisfy the spin evolution equation

%̇(t) = − i

~
[HS(t), %(t)] .

HS is defined as projection of VSS + VSL :

HS(t) = VSS + VSL

∣∣∣∣
Constituents classical trajectory

.

Born-Oppenheimer approximation – “freeze” the relative
motion of constituents < r(t) >= r0 and neglect o(υr/c)
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An effective spin-laser Hamiltonian

Effective laser-spin Hamiltonian reads:

HS = −B(n)(t) · S⊗ I − I ⊗ S ·B(p)(t) + HI ,

B(i)(t) , i = (n, p) for g̃(i) =
(
e(i)/m(i)

)
(MB/qB) g(i) ,

B
(i)
x (t) = η

ω′L
2

√
1− ε2

[
(g̃(i) + 1)dn(u, µ)− γz

]
cn(u , µ) ,

B
(i)
y (t) = η

ω′L
2
ε
[
(g̃(i) + 1)dn(u µ)− γz(1− µ2)

]
sn(u , µ) ,

B
(i)
z (t) = −η2ωL

2
ε
√

1− ε2
[
g̃(i) − γzdn(u , µ)

]
.

HI – spin-spin interaction originates from VSS under the same
static approximation :

~HI = g S⊗ S . g := ~VS(r0) .
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The evolution operator

“Interaction picture” for the evolution operator:

U(t) = X (t)W (t) .

W (t) := U(n)(t)⊗ U(p)(t) describes the unitary evolution of
non-interacting spins.

U(i)(t) = exp

(
i

2
ϑ(i)(t)σ1

)
where the phase factor for linearly polarized laser reads

ϑ(i)(t) =
η

2

[
g̃(i) + 1

]
sn(u, µ)− 1

2
arcsin [µ sn(u, µ)]

For η � 1 it reduces to the non-relativistic precession:

2ϑNR = η g̃(n) sin(ωLt) .

The factor X (t) affects the entanglement.
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Composite systems

Bipartite system – system A⊗ B composed from A and B
subsystems

PRINCIPLE OF SUPERPOSITION

The Hilbert space HA⊗B for bipartite system is the tensor
product of the Hilbert spaces of its subsystems HdA

A and HdB
B :

HA⊗B ∼ HdA
A ⊗H

dB
B ,

where dA = dimHdA
A and dB = dimHdB

B .

The joint system’s density matrix % acts on HA ⊗HB
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Separable & Entangled density matrices

Classical vs Quantum correlations

absence of correlation:

%
A⊗B

= %A ⊗ %B

classical correlations = separability:

A bipartite system is in separable state %sep if

%sep =
r∑
k

pk%
k
A ⊗ %kB ,

r∑
k

pk = 1 , pk ∈ [0, 1] ,

where {%kA} and {%kB} are states on HA and HB for some r .

Otherwise the state is entangled .
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Example: 2 spins pure states

One spin 1/2 state

|1〉 = α↑| ↑〉+ β↓| ↓〉 ,

Two spin 1/2 state

|2〉 = c↑↑| ↑↑〉+ c↑↓| ↑↓〉+ c↓↑| ↓↑〉+ c↓↓| ↓↓〉 ,

Question: When |2〉 is separable, i.e., |2〉 = |1〉 ⊗ |1′〉 ?

Answer: If and only if the concurrence is vanishing:

C := det

(
c↑↑ c↑↓
c↓↑ c↓↓

)
= 0 .
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Example: 2 spins mixed states

One spin 1/2 state: %
1/2

= 1
2 [1 +α · σ] .

Two spin 1/2 state:

%
1/2,1/2

=
1

4
Rµν σµ ⊗ σν , µ, ν = 0, 1, 2, 3 .

σµ = (I ,σ) .

Concurrence :

C (R) := max

(
0,

1

2
(−s0 + s1 + s2 − s3)

)
,

s0, . . . s3-Lorentz singular values of R = L1diag(s0, s1, s2, s3)L2 .

A.Khvedelidze ...Steering in Laser ...



Motivation Classical dynamics Quantum mechanics in laser background Quantal expositions in a strong laser field

Spins of a bound state in a strong laser

Dynamics of entanglement

Initial Werner state

%W :=
1

4
(I + pσ ⊗ σ) ,

that for 1
3 < p ≤ 1 describes the mixed entangled state.

In the leading order in laser intensity the concurrence is stable
under the influence of laser background:

C (%W ) = max

(
0,

3p − 1

2

)
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Dynamics of entanglement

Initially uncorrelated spins

%0 =
1

4

(
I + α

1

2
(σ03 + σ30) + β

1

2
(σ03 − σ30)

)

The concurrence averaged over the period of laser field
oscillations 2π/ωL, in the leading order in laser intensity η

〈C (%0)〉 = max

(
0, η

2βωLg∆

π(ω2
L − 16g2)

[
1− sin

(
2πg

ωL

)]
−
√

1− α2

)
.

where ∆ = g̃(p) − g̃(n) .
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Thank you for attention !
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