Electron transport through graphene-DNAgraphene junction. DNA decoding

O.G. Isaeva, V.L. Katkov, V.A. Osipov

Molecular electronic circuit

Aviram A. and Ratner M.A. Chem.Phys.Lett. 29277 (1974)

tor

Sanger method

5^{\prime}-GTTCCGCGATCGCTAGCCGAAGCTATT
3^{\prime}-ATCAAGGCGCTAGCGATCGGCTTCGATAACTACTCCCGTCMATC-5'

New trends in sequencing methods (in development):

- effective;
- rapid;
- low-cost

Nanopore concept;

J. Kasianowiez et al., Proc. Natl. Acad. Sci. USA 93 (1996)

Transverse electronic current;

Zwolak M. and Di Ventra M. Nano Lett. 5421 (2005)

He RsTAESE curtenic iot DNA decoding (physical approach)
M.S. Xu et al. Perspectives from Physics, Chemistry and Biology, 2007

Zwolak M. and Di Ventra M. Nano Lett. 5421 (2005)
H.W.C. Postma NanoLett. 10, 420 (2010) Prasongkit J. et al NanoLett. 11, 1941 (2011)
L.A. Agapito, J. Gayles, Ch. Wolowiec and N. Kioussis. Nanotechnology, 23 135202 (2012)

Our study

1.The effect of band structure of graphene electrodes (mono, $A A, A B$) on the on transport properties
V.L. Katkov, O. G. Isaeva, and V.A. Osipov, J. Phys.: Conf. Ser. 393012026 (2012)
2. The role of both the Coulomb blockade and random positions of nucleotides in the gap for DNA decoding.
O.G. Isaeva, V. L. Katkov, V. A. Osipov, DNA sequencing through graphene nanogap: a model of sequential electron transport, The European Physical Journal B 87, 272 (2014)

RESONANT TUNNELING MODEL

$$
I=\frac{2 e}{h} \int_{-\infty}^{+\infty} \frac{\Gamma_{L}\left(\varepsilon-\varepsilon_{r}-V / 2\right) \Gamma_{R}\left(\varepsilon-\varepsilon_{r}+V / 2\right)}{\left(\varepsilon-\varepsilon_{r}\right)^{2}-(\Gamma(\varepsilon) / 2)^{2}}\left(f_{L}(\varepsilon)-f_{R}(\varepsilon)\right) d \varepsilon
$$

$$
\Gamma(\varepsilon)=\Gamma_{L}\left(\varepsilon-\varepsilon_{r}-V / 2\right)+\Gamma_{R}\left(\varepsilon-\varepsilon_{r}-V / 2\right)
$$

$\Gamma_{L, R}=\hbar v \bar{D}_{L, R}$

$$
\bar{D}_{L, R}=P(\varepsilon) D_{L, R}
$$

Channel density:
$P(\varepsilon)=\frac{n_{L, R}(\varepsilon)}{N_{L, R}}=\frac{2 a_{0} \Delta p_{y}(\varepsilon)}{h}$
a_{0} is covalent bond length in graphene

Transmission probability:

$$
\begin{aligned}
& D_{L, R}=\exp \left[-\lambda\left(d-d_{0}\right)\right] \\
& \lambda=\frac{2 \sqrt{2 m \varphi}}{\hbar}
\end{aligned}
$$

Attempt frequency:

$$
v=\frac{\hbar}{2 m d_{0}^{2} N} \quad \begin{aligned}
& d_{0} \text { is covalent bond } \\
& \text { length in nucleotide }
\end{aligned}
$$

Graphene bilayer

AA bilayer

$A B$ bilayer

Results for part one:

I-V characteristics of tunneling

 device$\mathrm{T}=300 \mathrm{~K}$

Energy dependence of $\Gamma(\varepsilon)$

CONCLUSION (for part 1)

Our analysis shows that at the same bias voltage AA graphene bilayer electrodes provide a higher current in comparison with both graphene monolayer and $A B$ bilayer. The use of electrodes on the base of AA graphene bilayer is expected to be much more productive for DNA decoding.

The role of both the Coulomb blockade and random

$$
\hbar \Gamma_{n \rightarrow n \pm 1} \ll\left|E_{n}-E_{n \pm 1}\right|
$$

positions of nucleotides in the gap for DNA decoding

$$
V_{b}=0 \mathrm{~V}
$$

SEQUENTIAL TUNNELING MODEL

Charge states:

1. $\mathrm{n}=+2 \mathrm{e}$
$\mathrm{n}=+1 \mathrm{e}$
$\mathrm{n}=0 \mathrm{e}$
2. $n=+1 e$ $\mathrm{n}=0 \mathrm{e}$
$n=-1 e$
3. $\mathrm{n}=0$
$n=-1 e$
$n=-2 e$

Current is calculated by solving a master equation connecting the different charge states $n=0$ to 2 of the molecule

$$
\begin{gathered}
I(V)=\frac{2 e}{\hbar} \frac{W_{L 0}^{+} W_{1}^{-} W_{2}^{-}+W_{0}^{+} W_{2}^{-}\left[W_{L 1}^{+}-W_{L 1}^{-}\right]-W_{0}^{+} W_{1}^{+} W_{L 2}^{-}}{W_{1}^{-} W_{2}^{-}+2 W_{0}^{+} W_{2}^{-}+W_{0}^{+} W_{1}^{+}} \\
W_{n}^{ \pm}=W_{L n}^{ \pm}+W_{R n}^{ \pm}
\end{gathered}
$$

D. V. Averin, A. N. Korotkov, and K. K. Likharev, Phys. Rev. B, 44, 6199 (1991)

$$
\begin{aligned}
& W_{L(R)}^{+}(n)=f\left(E_{L(R), E l \rightarrow M}\right) \Gamma_{L(R)} ; \\
& W_{L(R)}^{-}(n)=\left(1-f\left(E_{L(R), M \rightarrow E l}\right)\right) \Gamma_{L(R)} .
\end{aligned}
$$

$$
f\left(E_{L(R), E l \rightarrow M}\right)=\frac{1}{e^{E_{L(R), E l \rightarrow M} / k_{B} T}+1}
$$

Elastic tunneling process:
$E_{L(R) E l \rightarrow M}=-\varepsilon_{\mathrm{s}}+U(n+1)-U(n) \mp V / 2$
$E_{L(R) M \rightarrow E I}=-\varepsilon_{\mathrm{s}}+U(n)-U(n-1) \mp V / 2$

$$
\begin{aligned}
& \qquad U(n)=\frac{n^{2} e^{2}}{2 \mathrm{C}_{e f f}} \\
& \text { charging energy of the molecule }
\end{aligned}
$$

Γ_{L} and Γ_{R} are tunneling rates.

The Fermi golden rule is used

$$
\Gamma_{L, R}=\left.2 \pi \sum_{k_{x} k_{y}} \sum_{L, R}\left(k_{x}, k_{y}\right)\right|^{2} \delta\left(E\left(k_{x}, k_{y}\right)-\varepsilon\right),
$$

$$
E\left(k_{x}, k_{y}\right)= \pm V_{F} \hbar|\mathbf{k}|
$$

Tight-binding approach

$$
T_{L, R}=\sum_{i=1}^{N_{g}} \sum_{j=1}^{N_{A, G, C, T}} C_{i}^{L(R)} C_{j} V_{i j}^{L(R)}=\vec{C}^{L(R)} \hat{V}^{L(R)} \vec{C} \quad \begin{aligned}
& V_{\mathrm{ij}}=V_{\mathrm{pp} \pi}=A \exp \left[-\beta\left(d-d_{0}\right)\right], \\
& A=-0.63 \frac{\hbar^{2}}{m d_{0^{2}}}, \quad \beta=2 / d_{0},
\end{aligned}
$$

Tunneling rates

$$
\begin{aligned}
\Gamma_{L}(\varepsilon) & =\frac{9 a_{0}^{2} \sqrt{3}}{4 \hbar^{2} v_{F}^{2}}\left[\left(\sum_{i=1}^{i=N_{g} / 2} S_{2 i-1}^{L}\right)^{2}+\left(\sum_{i=1}^{i=N_{g} / 2} S_{2 i}^{L}\right)^{2}\right]|\varepsilon| \\
\Gamma_{R}(\varepsilon) & =\frac{9 a_{0}^{2} \sqrt{3}}{4 \hbar^{2} v_{F}^{2}}\left[\left(\sum_{i=1}^{i=N_{g} / 2} S_{2 i-1}^{R}\right)^{2}+\left(\sum_{i=1}^{i=N_{g} / 2} S_{2 i}^{R}\right)^{2}\right]|\varepsilon| \\
& \vec{S}^{L(R)}=\hat{V}^{L(R)} \vec{C}
\end{aligned}
$$

O.G. Isaeva, V. L. Katkov, V. A. Osipov, DNA sequencing through graphene nanogap: a model of sequential electron transport, The European Physical Journal B 87, 272 (2014)

Results

Angular dependences of $\Gamma_{L} /|\varepsilon|$ (left) и $\Gamma_{R} /|\varepsilon|$ (right) for dGMP (G), dAMP (A), dCMP (C), and dTMP (T). The pictures below show orientations corresponding to 0°.

Results

Translation along the x-axis, \AA

$\Gamma_{L} /|\varepsilon|$ (left) и $\Gamma_{R} /|\varepsilon|$ (right) as functions of a translation along the x-axis. Each nucleotide has fixed angular position 30°

Results

$\Gamma_{L} /|\varepsilon|$ (left) и $\Gamma_{R} /|\varepsilon|$ (right) as functions of a translation along the y-axis. Each nucleotide has fixed angular position 30°

Bias voltage $V_{b}=1 \mathrm{~V}$, Temperature $=300 \mathrm{~K}$

_ dGMP \quad dAMP \quad - dCMP \quad dTMP

Bias voltage $V_{b}=1 \mathrm{~V}$, Temperature $=300 \mathrm{~K}$
a)
b)

a) $\Delta U_{1 \mathrm{G}}=0.1 \mathrm{eV}, \Delta U_{1 \mathrm{~A}}=0.15 \mathrm{eV}, \Delta U_{1 \mathrm{C}}=0.45 \mathrm{eV}, \Delta U_{1 T}=0.5 \mathrm{eV}$;
b) $\Delta U_{1}=0 \mathrm{eV}$ (for each nucleotide);
c) $\Delta U_{1}=0.3 \mathrm{eV}$ (for each nucleotide).

Mean I-V characteristics (left). rmsd vs voltage (right). Parameters for calculation: $\varepsilon_{s}=-0,4 э B, \Delta U_{1}=0,25 э B, T=300 \mathrm{~K}$

CONCLUSION (for part 2)

- Unique shape of each nucleotide provides a specific dispersion of tunnel currents so that combined measurements of the tunnel current and its root-mean-square deviation allow to facilitate the identification of nucleotides
O.G. Isaeva, V. L. Katkov, V. A. Osipov, DNA sequencing through graphene nanogap: a model of sequential electron transport, The European
Physical Journal B 87, 272 (2014)

Thank you for attention

SEQUENTIAL TUNNELING MODEL

Charge states:

1. $n=+2 e$
2. $\begin{aligned} n & =+1 e \\ n & =0 e \\ n & =-1 e\end{aligned}$
3. $\begin{aligned} \mathrm{n} & =0 \\ \mathrm{n} & =-1 \mathrm{e} \\ \mathrm{n} & =-2 \mathrm{e}\end{aligned}$

Current is calculated by solving a master equation connecting the different charge states $i=0$ to 2 of the molecule

$$
W_{\mathrm{L}}^{-}(\mathrm{n}+1)
$$

$$
\frac{d \sigma(n)}{d t}=W^{+}(n-1) \sigma(n-1)+W^{-}(n+1) \sigma(n+1)-
$$

$$
-\left(W^{+}(n)+W^{-}(n)\right) \sigma(n)
$$

$$
\sum_{i=0}^{2} \sigma(n+i)=1
$$

$$
W^{ \pm}=W_{L}^{ \pm}+W_{R}^{ \pm}
$$

Electrode L

$$
\begin{aligned}
& \frac{W^{-}(n+1) \sigma(n+1)=2 \mathrm{~W}^{+}(n) \sigma(n)}{2 \mathrm{~W}^{-}(n+2) \sigma(n+2)=W^{+}(n+1) \sigma(n+1)} \\
& I=-e \sum_{i=0}^{2} \sigma(n+i)\left(W_{L}^{+}(n+i)-W_{L}^{-}(n+i)\right)
\end{aligned}
$$

D. V. Averin, A. N. Korotkov, and K. K. Likharev, Phys. Rev. B, 44, 6199 (1991)

