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Figure: A potential step



t-electric potential steps

Figure:



In- and out- solutions

Two complete sets of solutions of Dirac equation:

in-set { ¢9, (X), { = %} classified as electrons (4) and positrons (—) at
t € (—OO, tin) ,

out-set { ¢ (X), { = £}, classified as electrons (+) and

positrons (—) at t € (—oo, tin) .

Decomposing the Heisenberg Dirac field in these solutions, we introduce in-
and out-operators;

in- and out-operators are related by a linear canonical transformation
(Bogolubov transformation)

All the characteristics of quantum processes can be expressed via coefficients
of these transformations.

Gitman, J. Phys. A 10 (1977)

Fradkin, Gitman, Shvartsman, Quantum Electrodynamics with Unstable
Vacuum (Springer-Verlag, 1991)



x-electric potential steps
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Figure:

Ao(x) = —aEtanh (x/a), a >0, Sauter step (Z.Phys.73,547,1931),
E(x) = Ecosh™ (x/a), U(x) = —eAy(x) = eEatanh (x/a).

Gitman,Gavrilov, Quantization of charged fields in the presence of critical potential
steps, http://arxiv.org/abs/1506.01156, [hep-th]



x-electric potential steps

In 3+ 1 dim., space-time with coordinates x’ = t, r = (x, y, z) potentials
AHF that correspond to an x-electric potential step are chosen to be
A" = AP (x), A =0, such that the magnetic field B be zero and

E=(E(x),0,0), E(x)=—-A)(x)=E(x).

The electric field is inhomogeneous in the x-direction, and does not depend
on time t (E is a constant field).
It is supposed that

x—+oo |x|—c0

Ao (x) "— Ao (£o0) = const, E(x) — 0, or
Ao (X)les, = Ao(=00), E(X)|es, =0, SL= (=00, x],
Ao ()| cs, = Ao (+0), E ()]s, =0, Sk = xx,o0).



U is the magnitude of the electric step,
U = UR—UL, ULZ U(—OO), UR: U(+OO)

If U < U, = 2m we deal with noncritical steps: the range Q3 (Klein
zone) does not exist.

If U > U, = 2m we deal with critical steps: the range ()3, there exists
the Klein zone.

7o (L) = po — UL asymptotic kinetic energy in the region S = (—o0, x|,
70 (R) = po — Ur asymptotic kinetic energy in the region Sg = [xg, ©0),



Dirac equation with x-electric potential steps

0 = Hp, H = —iaV + Bm+ U (x), U(x) = —eA(x),
H is the one-particle (time independent) Dirac Hamiltonian, U (x) is the

potential energy of an electron in a x-electric potential step.
Stationary solutions

117 _eXP( P0t+’PLrL)¢ ( ). PL=(py.Pz),

— (oo — U ()] = 7B — 7.1+ m} 9, () e
{px+:u'<> [po—u<x>]2+pi+m2}<o,,<x>:o,
v = Vo, iV =0v, 0 =21,

v = (7). bx=—idx, n=(po,pL.0).

In the asymptotic regionf. SL ancJ SR solutions 1, are eigenfunctions of the
kinetic energy operator A" = A — U (x),

l:IkinlIJn (X) ‘Xﬁiw =m0 (R/L) ¥, (X)], 10 -



Solutions of Dirac equation with special left and right

asymptotics

In such solutions functions ¢, (x) are denoted as ;¢, (x) or ‘g, (x)
respectively,

S
(9, (X) = @y (x) as x € S, = (o0, x] ,
{f?i —[mo (L)) + ﬂi} Py (x) =0, @p (x) = (Nexp (ipL x) ,
=0yl @MP -7, C=sgn (p) =+, = /03 +m2
Sr:

9, (x) = gn; (x) as x € Sg = [xr, ),
{B— o R+ 72} gf (x) =0, 9% (x) = N exp (ip" x).

pR = ¢y/[mo (R)] — 7%, { =sgn <pR) =+



Solutions of Dirac equation with special left and right

asymptotics

The corresponding solutions of the Dirac equation, are denoted as 1, (X)
and ¢¢_ (X). They are states with definite momenta pL as x — —oo, or with
P as x — 400,

ﬁxélpn(x) = pLéan(X)' X — —00,
P, (X) = P E, (X), x> oo
Nontrivial solutions 1, (X) exist only for certain n,

o (L) > ).

[0 (L)) > 7 = { o (L) < —my

Nontrivial solutions ¢ (X) exist only for certain n,

o (R) > 7

[0 (R)? > 73 <= { R



Ranges of quantum numbers

There exist five ranges ()i, k =1, ..., 5 of quantum numbers n where

solutions ¢L/® (x) have similar properties and forms,

7,

| a———

Figure: Potential energy U (x) of an electron in an x-electric step and ranges of
quantum numbers



The range ()1 includes quantum numbers n; that obey the inequality

po > Ur + 7T, . Two complete sets { ggbnl} and { gl[]nl} can be
interpreted as electron solutions.

The range ()5 includes quantum numbers ns that obey the inequality

po < UL — 7t . Two complete sets { g1[1,15} and { g‘lpng,} can be interpreted
as positron solutions.

The range ny € () exists for any U, quantum numbers n, obey the
inequalities U — 1) < po < U+ 1, .

Any solution 1, has zero right asymptotics and zero Dirac current in
x-direction. This fact imposes restrictions on solutions ¢, ,

P, (X) =49, (X)cr+ -9, (X)c,
el =le| =, (X)) = 1+ ¢, (X) e 4 _p, (X)e .

Complete set {1,0,72} represents solutions that are sums of two electron
waves travelling in opposite directions, with equal in magnitude
currents, which means that we deal with a total reflection. Similarly,
we can treat the range ()4



Third range (Klein zone)

The Klein zone exists if U > 2m. Here quantum numbers p | are restricted
by 2, <U,

mo (L) >y

< < —
U+m, <p<U—7m :>{TFO<R)§_7H_

and there exist the following two complete sets of solutions

[, 00) {49, 00}), c=%

In contrast to the ranges ()1 and )5, the naive one-particle interpretation of
these solutions becomes erroneous. E.g. the following contradiction: from
the point of view of the left asymptotic area, only electron states are
possible in the Klein zone, whereas from the point of view of the right
asymptotic area, only positron states are possible in the Klein zone.
QED consideration shows that solutions él,bn3 (X) describe electrons, whereas
(¥, (X) describe positrons.



Orthogonality and normalization

Solutions ¢, (X) and ¢4, (X), n € Q1 UQ3UQs, can be subjected to the
following orthonormality conditions

( Y g'll’nr)x =0 dgg0nm. M =sgn 7o (L),
( 5% ¢ l)bn’)x = (HROz,¢/0nms MR = SN 7T (R)

(¢, = /qﬁ (X) Y09y’ (X) dtdr | .

g(é gI) = (gllinv é/l/Jn)X

define mutual decompositions of these solutions

M, () = 0, g () = 9,08 (-]F),
e ¥, (X)= "9, (X) g ("]c) = "¢, (X)e (" [c)-

Coefficients g :




Orthogonality and normalization

(¢, ¥)) =0, Van£n; (p.¢) /¢1pdr

(e¥n c¥w) = ( ‘v, an/) = 06,00 (Po = Pp) 0 (PL — P/L) Mo,
Ma=lg (")) nemuQs Ms=|g(+|)]. neqs
(gp,,, —€¢n) —0, neEMUQs, 9, and ‘¢ independent,
(gl[)n, 41/;”) =0, n€Qs, ;¢ and %y, independent.
Then we identify:
0 e aotions, - M€ MU0S.

~¢,. (X), "¢, (X) in-—solutions cO
+¥,, (X), T, (X) out— solutions " 3



Quantized Dirac field and in- and out-operators

- =6(r—r); ):‘I’
¥ <X>Z§M;f/2[+am<m> Py, (X) + “an(in) "y, (X >}
= LM [ Fan(out) Ty, (0 + —an(out) —, (%)].
%(X>=§M;2”2anzwnz< , ZMn41/2b*¢,,4( ).
s <x>=§Mn;/2[am<m> i, (X)+ bh,(in) g, (X))

= Y M2 [ Fan(out) Ty, (X)+ b} (out) 19, (X)} ,




s (X) = LMY FBE (in) T, (X) + b (in) -y, (X)]

= L M| L} (out) 19, (X)+ “b}(out) "y, (X)),

where all a and b are Fermi annihilation operators and all a* and b are
Fermi creation operators. Kinetic energy operator:

B = [ 0" S (X) dr — Ho = Y Y H,,

i=1 n;j

]I_IO = Z +EI73 +ZT[0 (R) +Z( +5n5 + 78,75) )
ny ns

I[/_\Inl = +gn1 +a;1 (11’1) +4n; (11’1) + _5’71 a + (11’1) ~anm (11’1)
= _&n —al (out) _a, (out) + TE&, Tal (out) Ta, (out),

H,, = 7o (L) af an,, Ha, = =710 (R) b, b, ,



H,, = *&, Ta’ (out) *a,,(out) — &, b}, (out) 4 by, (out)

n3
= _Sna _323 (in) ~ang (in) - *5113 fb:3 (in) — b, (il’l) ,
]I:In5 =— 1 &n +bzs(out) 4 by (out) — &y, _b;_r, (out) ~ by, (out)

= — _&n _bzs (in) _by,(in) — T&,, +b:5 (in) T by, (in),
Conditions of the Hamiltonian positivity

En>0 VYVneMUO,:; £,<0, Vne O, UQ5,
= En=U (1= [g(+[7)*) 20 ne s



Relations between in- and out-operators

In the range Q)1 :

“ay(out) = g (+ 1) ranlin) +g (") "a (Y1) “an(in),

1 . _ -1 _ .
_ay(out) = g <+ ) (f ) tan(in) —nge (71=) " an (in);
_ -1
+an(in) (-]7) (+|7) —an(out) +ngg (*|+)  *an(out),
- -1 -1
an (in) =~ (| ) “ap(out) + g (T+) Mg ("|+) Tan(out).
In the range ()5 similar relations can be obtained by the substitution
+an (in) — 1bj (out), ~a(in) — ~by (out),

*a,, (out) — +b,t5(in), _ap, (out) — _bzs(in).



Relations between in- and out-operators

In the range Q3
ta,(out) = —g (_‘Jr)*l _b}(in) + g (| +) (+|+) ~a,(in)
+bi(out) =g (= ‘+)71 (¢ 1) —biin) +g (" [4) " ~a, 1n)
_bi(in) = g (+ |’) g(=|") +bi(out) —g (| ) *a,(out),
“ap(in) =g (+|7) " +bhout) +g(*|-) g (" |-) Tan(out),

show us that vacuum vectors |0,1in) and |0, out) ,

a(in) |0,in) = b(in) |0,in) = 0, a(out) |0, out) = b(out) |0, out) =0,

are different.
The vacua are not charged and has zero kinetic energy,

(0,in[HX™|0,in) = 0, (0,in|Q |0, in) = (0, out|Q |0, out) = 0.



In and out particles

Using QFT operators,
F(x)= /‘i’ (X)T 409 AR (X)) ditdr | energy flux,
Q= g/ [‘i’ X))t ¥ (X)] _ dr, charge operator,
p—— /‘iﬁ (X) y°+*¥ (X) dtdr, electric current.

we can calculate all the characteristics of one particle states and justify in-
and out-interpretations.
E.g. all a are electrons, whereas all b are positrons,

(0,in|a(in)Qa’(in) |0,in) = (0, out|a(out)Qa'(out) |0, out) = —e,
(0,in|b(in)Qb' (in) |0,in) = (0, out|b(out) @b’ (out) |0, out) = e.

Kinetic energies of all one-particle states are positive.



and out particles

near the step

Py
A, allin)o o T ‘a/(out)|o @T; B,
t in . -
W, <0£® al(out)|0 Q, =0 a(in)o) Y,
W % LLLLLLL L
IS
Yo dllo) AANOANN U 4 Q, Ulx)
e ) TITTII7
o, in in s
Y, dinloin) o—= a <@ Wblinloin) W,
X, N Xg
x
+ out out
P, <—O  “a(out)]o,out b} (out)]0,out &= W,
LLLLLLL L ﬁ‘ U,
o u, AVAVAVCLVAVAVERS( IR
e F o
in out
A, blin)o) @—= Q. “b}(out)|o o= ),
o | -
A, <% \bi(out)|o v <Z@ “bl(in)|o *w"

Figure: In and out particles near the step



Transmission and reflection in the first range

()11 S

P in
g, Lagli ra_.lU E=

Ug+m

T al{out)]o o= ",
ot in -
W, <5 o Q, =3 allin)]o) ",
I LLLL L
|

Relative amplitudes R of an electron reflection, and relative amplitudes T of
an electron transmission are

Rin = <O’_a,,(out) +a’;(m)(o>, R_,,—<O‘ »(out) ~ ’f(in)‘0>,

Tin = <O }*an(out) +af,(in)) 0> B <0’ ap(out) ~ (m)‘ 0>, r
The corresponding probabilities satisfy the unitarity relations

Rinl? = [Roul?s | Tenl = Toul? [Real” +|Tenl’ =1



Consistency with potential scattering theory

Let us consider the evolution of the in-state a} (in)|0):

From the point of view of the time evolution this state can be reflected, with
the probability |F\’+,,,|2 and can be transmitted, with the probability |T+,,,|2
From the point of view of the time independent potential scattering theory,
we have to caIcuIate two mean currents in our in-state, one Jgr of
out-particles _a} (out)[0), and another one Jr of out-particles

+al  (out) |0). Both currents are proportional (equal ) to the mean numbers
of the corresponding out-particles in our in-state,

Jrp = <0’ +ap, (in) [ ,a;r,l (out) ,anl(out)] +a;r,1 (in)’ 0>
= le ([ le (<[ = Real,
Jr = <0‘ +ap, (in) [+ ! (out) a,,l(out)] e (in)) 0>

-2
= e+ =1Twnl?
Thus, in the range (); realization of rules of the potential scattering theory in
the framework of QFT allows one to obtain the correct result Jp 4+ J7== 1.



In- and out-particles in the Klein zone

- o in
P, o (in)]0,in &S

x
.

T
‘:Eg_) _h:lr’nllt!,r’n' Ma

Xy
,

+ oul
P, _

L

“al{out)]0, out )

u+m

,fJ:[uua]IU,ou[

X

_out
&= W,

in- and out-electrons are situated on the left of the step, and in- and
out-positrons are situated on the right of the step. The vacuum is
unstable, and processes of pair creation are possible. in-electrons that
are moving to the step from the left are subjected to the complete reflection.
in-positrons that are moving to the step from the right are subjected to the
complete reflection. Our identification of states in the Klein zone coincides
with the one proposed by Nikishov in the framework of RQM, Proc.
Lebedev Inst.111 (1979); It differs from an identification given by Hansen
and Ravndal in Phys. Scrip.23 (1981) and repeated in various publications.



Vacuum instability and pair creation in the Klein zone

The operator Vq, relates in- and out-vacua, |0,in) = V|0, out),

¢, = (0, 0ut|0,in) = (0,out|V[0,out) = [ g (~ ]+)71g (=)

nes

=ITeC|")"e:["), P=lal=T]rl.

neQs neQy
pr=le 1) e C1) = le 1)l (M
Relative amplitudes of a pair creation and a pair annihilation
w (+ —10),, = ¢, (0,0ut| Ta, (out) b, (out)|0,in)
= Snn (+=10), wa (+—[0) =g (+|") ",
w (0| —+),, = c, 0, out‘ _b(in) *a;,(m)( 0, in)

= Onwwn (O] =4), wa (O] =) =—g ("|-) "



Pair creation in the Klein zone

Differential mean numbers of out-particles in the vacuum |0,in) are:
a _ : + ‘I' + =2
N; (out) = <0,1n‘ »(out) Ta,(out) ‘0 1n> lg (= ]7)| ",
I

NE (out) = <0,in’ L bf(out) 4b,(out) ‘0 1n> g (+]”
Ny = N7 (out) = N7 (out) = |g (- 1) * =g (+ | )]",

N=Y N =Y e[ 7=X e
neQs neQs ne3

Vacuum-to-vacuum differential transition probability p/,

=lg(-|* )|72|g(+!2+)|2=\g(+|+)|2 ner) L }
|g(+| W=lgl NP +1= g [N =
—p=(1-N")= P, =]]Q-N).

n



Reflection of particles in the Klein zone

Relative scattering amplitudes
W () iy = € (0,00t | Tay (out) ~ak(in)| 0,in) = &y (+]+),
wn (+1+) =g (F1-)e (C1-) =g ([ )e ("),

w (=] =)y = € {0,0ut | 1by (out) —b}(in)|0,in) = 5w (—[ ),
wo (== =g (") g (C1-) =g (-[)e ")
wa (=) = (1= N7 = Jwa (+4)]°.

Then the total probability of reflection of an electron and a positron on the
x-electric potential step is

wa (|2 P0 =14 |wa (+]4) 2Py = 1



Regularized Klein step

Sauter potential with small Ua < 1 imitates the Klein step sufficiently well,
and coincides with the latter as &« — O,

E

In the range ()1 where pyp > U

- 4k _
g (+]7)] 2%(1_@2, e ([ =1]e(+ )] +1,
_ ., ML)+ :
k = ke = ng(RHni’ fermions k kinematic factor .

R
kp = %, bosons



Transmission and reflection above the step

Teal =18 (1) =
Y
Renl? = 8 (- [) 18 (1) = e

For bosons, k;, = {pR} / |pL} and there is a complete coincidence with the
non relativistic result, see Landau and Lifshitz.

For fermions: Let p; = 0 then 7T, = m, and

7T0(L) =po=m-+E, 7T0(R) =p—-U=m+E-T,

TTo (L)—l—m

- _ M 1
kf—ykb, u= 7T0(R)+m_[1 U/(E—|—2m)] .

In the nonrelativistic limit U < E+2m, p~1+U/ (E+2m).



Reflection and pair creation on the step

Relative probability amplitudes of the reflection and of the electron-positron
pair creation in the Klein zone are:

2 4lk
n (+ — 0 2
o (4= 100 =g (-] =
(v) 1) = 2 + —2:(1—k)2
Pn [wy (=) ‘g(+’ )’ |g(+} )} (1—{—/{)2.
These expressions for |w, (+ — [0)]* and |w, (—|—)|* are similar to

expressions for transmission and reflection probabilities in the ranges (2; and
Q5.

However, the interpretation of these quantities in the range ()3 differs
essentially from their interpretation in the ranges ()1 and Q5.

Moreover, here, in case of fermions, kf < 0. This formal similarity without a
correct interpretation was the reason for a systematic misunderstanding in
treating quantum processes in the Klein zone.



