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t-electric potential steps
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In- and out- solutions

Two complete sets of solutions of Dirac equation:
in-set

�
ζψn (X ) , ζ = �

	
classi�ed as electrons (+) and positrons (�) at

t 2 (�∞, tin) ,
out-set

�
ζψn (X ) , ζ = �

	
, classi�ed as electrons (+) and

positrons (�) at t 2 (�∞, tin) .
Decomposing the Heisenberg Dirac �eld in these solutions, we introduce in-
and out-operators;
in- and out-operators are related by a linear canonical transformation
(Bogolubov transformation)
All the characteristics of quantum processes can be expressed via coe¢ cients
of these transformations.
Gitman, J. Phys. A 10 (1977)
Fradkin, Gitman, Shvartsman, Quantum Electrodynamics with Unstable
Vacuum (Springer-Verlag, 1991)



x-electric potential steps

Figure:

A0(x) = �aE tanh (x/a) , a > 0, Sauter step (Z.Phys.73, 547, 1931),
E (x) = E cosh�2 (x/a) , U (x) = �eA0(x) = eEα tanh (x/α) .

Gitman,Gavrilov, Quantization of charged �elds in the presence of critical potential
steps, http://arxiv.org/abs/1506.01156, [hep-th]



x-electric potential steps

In 3+ 1 dim., space-time with coordinates x0 = t, r = (x , y , z) potentials
Aµ that correspond to an x-electric potential step are chosen to be
Aµ = A0 (x) , A = 0, such that the magnetic �eld B be zero and

E = (Ex (x) , 0, 0) , Ex (x) = �A00 (x) = E (x) .

The electric �eld is inhomogeneous in the x-direction, and does not depend
on time t (E is a constant �eld).
It is supposed that

A0 (x)
x!�∞�! A0 (�∞) = const, E (x)

jx j!∞�! 0, or
A0 (x)jx2SL

= A0 (�∞) , E (x)jx2SL
= 0, SL = (�∞, xL],

A0 (x)jx2SR
= A0 (+∞) , E (x)jx2SR

= 0, SR = [xR,∞).



U is the magnitude of the electric step,

U = UR � UL, UL = U (�∞) , UR = U (+∞) .

If U < Uc = 2m we deal with noncritical steps: the range Ω3 (Klein
zone) does not exist.
If U > Uc = 2m we deal with critical steps: the range Ω3, there exists
the Klein zone.
π0 (L) = p0 � UL asymptotic kinetic energy in the region SL = (�∞, xL],
π0 (R) = p0 � UR asymptotic kinetic energy in the region SR = [xR,∞),



Dirac equation with x-electric potential steps

i∂tψ = Ĥψ, Ĥ = �iαr+ βm+ U (x) , U (x) = �eA0 (x) ,
Ĥ is the one-particle (time independent) Dirac Hamiltonian, U (x) is the
potential energy of an electron in a x-electric potential step.
Stationary solutions

ψn = exp (�ip0t + ip?r?) ψ̃n (x) , p? = (py , pz ) ,
ψ̃n (x) =

�
γ0 [p0 � U (x)]� γ1p̂x � γ?p? +m

	
ϕn (x) vσ,n

p̂2x + iU
0 (x)� [p0 � U (x)]2 + p2? +m2

o
ϕn (x) = 0,

α1vσ = vσ, iγ2γ3vσ = σvσ, σ = �1,
γ? =

�
γ2,γ3

�
, p̂x = �i∂x , n = (p0,p?, σ).

In the asymptotic regions SL and SR solutions ψn are eigenfunctions of the
kinetic energy operator Ĥkin = Ĥ � U (x) ,

Ĥkinψn (X )
���
x!�∞

= π0 (R/L) ψn (X )jx!�∞ .



Solutions of Dirac equation with special left and right
asymptotics

In such solutions functions ϕn (x) are denoted as ζ ϕn (x) or
ζ ϕn (x)

respectively,
SL:

ζ ϕn (x) = ϕL
n,ζ (x) as x 2 SL = (�∞, xL] ,n

p̂2x � [π0 (L)]
2 + π2?

o
ϕL
n (x) = 0, ϕL

n,ζ (x) = ζN exp
�
ipL x

�
,

pL = ζ

q
[π0 (L)]

2 � π2?, ζ = sgn
�
pL
�
= � , π? =

q
p2? +m

2.

SR :
ζ ϕn (x) = ϕR

n,ζ (x) as x 2 SR = [xR,∞),n
p̂2x � [π0 (R)]

2 + π2?

o
ϕR
n (x) = 0, ϕR

n,ζ (x) =
ζN exp

�
ipR x

�
,

pR = ζ

q
[π0 (R)]

2 � π2?, ζ = sgn
�
pR
�
= �.



Solutions of Dirac equation with special left and right
asymptotics

The corresponding solutions of the Dirac equation, are denoted as ζψn (X )
and ζψn (X ) . They are states with de�nite momenta p

L as x ! �∞, or with
pR as x ! +∞,

p̂x ζψn (X ) = pL
ζψn (X ) , x ! �∞ ,

p̂x ζψn (X ) = pR ζψn (X ) , x ! +∞.

Nontrivial solutions ζψn (X ) exist only for certain n,

[π0 (L)]
2 > π2? ()

�
π0 (L) > π?
π0 (L) < �π?

.

Nontrivial solutions ζψn (X ) exist only for certain n,

[π0 (R)]
2 > π2? ()

�
π0 (R) > π?
π0 (R) < �π?

.



Ranges of quantum numbers

There exist �ve ranges Ωk , k = 1, ..., 5 of quantum numbers n where
solutions ϕL/R

n (x) have similar properties and forms,

Figure: Potential energy U (x) of an electron in an x-electric step and ranges of
quantum numbers



The range Ω1 includes quantum numbers n1 that obey the inequality
p0 � UR + π? . Two complete sets

n
ζψn1

o
and

n
ζψn1

o
can be

interpreted as electron solutions.
The range Ω5 includes quantum numbers n5 that obey the inequality
p0 � UL � π? . Two complete sets

n
ζψn5

o
and

n
ζψn5

o
can be interpreted

as positron solutions.
The range n2 2 Ω2 exists for any U, quantum numbers n2 obey the
inequalities UR � π? < p0 < UR + π? .
Any solution ψn2 has zero right asymptotics and zero Dirac current in
x-direction. This fact imposes restrictions on solutions ψn2 ,

ψn2 (X ) = + ψn2 (X ) c+ + �ψn2 (X ) c� ,

jc+j = jc�j =) ψn2 (X ) = + ψn2 (X ) e
+iθn2 + �ψn2 (X ) e

�iθn2 .

Complete set
n

ψn2

o
represents solutions that are sums of two electron

waves travelling in opposite directions, with equal in magnitude
currents, which means that we deal with a total re�ection. Similarly,
we can treat the range Ω4



Third range (Klein zone)

The Klein zone exists if U > 2m. Here quantum numbers p? are restricted
by 2π? � U ,

UL + π? � p0 � UR � π? =)
�

π0 (L) � π?
π0 (R) � �π?

,

and there exist the following two complete sets of solutionsn
ζψn3 (X )

o
,
n

ζψn3 (X )
o
, ζ = �.

In contrast to the ranges Ω1 and Ω5, the naive one-particle interpretation of
these solutions becomes erroneous. E.g. the following contradiction: from
the point of view of the left asymptotic area, only electron states are
possible in the Klein zone, whereas from the point of view of the right
asymptotic area, only positron states are possible in the Klein zone.
QED consideration shows that solutions ζψn3 (X ) describe electrons, whereas
ζψn3 (X ) describe positrons.



Orthogonality and normalization

Solutions ζψn (X ) and
ζψn (X ) , n 2 Ω1 [Ω3 [Ω5, can be subjected to the

following orthonormality conditions�
ζψn, ζ 0ψn0

�
x
= ζηLδζ,ζ 0δn,n0 , ηL = sgn π0 (L) ,�

ζψn,
ζ 0ψn0

�
x
= ζηRδζ,ζ 0δn,n0 , ηR = sgn π0 (R) ,�

ψ,ψ0
�
x =

Z
ψ† (X ) γ0γ1ψ0 (X ) dtdr? .

Coe¢ cients g :
g
�

ζ

���ζ 0 � = � ζψn,
ζ 0ψn

�
x

de�ne mutual decompositions of these solutions

ηL
ζψn (X ) = +ψn (X ) g

�
+

���ζ �� �ψn (X ) g
�
�
���ζ � ,

ηR ζψn (X ) =
+ψn (X ) g

�
+
��
ζ

�
� �ψn (X ) g

�� ��
ζ

�
.



Orthogonality and normalization

�
ψn,ψ

0
n0
�
= 0, 8n 6= n0;

�
ψ,ψ0

�
=
Z

ψ†ψ0dr.

�
ζψn, ζψn0

�
=
�

ζψn,
ζψn0

�
= δσ,σ0δ

�
p0 � p00

�
δ
�
p? � p0?

�
Mn,

Mn =
��g �+ ��+ ���2 , n 2 Ω1 [Ω5; M3 =

��g �+ ��� ���2 , n 2 Ω3;�
ζψn,

�ζψn

�
= 0, n 2 Ω1 [Ω5 , ζψn and �ζψn independent,�

ζψn,
ζψn

�
= 0, n 2 Ω3 , ζψn and ζψn independent.

Then we identify:

+ψn (X ) ,
�ψn (X ) in� solutions,

�ψn (X ) ,
+ψn (X ) out� solutions,

�
, n 2 Ω1 [Ω5 ,

�ψn3 (X ) ,
�ψn3 (X ) in� solutions

+ψn3 (X ) ,
+ψn3 (X ) out� solutions

�
, n 2 Ω3 .



Quantized Dirac �eld and in- and out-operators

Ψ (X ) =) Ψ̂ (X ) ,
�
Ψ̂ (X ) , Ψ̂

�
X 0
��
+

���
t=t 0

= 0,h
Ψ̂ (X ) , Ψ̂

�
X 0
�†
i
+

���
t=t 0

= δ
�
r� r0

�
; Ψ̂ (X ) =

5

∑
i=1

Ψ̂i (X ) ,

Ψ̂1 (X ) = ∑
n1

M�1/2
n1

h
+an1(in) +ψn1 (X ) +

�an1(in)
�ψn1 (X )

i
= ∑

n1

M�1/2
n1

h
+an1(out) +ψn1 (X ) + �an1(out) �ψn1 (X )

i
,

Ψ̂2 (X ) = ∑
n2

M�1/2
n2 an2ψn2 (X ) , Ψ̂4 (X ) = ∑

n4

M�1/2
n4 b†

n4ψn4 (X ) ,

Ψ̂3 (X ) = ∑
n3

M�1/2
n3

h
�an3(in)

�ψn3 (X ) + �b†
n3(in) �ψn3 (X )

i
= ∑

n3

M�1/2
n3

h
+an3(out) +ψn3 (X ) + +b†

n3(out) +ψn3 (X )
i
,



Ψ̂5 (X ) = ∑
n5

M�1/2
n5

h
+b†

n5(in)
+ψn5 (X ) + �b†

n5(in) �ψn5 (X )
i

= ∑
n5

M�1/2
n5

h
+b†

n5(out) +ψn5 (X ) +
�b†

n5(out) �ψn5 (X )
i
,

where all a and b are Fermi annihilation operators and all a† and b† are
Fermi creation operators. Kinetic energy operator:

bHkin =
Z

Ψ̂ (X )† Ĥkin Ψ̂ (X ) dr�H0 =
5

∑
i=1

∑
ni

bHni ,

H0 = ∑
n3

+En3 +∑
n4

π0 (R) +∑
n5

�
+En5 + �En5

�
,

bHn1 = +En1 +a†
n1(in) +an1(in) +

�En1 �a†
n1(in)

�an1(in)

= �En1 �a†
n1(out) �an1(out) + +En1 +a†

n1(out) +an1(out),bHn2 = π0 (L) a†
n2an2 ,

bHn4 = �π0 (R) b†
n4bn4 ,



bHn3 =
+En3 +a†

n3(out) +an3(out)� +En3 +b†
n3(out) +bn3(out)

= �En3 �a†
n3(in)

�an3(in)� �En3 �b†
n3(in) �bn3(in) ,bHn5 = � +En5 +b†

n5(out) +bn5(out)� �En5 �b†
n5(out) �bn5(out)

= � �En5 �b†
n5(in) �bn5(in)�

+En5 +b†
n5(in)

+bn5(in),

Conditions of the Hamiltonian positivity

En > 0, 8n 2 Ω1 [Ω2 ; En < 0, 8n 2 Ω4 [Ω5 ,
ζEn3 � ζEn3 = U

�
1�

��g �+ ��� ����2� > 0, n 2 Ω3.



Relations between in- and out-operators

In the range Ω1 :

+an(out) = ηLg
�
+

��+ ��1
+an(in) + g

�� j� ��1 g �+ j� � �an1(in),

�an(out) = g
�
+

��+ ��1 g �� ��+ � +an(in)� ηRg
�� j� ��1 �an1(in);

+an(in) = g
�
�
��� ��1 g �+ ��� � �an(out) + ηRg

�
+ j+

��1 +an(out),
�an1(in) = �ηLg

�
�
��� ��1 �an(out) + g

�
+ j+

��1 g �� j+ � +an(out).

In the range Ω5 similar relations can be obtained by the substitution

+an1(in)! +b†
n5(out), �an1(in)! �b†

n5(out),
+an1(out)! +b†

n5(in), �an1(out)! �b†
n5(in).



Relations between in- and out-operators

In the range Ω3

+an(out) = �g
�
�
��+ ��1 �b†

n(in) + g
�� j+ ��1 g �+ j+ � �an(in),

+b†
n(out) = g

�
�
��+ ��1 g �+ ��+ � �b†

n(in) + g
�� j+ ��1 �an(in),

�b†
n(in) = g

�
+

��� ��1 g �� ��� � +b†
n(out)� g

�
+ j�

��1 +an(out),
�an(in) = g

�
+

��� ��1
+b†

n(out) + g
�
+ j�

��1 g �� j� � +an(out),

show us that vacuum vectors j0, ini and j0, outi ,

a(in) j0, ini = b(in) j0, ini = 0, a(out) j0, outi = b(out) j0, outi = 0,

are di¤erent.
The vacua are not charged and has zero kinetic energy,

h0, inj bHkin j0, ini = 0, h0, injQ̂ j0, ini = h0, outjQ̂ j0, outi = 0.



In and out particles

Using QFT operators,

F̂ (x) =
1
T

Z
Ψ̂ (X )† γ0γ1Ĥkin Ψ̂ (X ) dtdr?, energy flux,

Q̂ =
q
2

Z h
Ψ̂ (X )† , Ψ̂ (X )

i
�
dr, charge operator,

Ĵ = � e
T

Z
Ψ̂† (X ) γ0γ1Ψ̂ (X ) dtdr?, electric current.

we can calculate all the characteristics of one particle states and justify in-
and out-interpretations.
E.g. all a are electrons, whereas all b are positrons,

h0, inja(in)Q̂a†(in) j0, ini = h0, outja(out)Q̂a†(out) j0, outi = �e,
h0, injb(in)Q̂b†(in) j0, ini = h0, outjb(out)Q̂b†(out) j0, outi = e.

Kinetic energies of all one-particle states are positive.



In and out particles near the step

Figure: In and out particles near the step



Transmission and re�ection in the �rst range

Relative amplitudes R of an electron re�ection, and relative amplitudes T of
an electron transmission are

R+,n =
D
0
��� �an(out) +a†

n(in)
��� 0E , R�,n = D0 ��� +an(out) �a†

n(in)
��� 0E ,

T+,n =
D
0
���+an(out) +a†

n(in)
��� 0E , T�,n = D0 ����an(out) �a†

n(in)
��� 0E , n 2 Ω1.

The corresponding probabilities satisfy the unitarity relations

jR+,n j2 = jR�,n j2 , jT+,n j2 = jT�,n j2 ,
��Rζ,n

��2 + ��Tζ,n
��2 = 1.



Consistency with potential scattering theory

Let us consider the evolution of the in-state +a†
n1(in) j0i:

From the point of view of the time evolution this state can be re�ected, with
the probability jR+,n j2 and can be transmitted, with the probability jT+,n j2 .
From the point of view of the time independent potential scattering theory,
we have to calculate two mean currents in our in-state, one JR of
out-particles �a†

n1(out) j0i , and another one JT of out-particles
+a†

n1(out) j0i . Both currents are proportional (equal ) to the mean numbers
of the corresponding out-particles in our in-state,

JR =
D
0
��� +an1(in) h �a†

n1(out) �an1(out)
i
+a†

n1(in)
��� 0E

=
��g �+ ��+ ����2 ��g �� ��+ ���2 = jR+,n j2 ,

JT =
D
0
��� +an1(in) h +a†

n1(out) +an1(out)
i
+a†

n1(in)
��� 0E

=
��g �+ ��+ ����2 = jT+,n j2 .

Thus, in the range Ω1 realization of rules of the potential scattering theory in
the framework of QFT allows one to obtain the correct result JR + JT = 1.



In- and out-particles in the Klein zone

in- and out-electrons are situated on the left of the step, and in- and
out-positrons are situated on the right of the step. The vacuum is
unstable, and processes of pair creation are possible. in-electrons that
are moving to the step from the left are subjected to the complete re�ection.
in-positrons that are moving to the step from the right are subjected to the
complete re�ection. Our identi�cation of states in the Klein zone coincides
with the one proposed by Nikishov in the framework of RQM, Proc.
Lebedev Inst.111 (1979); It di¤ers from an identi�cation given by Hansen
and Ravndal in Phys. Scrip.23 (1981) and repeated in various publications.



Vacuum instability and pair creation in the Klein zone

The operator VΩ3 relates in- and out-vacua, j0, ini = VΩ3 j0, outi,

cv = h0, outj0, ini = h0, outjV j0, outi = ∏
n2Ω3

g
�� j+ ��1 g �� j� �

= ∏
n2Ω3

g
�
�
��+ ��1 g �+ ��+ � , Pv = jcv j = ∏

n2Ω3

pnv ,

pnv =
��g �� j+ ����2 ��g �� j� ���2 = ��g �� ��+ ����2 ��g �+ ��+ ���2 .

Relative amplitudes of a pair creation and a pair annihilation

w (+� j0)n0n = c�1v h0, out
�� +an0 (out) +bn (out)

�� 0, ini
= δn,n0wn (+� j0) , wn (+� j0) = g

�
+

��+ ��1 ,

w (0j �+)nn0 = c�1v h0, out
��� �b†

n(in)
�a†

n0(in)
��� 0, ini

= δn,n0wn (0j �+) , wn (0j �+) = �g
�� j� ��1 .



Pair creation in the Klein zone

Di¤erential mean numbers of out-particles in the vacuum j0, ini are:

Nan (out) =
D
0, in

��� +a†
n(out) +an(out)

��� 0, inE = ��g �� ��+ ����2 ,
Nbn (out) =

D
0, in

��� +b†
n(out) +bn(out)

��� 0, inE = ��g �+ ��� ���2 ,
Ncr
n = N

a
n (out) = Nbn (out) =

��g �� ��+ ����2 = ��g �+ ��� ���2 ,
N = ∑

n2Ω3

Ncr
n = ∑

n2Ω3

��g �+ ��� ����2 = ∑
n2Ω3

��g �� ��+ ����2 .
Vacuum-to-vacuum di¤erential transition probability pnv ,

pnv = jg (� j+ )j
�2 jg (+ j+ )j2 = jg (+ j+ )j2 (Ncr

n )
�1

jg (+ j� )j2 = jg (+ j+ )j2 + 1 =) jg (+ j+ )j2 = Ncr
n � 1,

)
=) pnv = (1�Ncr

n ) =) Pv = ∏
n
(1�Ncr

n ) .



Re�ection of particles in the Klein zone

Relative scattering amplitudes

w (+j+)n0n = c�1v h0, out
��� +an0 (out) �a†

n(in)
��� 0, ini = δn,n0wn (+j+) ,

wn (+j+) = g
�
+ j�

�
g
�� j� ��1 = g �+ ��� � g �+ ��+ ��1 ,

w (�j�)n0n = c�1v h0, out
��� +bn0 (out) �b†

n(in)
��� 0, ini = δn,n0wn (�j�) ,

wn (�j�) = g
�� j+ � g �� j� ��1 = g �� ��+ � g �+ ��+ ��1 ,

jwn (�j�)j2 = (1�Ncr
n )

�1 = jwn (+j+)j2 .

Then the total probability of re�ection of an electron and a positron on the
x-electric potential step is

jwn (�j�)j2 pnv = 1!, jwn (+j+)j2 pnv = 1!



Regularized Klein step

Sauter potential with small Uα � 1 imitates the Klein step su¢ ciently well,
and coincides with the latter as α ! 0,

E

U

x0

In the range Ω1 where p0 > U��g �+ ��� ����2 � 4k

(1� k)2
,
��g �+ ��+ ���2 = ��g �+ ��� ���2 + 1,

k =

8<: kf = kb
π0(L)+π?
π0(R)+π?

, fermions

kb =
jpRj
jpLj , bosons

, k kinematic factor .



Transmission and re�ection above the step

��Tζ,n
��2 = ��g �+ ��+ ����2 = 4k

(1+ k)2
,

��Rζ,n
��2 = ��g �+ ��� ���2 ��g �+ ��+ ����2 = (1� k)2

(1+ k)2
.

For bosons, kb =
��pR
�� /
��pL
�� and there is a complete coincidence with the

non relativistic result, see Landau and Lifshitz.
For fermions: Let p? = 0 then π? = m, and
π0 (L) = p0 = m+ E , π0 (R) = p0 �U = m+ E �U,

kf = µkb , µ =
π0 (L) +m
π0 (R) +m

= [1�U/ (E + 2m)]�1 .

In the nonrelativistic limit U � E + 2m, µ � 1+U/ (E + 2m) .



Re�ection and pair creation on the step

Relative probability amplitudes of the re�ection and of the electron-positron
pair creation in the Klein zone are:

jwn (+� j0)j2 =
��g �+ ��+ ����2 = 4 jk j

(1+ k)2
,

p(v )n = jwn (�j�)j2 =
��g �+ ��� ���2 ��g �+ ��+ ����2 = (1� k)2

(1+ k)2
.

These expressions for jwn (+� j0)j2 and jwn (�j�)j2 are similar to
expressions for transmission and re�ection probabilities in the ranges Ω1 and
Ω5.
However, the interpretation of these quantities in the range Ω3 di¤ers
essentially from their interpretation in the ranges Ω1 and Ω5.
Moreover, here, in case of fermions, kf < 0. This formal similarity without a
correct interpretation was the reason for a systematic misunderstanding in
treating quantum processes in the Klein zone.


