QED with x-electric potential steps

Dmitry Gitman
Institute of Physics, USP, Brazil

Contents

I. Introduction
II. x-electric potential steps
x-electric potential steps
Dirac equation with x-electric potential steps
Ranges of quantum numbers
III. Quantized Dirac field with x-electric potential steps

In and out operators
Vacuum instability
Transmission and reflection in the first range
Total reflection in second and forth ranges
Reflection and creation of particles in the Klein zone
Klein step

Figure: A potential step
t-electric potential steps

Figure:

In- and out- solutions

Two complete sets of solutions of Dirac equation: in-set $\left\{{ }_{\zeta} \psi_{n}(X), \zeta= \pm\right\}$ classified as electrons $(+)$ and positrons $(-)$ at $t \in\left(-\infty, t_{\text {in }}\right)$,
out-set $\left\{{ }^{\zeta} \psi_{n}(X), \zeta= \pm\right\}$, classified as electrons $(+)$ and positrons $(-)$ at $t \in\left(-\infty, t_{\text {in }}\right)$.
Decomposing the Heisenberg Dirac field in these solutions, we introduce inand out-operators;
in- and out-operators are related by a linear canonical transformation (Bogolubov transformation)
All the characteristics of quantum processes can be expressed via coefficients of these transformations.
Gitman, J. Phys. A 10 (1977)
Fradkin, Gitman, Shvartsman, Quantum Electrodynamics with Unstable Vacuum (Springer-Verlag, 1991)

x-electric potential steps

Figure:

$$
\begin{aligned}
& A_{0}(x)=-a E \tanh (x / a), \quad a>0, \text { Sauter step (Z.Phys.73,547, 1931) } \\
& E(x)=E \cosh ^{-2}(x / a), \quad U(x)=-e A_{0}(x)=e E \alpha \tanh (x / \alpha)
\end{aligned}
$$

Gitman, Gavrilov, Quantization of charged fields in the presence of critical potential steps, http://arxiv.org/abs/1506.01156, [hep-th]

x-electric potential steps

In $3+1$ dim., space-time with coordinates $x^{0}=t, \mathbf{r}=(x, y, z)$ potentials A^{μ} that correspond to an x-electric potential step are chosen to be $A^{\mu}=A^{0}(x), \mathbf{A}=0$, such that the magnetic field \mathbf{B} be zero and

$$
\mathbf{E}=\left(E_{x}(x), 0,0\right), \quad E_{x}(x)=-A_{0}^{\prime}(x)=E(x)
$$

The electric field is inhomogeneous in the x-direction, and does not depend on time t (\mathbf{E} is a constant field).
It is supposed that

$$
\begin{aligned}
& A_{0}(x) \xrightarrow{x \rightarrow \pm \infty} A_{0}(\pm \infty)=\text { const, } \quad E(x) \xrightarrow{|x| \rightarrow \infty} 0, \text { or } \\
& \left.A_{0}(x)\right|_{x \in S_{\mathrm{L}}}=A_{0}(-\infty),\left.\quad E(x)\right|_{x \in S_{\mathrm{L}}}=0, \quad S_{\mathrm{L}}=\left(-\infty, x_{\mathrm{L}}\right], \\
& \left.A_{0}(x)\right|_{x \in S_{\mathrm{R}}}=A_{0}(+\infty),\left.\quad E(x)\right|_{x \in S_{\mathrm{R}}}=0, \quad S_{\mathrm{R}}=\left[x_{\mathrm{R}}, \infty\right) .
\end{aligned}
$$

\mathbb{U} is the magnitude of the electric step,

$$
\mathbb{U}=U_{\mathrm{R}}-U_{\mathrm{L}}, \quad U_{\mathrm{L}}=U(-\infty), \quad U_{\mathrm{R}}=U(+\infty)
$$

If $\mathbb{U}<\mathbb{U}_{c}=2 m$ we deal with noncritical steps: the range Ω_{3} (Klein zone) does not exist.
If $\mathbb{U}>\mathbb{U}_{c}=2 m$ we deal with critical steps: the range Ω_{3}, there exists the Klein zone.
$\pi_{0}(\mathrm{~L})=p_{0}-U_{\mathrm{L}}$ asymptotic kinetic energy in the region $S_{\mathrm{L}}=\left(-\infty, x_{\mathrm{L}}\right]$,
$\pi_{0}(\mathrm{R})=p_{0}-U_{\mathrm{R}}$ asymptotic kinetic energy in the region $S_{R}=\left[x_{\mathrm{R}}, \infty\right)$,

Dirac equation with x-electric potential steps

$$
i \partial_{t} \psi=\hat{H} \psi, \hat{H}=-i \alpha \nabla+\beta m+U(x), \quad U(x)=-e A_{0}(x),
$$

\hat{H} is the one-particle (time independent) Dirac Hamiltonian, $U(x)$ is the potential energy of an electron in a x-electric potential step.
Stationary solutions

$$
\begin{aligned}
& \psi_{n}=\exp \left(-i p_{0} t+i \mathbf{p}_{\perp} \mathbf{r}_{\perp}\right) \tilde{\psi}_{n}(x), \mathbf{p}_{\perp}=\left(p_{y}, p_{z}\right), \\
& \tilde{\psi}_{n}(x)=\left\{\gamma^{0}\left[p_{0}-U(x)\right]-\gamma^{1} \hat{p}_{x}-\gamma_{\perp} \mathbf{p}_{\perp}+m\right\} \varphi_{n}(x) v_{\sigma}, \\
& \left\{\hat{p}_{x}^{2}+i U^{\prime}(x)-\left[p_{0}-U(x)\right]^{2}+\mathbf{p}_{\perp}^{2}+m^{2}\right\} \varphi_{n}(x)=0, \\
& \alpha^{1} v_{\sigma}=v_{\sigma}, i \gamma^{2} \gamma^{3} v_{\sigma}=\sigma v_{\sigma}, \quad \sigma= \pm 1, \\
& \gamma_{\perp}=\left(\gamma^{2}, \gamma^{3}\right), \hat{p}_{x}=-i \partial_{x}, \quad n=\left(p_{0}, \mathbf{p}_{\perp}, \sigma\right) .
\end{aligned}
$$

In the asymptotic regions S_{L} and S_{R} solutions ψ_{n} are eigenfunctions of the kinetic energy operator $\hat{H}^{\text {kin }}=\hat{H}-U(x)$,

$$
\left.\hat{H}^{\mathrm{kin}} \psi_{n}(X)\right|_{x \rightarrow \pm \infty}=\left.\pi_{0}(\mathrm{R} / \mathrm{L}) \psi_{n}(X)\right|_{x \rightarrow \pm \infty}
$$

Solutions of Dirac equation with special left and right asymptotics

In such solutions functions $\varphi_{n}(x)$ are denoted as $\zeta \varphi_{n}(x)$ or ${ }^{\zeta} \varphi_{n}(x)$ respectively,
S_{L} :

$$
\begin{aligned}
& \zeta \varphi_{n}(x)=\varphi_{n, \zeta}^{\mathrm{L}}(x) \text { as } x \in S_{\mathrm{L}}=\left(-\infty, x_{\mathrm{L}}\right] \\
& \left\{\hat{p}_{x}^{2}-\left[\pi_{0}(\mathrm{~L})\right]^{2}+\pi_{\perp}^{2}\right\} \varphi_{n}^{\mathrm{L}}(x)=0, \quad \varphi_{n, \zeta}^{\mathrm{L}}(x)={ }_{\zeta} \mathcal{N} \exp \left(i p^{\mathrm{L}} x\right) \\
& p^{\mathrm{L}}=\zeta \sqrt{\left[\pi_{0}(\mathrm{~L})\right]^{2}-\pi_{\perp}^{2}}, \quad \zeta=\operatorname{sgn}\left(p^{\mathrm{L}}\right)= \pm, \pi_{\perp}=\sqrt{\mathbf{p}_{\perp}^{2}+m^{2}}
\end{aligned}
$$

$S_{R}:$

$$
\begin{aligned}
& \zeta^{\zeta} \varphi_{n}(x)=\varphi_{n, \zeta}^{\mathrm{R}}(x) \text { as } x \in S_{\mathrm{R}}=\left[x_{\mathrm{R}}, \infty\right), \\
& \left\{\hat{p}_{x}^{2}-\left[\pi_{0}(\mathrm{R})\right]^{2}+\pi_{\perp}^{2}\right\} \varphi_{n}^{\mathrm{R}}(x)=0, \quad \varphi_{n, \zeta}^{\mathrm{R}}(x)=\zeta^{\zeta} \mathcal{N} \exp \left(i p^{\mathrm{R}} x\right), \\
& p^{\mathrm{R}}=\zeta \sqrt{\left[\pi_{0}(\mathrm{R})\right]^{2}-\pi_{\perp}^{2}}, \quad \zeta=\operatorname{sgn}\left(p^{\mathrm{R}}\right)= \pm .
\end{aligned}
$$

Solutions of Dirac equation with special left and right asymptotics

The corresponding solutions of the Dirac equation, are denoted as ${ }_{\zeta} \psi_{n}(X)$ and ${ }^{\zeta} \psi_{n}(X)$. They are states with definite momenta p^{L} as $x \rightarrow-\infty$, or with p^{R} as $x \rightarrow+\infty$,

$$
\begin{aligned}
& \hat{p}_{x}{ }_{\zeta} \psi_{n}(X)=p^{\mathrm{L}}{ }_{\zeta} \psi_{n}(X), \quad x \rightarrow-\infty, \\
& \hat{p}_{x}{ }^{\zeta} \psi_{n}(X)=p^{\mathrm{R}} \zeta_{n}(X), \quad x \rightarrow+\infty .
\end{aligned}
$$

Nontrivial solutions ${ }_{\zeta} \psi_{n}(X)$ exist only for certain n,

$$
\left[\pi_{0}(\mathrm{~L})\right]^{2}>\pi_{\perp}^{2} \Longleftrightarrow\left\{\begin{array}{l}
\pi_{0}(\mathrm{~L})>\pi_{\perp} \\
\pi_{0}(\mathrm{~L})<-\pi_{\perp}
\end{array}\right.
$$

Nontrivial solutions ${ }^{\zeta} \psi_{n}(X)$ exist only for certain n,

$$
\left[\pi_{0}(\mathrm{R})\right]^{2}>\pi_{\perp}^{2} \Longleftrightarrow\left\{\begin{array}{l}
\pi_{0}(\mathrm{R})>\pi_{\perp} \\
\pi_{0}(\mathrm{R})<-\pi_{\perp}
\end{array}\right.
$$

Ranges of quantum numbers

There exist five ranges $\Omega_{k}, k=1, \ldots, 5$ of quantum numbers n where solutions $\varphi_{n}^{\mathrm{L} / \mathrm{R}}(x)$ have similar properties and forms,

Figure: Potential energy $U(x)$ of an electron in an x-electric step and ranges of quantum numbers

The range Ω_{1} includes quantum numbers n_{1} that obey the inequality $p_{0} \geq U_{\mathrm{R}}+\pi_{\perp}$. Two complete sets $\left\{\zeta^{\zeta} \psi_{n_{1}}\right\}$ and $\left\{{ }_{\zeta} \psi_{n_{1}}\right\}$ can be interpreted as electron solutions.
The range Ω_{5} includes quantum numbers n_{5} that obey the inequality $p_{0} \leq U_{\mathrm{L}}-\pi_{\perp}$. Two complete sets $\left\{{ }_{\zeta} \psi_{n_{5}}\right\}$ and $\left\{{ }_{\zeta} \psi_{n_{5}}\right\}$ can be interpreted as positron solutions.
The range $n_{2} \in \Omega_{2}$ exists for any \mathbb{U}, quantum numbers n_{2} obey the inequalities $U_{R}-\pi_{\perp}<p_{0}<U_{R}+\pi_{\perp}$.
Any solution $\psi_{n_{2}}$ has zero right asymptotics and zero Dirac current in x-direction. This fact imposes restrictions on solutions $\psi_{n_{2}}$,

$$
\begin{aligned}
& \psi_{n_{2}}(X)=+\psi_{n_{2}}(X) c_{+}+\psi_{n_{2}}(X) c_{-}, \\
& \left|c_{+}\right|=\left|c_{-}\right| \Longrightarrow \psi_{n_{2}}(X)=+\psi_{n_{2}}(X) e^{+i \theta_{n_{2}}}+{ }_{-} \psi_{n_{2}}(X) e^{-i \theta_{n_{2}}}
\end{aligned}
$$

Complete set $\left\{\psi_{n_{2}}\right\}$ represents solutions that are sums of two electron waves travelling in opposite directions, with equal in magnitude currents, which means that we deal with a total reflection. Similarly, we can treat the range Ω_{4}

Third range (Klein zone)

The Klein zone exists if $\mathbb{U}>2 m$. Here quantum numbers \mathbf{p}_{\perp} are restricted by $2 \pi_{\perp} \leq \mathbb{U}$,

$$
U_{\mathrm{L}}+\pi_{\perp} \leq p_{0} \leq U_{\mathrm{R}}-\pi_{\perp} \Longrightarrow\left\{\begin{array}{c}
\pi_{0}(\mathrm{~L}) \geq \pi_{\perp} \\
\pi_{0}(\mathrm{R}) \leq-\pi_{\perp}
\end{array}\right.
$$

and there exist the following two complete sets of solutions

$$
\left\{\zeta \psi_{n_{3}}(X)\right\}, \quad\left\{{ }^{\zeta} \psi_{n_{3}}(X)\right\}, \quad \zeta= \pm .
$$

In contrast to the ranges Ω_{1} and Ω_{5}, the naive one-particle interpretation of these solutions becomes erroneous. E.g. the following contradiction: from the point of view of the left asymptotic area, only electron states are possible in the Klein zone, whereas from the point of view of the right asymptotic area, only positron states are possible in the Klein zone. QED consideration shows that solutions ${ }^{\zeta} \psi_{n_{3}}(X)$ describe electrons, whereas ${ }_{\zeta} \psi_{n_{3}}(X)$ describe positrons.

Orthogonality and normalization

Solutions ${ }_{\zeta} \psi_{n}(X)$ and ${ }^{\zeta} \psi_{n}(X), n \in \Omega_{1} \cup \Omega_{3} \cup \Omega_{5}$, can be subjected to the following orthonormality conditions

$$
\begin{aligned}
& \left(\zeta \psi_{n}, \zeta^{\prime} \psi_{n^{\prime}}\right)_{x}=\zeta \eta_{\mathrm{L}} \delta_{\zeta, \zeta^{\prime}} \delta_{n, n^{\prime}}, \quad \eta_{\mathrm{L}}=\operatorname{sgn} \pi_{0}(\mathrm{~L}), \\
& \left({ }^{\zeta} \psi_{n}, \zeta^{\prime} \psi_{n^{\prime}}\right)_{x}=\zeta \eta_{\mathrm{R}} \delta_{\zeta, \zeta^{\prime}} \delta_{n, n^{\prime}}, \quad \eta_{\mathrm{R}}=\operatorname{sgn} \pi_{0}(\mathrm{R}), \\
& \left(\psi, \psi^{\prime}\right)_{x}=\int \psi^{+}(X) \gamma^{0} \gamma^{1} \psi^{\prime}(X) d t d \mathbf{r}_{\perp} .
\end{aligned}
$$

Coefficients g :

$$
g\left(\zeta \mid \zeta^{\prime}\right)=\left({ }_{\zeta} \psi_{n}, \zeta^{\prime} \psi_{n}\right)_{x}
$$

define mutual decompositions of these solutions

$$
\begin{aligned}
& \eta_{\mathrm{L}}{ }^{\zeta} \psi_{n}(X)=+\psi_{n}(X) g(+\mid \zeta)-{ }_{-} \psi_{n}(X) g(-\mid \zeta), \\
& \eta_{\mathrm{R}} \zeta \psi_{n}(X)={ }^{+} \psi_{n}(X) g\left(\left.{ }^{+}\right|_{\zeta}\right)-{ }^{-} \psi_{n}(X) g\left(-\left.\right|_{\zeta}\right)
\end{aligned}
$$

Orthogonality and normalization

$$
\begin{aligned}
& \left(\psi_{n}, \psi_{n^{\prime}}^{\prime}\right)=0, \forall n \neq n^{\prime} ; \quad\left(\psi, \psi^{\prime}\right)=\int \psi^{+} \psi^{\prime} d \text { r. } \\
& \left({ }_{\zeta} \psi_{n^{\prime}}{ }_{\zeta} \psi_{n^{\prime}}\right)=\left({ }^{\zeta} \psi_{n^{\prime}}{ }^{\zeta} \psi_{n^{\prime}}\right)=\delta_{\sigma, \sigma^{\prime}} \delta\left(p_{0}-p_{0}^{\prime}\right) \delta\left(\mathbf{p}_{\perp}-\mathbf{p}_{\perp}^{\prime}\right) \mathcal{M}_{n} \text {, } \\
& \mathcal{M}_{n}=\left|g\left(+\left.\right|^{+}\right)\right|^{2}, \quad n \in \Omega_{1} \cup \Omega_{5} ; \quad \mathcal{M}_{3}=\left|g\left(+\left.\right|^{-}\right)\right|^{2}, \quad n \in \Omega_{3} ; \\
& \left({ }_{\zeta} \psi_{n}{ }^{-\zeta} \psi_{n}\right)=0, n \in \Omega_{1} \cup \Omega_{5}, \zeta \psi_{n} \text { and }{ }^{-\zeta} \psi_{n} \text { independent, } \\
& \left(\zeta \psi_{n},{ }^{\zeta} \psi_{n}\right)=0, n \in \Omega_{3}, \zeta \psi_{n} \text { and }{ }^{\zeta} \psi_{n} \text { independent. }
\end{aligned}
$$

Then we identify:

$$
\left.\left.\begin{array}{lll}
+\psi_{n}(X), & { }^{-} \psi_{n}(X) & \text { in }- \text { solutions, } \\
-\psi_{n}(X), & { }^{+} \psi_{n}(X) & \text { out }- \text { solutions, }
\end{array}\right\}, \quad n \in \Omega_{1} \cup \Omega_{5}, ~ \begin{array}{ll}
-\psi_{n_{3}}(X), & { }^{-} \psi_{n_{3}}(X) \quad \text { in }- \text { solutions } \\
+\psi_{n_{3}}(X), & { }^{+} \psi_{n_{3}}(X) \quad \text { out }- \text { solutions }
\end{array}\right\}, \quad n \in \Omega_{3} .
$$

Quantized Dirac field and in- and out-operators

$$
\begin{aligned}
& \Psi(X) \Longrightarrow \hat{\Psi}(X),\left.\quad\left[\hat{\Psi}(X), \hat{\Psi}\left(X^{\prime}\right)\right]_{+}\right|_{t=t^{\prime}}=0, \\
& {\left.\left[\hat{\Psi}(X), \hat{\Psi}\left(X^{\prime}\right)^{\dagger}\right]_{+}\right|_{t=t^{\prime}}=\delta\left(\mathbf{r}-\mathbf{r}^{\prime}\right) ; \quad \hat{\Psi}(X)=\sum_{i=1}^{5} \hat{\Psi}_{i}(X), } \\
& \hat{\Psi}_{1}(X)=\sum_{n_{1}} \mathcal{M}_{n_{1}}^{-1 / 2}\left[{ }^{2}+a_{n_{1}}(\text { in })+\psi_{n_{1}}(X)+{ }^{-} a_{n_{1}}(\text { in })^{-} \psi_{n_{1}}(X)\right] \\
= & \sum_{n_{1}} \mathcal{M}_{n_{1}}^{-1 / 2}\left[{ }^{+} a_{n_{1}}(\text { out })^{+} \psi_{n_{1}}(X)+{ }_{-} a_{n_{1}}(\text { out })-\psi_{n_{1}}(X)\right], \\
& \hat{\Psi}_{2}(X)=\sum_{n_{2}} \mathcal{M}_{n_{2}}^{-1 / 2} a_{n_{2}} \psi_{n_{2}}(X), \quad \hat{\Psi}_{4}(X)=\sum_{n_{4}} \mathcal{M}_{n_{4}}^{-1 / 2} b_{n_{4}}^{\dagger} \psi_{n_{4}}(X), \\
& \hat{\Psi}_{3}(X)=\sum_{n_{3}} \mathcal{M}_{n_{3}}^{-1 / 2}\left[{ }^{-} a_{n_{3}}(\text { in })^{-} \psi_{n_{3}}(X)+{ }_{-} b_{n_{3}}^{\dagger}(\text { in })-\psi_{n_{3}}(X)\right] \\
= & \sum_{n_{3}} \mathcal{M}_{n_{3}}^{-1 / 2}\left[{ }^{+} a_{n_{3}}(\text { out })^{+} \psi_{n_{3}}(X)+{ }_{+} b_{n_{3}}^{\dagger}(\text { out })+\psi_{n_{3}}(X)\right],
\end{aligned}
$$

$$
\begin{aligned}
& \hat{\Psi}_{5}(X)=\sum_{n_{5}} \mathcal{M}_{n_{5}}^{-1 / 2}\left[{ }^{+} b_{n_{5}}^{\dagger}(\mathrm{in})^{+} \psi_{n_{5}}(X)+{ }_{-} b_{n_{5}}^{\dagger}(\mathrm{in})-\psi_{n_{5}}(X)\right] \\
= & \sum_{n_{5}} \mathcal{M}_{n_{5}}^{-1 / 2}\left[{ }_{+} b_{n_{5}}^{+}(\text {out })+\psi_{n_{5}}(X)+{ }^{-} b_{n_{5}}^{\dagger}(\text { out })^{-} \psi_{n_{5}}(X)\right],
\end{aligned}
$$

where all a and b are Fermi annihilation operators and all a^{\dagger} and b^{\dagger} are Fermi creation operators. Kinetic energy operator:

$$
\begin{aligned}
& \widehat{\mathbb{H}}^{\text {kin }}=\int \hat{\Psi}(X)^{\dagger} \hat{H}^{\text {kin }} \hat{\Psi}(X) d \mathbf{r}-\mathbb{H}_{0}=\sum_{i=1}^{5} \sum_{n_{i}} \widehat{\mathbb{H}}_{n_{i}}, \\
& \mathbb{H}_{0}=\sum_{n_{3}}+E_{n_{3}}+\sum_{n_{4}} \pi_{0}(\mathrm{R})+\sum_{n_{5}}\left({ }^{2} \mathcal{E}_{n_{5}}+{ }^{-} \mathcal{E}_{n_{5}}\right), \\
& \widehat{\mathbb{H}}_{n_{1}}={ }_{+} \mathcal{E}_{n_{1}}+a_{n_{1}}^{\dagger}(\text { in })+a_{n_{1}}(\text { in })+{ }^{-} \mathcal{E}_{n_{1}}-a_{n_{1}}^{\dagger}(\text { in })^{-} a_{n_{1}}(\text { in }) \\
& = \\
& -\mathcal{E}_{n_{1}}-a_{n_{1}}^{\dagger}(\text { out })-a_{n_{1}}(\text { out })+{ }^{+} \mathcal{E}_{n_{1}}{ }^{+} a_{n_{1}}^{\dagger}(\text { out })^{+} a_{n_{1}}(\text { out }), \\
& \widehat{\mathbb{H}}_{n_{2}}=\pi_{0}(\mathrm{~L}) a_{n_{2}}^{\dagger} a_{n_{2}}, \widehat{\mathbb{H}}_{n_{4}}=-\pi_{0}(\mathrm{R}) b_{n_{4}}^{\dagger} b_{n_{4}},
\end{aligned}
$$

$$
\begin{aligned}
& \widehat{\mathbb{H}}_{n_{3}}={ }^{+} \mathcal{E}_{n_{3}}+a_{n_{3}}^{\dagger}(\text { out })^{+} a_{n_{3}}(\text { out })-{ }_{+} \mathcal{E}_{n_{3}}+b_{n_{3}}^{+}(\text {out })+b_{n_{3}}(\text { out }) \\
= & -\mathcal{E}_{n_{3}}-a_{n_{3}}^{\dagger}(\text { in })^{-} a_{n_{3}}(\text { in })-\mathcal{E}_{n_{3}}-b_{n_{3}}^{+}(\text {in })-b_{n_{3}}(\text { in }), \\
& \widehat{\mathbb{H}}_{n_{5}}=-{ }_{+} \mathcal{E}_{n_{5}}+b_{n_{5}}^{\dagger}(\text { out })+b_{n_{5}}(\text { out })-{ }^{-} \mathcal{E}_{n_{5}}-b_{n_{5}}^{\dagger}(\text { out }){ }^{-} b_{n_{5}}(\text { out }) \\
= & -{ }_{-} \mathcal{E}_{n_{5}}-b_{n_{5}}^{\dagger}(\text { in })-b_{n_{5}}(\text { in })-{ }^{+} \mathcal{E}_{n_{5}}+b_{n_{5}}^{\dagger}(\text { in })^{+} b_{n_{5}}(\text { in }),
\end{aligned}
$$

Conditions of the Hamiltonian positivity

$$
\begin{aligned}
& \mathcal{E}_{n}>0, \quad \forall n \in \Omega_{1} \cup \Omega_{2} ; \quad \mathcal{E}_{n}<0, \quad \forall n \in \Omega_{4} \cup \Omega_{5} . \\
& { }_{\zeta} \mathcal{E}_{n_{3}}-{ }_{\zeta} \mathcal{E}_{n_{3}}=\mathbb{U}\left(1-\left|g\left(+\left.\right|^{-}\right)\right|^{-2}\right) \geqslant 0, \quad n \in \Omega_{3} .
\end{aligned}
$$

Relations between in- and out-operators

In the range Ω_{1} :

$$
\begin{aligned}
& +a_{n}(\text { out })=\eta_{\mathrm{L}} g\left(+\left.\right|^{+}\right)^{-1}+a_{n}(\text { in })+g\left(\left.^{-}\right|_{-}\right)^{-1} g\left(\left.^{+}\right|_{-}\right)^{-} a_{n_{1}}(\text { in }), \\
& -a_{n}(\text { out })=g\left(+\left.\right|^{+}\right)^{-1} g\left(-\left.\right|^{+}\right)+a_{n}(\text { in })-\eta_{\mathrm{R}} g\left(\left(\left.^{-}\right|_{-}\right)^{-1}-{ }^{-} a_{n_{1}}(\text { in }) ;\right. \\
& +a_{n}(\text { in })=g\left(-\left.\right|^{-}\right)^{-1} g\left(+\left.\right|^{-}\right)-a_{n}(\text { out })+\eta_{\mathrm{R}} g\left(\left.^{+}\right|_{+}\right)^{-1}{ }^{+} a_{n}(\text { out }), \\
& { }^{-} a_{n_{1}}(\text { in })=-\eta_{\mathrm{L}} g\left(-\left.\right|^{-}\right)^{-1}-a_{n}(\text { out })+g\left(\left.^{+}\right|_{+}\right)^{-1} g\left(\left.^{-}\right|_{+}\right)^{+} a_{n}(\text { out }) .
\end{aligned}
$$

In the range Ω_{5} similar relations can be obtained by the substitution

$$
\begin{aligned}
& +a_{n_{1}}(\text { in }) \rightarrow+b_{n_{5}}^{\dagger}(\text { out }), \quad-a_{n_{1}}(\text { in }) \rightarrow-b_{n_{5}}^{\dagger}(\text { out }), \\
& +{ }^{a_{n_{1}}}(\text { out }) \rightarrow{ }^{+} b_{n_{5}}^{+}(\text {in }), \quad-a_{n_{1}}(\text { out }) \rightarrow-b_{n_{5}}^{\dagger}(\text { in }) .
\end{aligned}
$$

Relations between in- and out-operators

In the range Ω_{3}

$$
\begin{aligned}
& +a_{n}(\text { out })=-g\left(-\left.\right|^{+}\right)^{-1}-b_{n}^{+}(\text {in })+g\left(\left(\left.^{-}\right|_{+}\right)^{-1} g\left(\left.^{+}\right|_{+}\right)^{-} a_{n}(\text { in }),\right. \\
& +b_{n}^{+}(\text {out })=g\left(-\left.\right|^{+}\right)^{-1} g\left(+\left.\right|^{+}\right)-b_{n}^{+}(\text {in })+g\left(\left(\left.^{-}\right|_{+}\right)^{-1}{ }^{-} a_{n}(\text { in }),\right. \\
& -b_{n}^{+}(\text {in })=g\left(+\left.\right|^{-}\right)^{-1} g\left(-\left.\right|^{-}\right)+b_{n}^{+}(\text {out })-g\left(\left.^{+}\right|_{-}\right)^{-1}{ }^{+} a_{n}(\text { out }), \\
& { }^{-} a_{n}(\text { in })=g\left(+\left.\right|^{-}\right)^{-1}+b_{n}^{+}(\text {out })+g\left(\left.^{+}\right|_{-}\right)^{-1} g\left(\left.^{-}\right|_{-}\right)^{+} a_{n}(\text { out }),
\end{aligned}
$$

show us that vacuum vectors $\mid 0$, in \rangle and $\mid 0$, out \rangle,

$$
a(\text { in }) \mid 0, \text { in }\rangle=b(\text { in }) \mid 0, \text { in }\rangle=0, \quad a(\text { out }) \mid 0, \text { out }\rangle=b(\text { out }) \mid 0, \text { out }\rangle=0,
$$

are different.
The vacua are not charged and has zero kinetic energy,

$$
\left.\left.\left.\langle 0, \text { in }| \widehat{H}^{\text {kin }} \mid 0, \text { in }\right\rangle=0,\langle 0, \text { in }| \hat{Q} \mid 0, \text { in }\right\rangle=\langle 0, \text { out }| \hat{Q} \mid 0, \text { out }\right\rangle=0 .
$$

In and out particles

Using QFT operators,

$$
\begin{aligned}
& \hat{F}(x)=\frac{1}{T} \int \hat{\Psi}(X)^{\dagger} \gamma^{0} \gamma^{1} \hat{H}^{\mathrm{kin}} \hat{\Psi}(X) d t d \mathbf{r}_{\perp}, \text { energy flux, } \\
& \hat{Q}=\frac{q}{2} \int\left[\hat{\Psi}(X)^{\dagger}, \hat{\Psi}(X)\right]_{-} d \mathbf{r}, \text { charge operator, } \\
& \hat{\jmath}=-\frac{e}{T} \int \hat{\Psi}^{\dagger}(X) \gamma^{0} \gamma^{1} \hat{\Psi}(X) d t d \mathbf{r}_{\perp}, \text { electric current. }
\end{aligned}
$$

we can calculate all the characteristics of one particle states and justify inand out-interpretations.
E.g. all a are electrons, whereas all b are positrons,

$$
\begin{aligned}
\left.\langle 0, \text { in }| a(\text { in }) \hat{Q} a^{\dagger}(\text { in }) \mid 0, \text { in }\right\rangle & \left.=\langle 0, \text { out }| a(\text { out }) \hat{Q} a^{\dagger}(\text { out }) \mid 0, \text { out }\right\rangle
\end{aligned}=-e, ~=\langle 0, \text { out }| b\left(\text { out } \hat{Q} b^{\dagger}(\text { out }) \mid 0, \text { out }\right\rangle=e .
$$

Kinetic energies of all one-particle states are positive.

In and out particles near the step

Figure: In and out particles near the step

Transmission and reflection in the first range

$$
\begin{aligned}
& \left.+\psi_{n}, a_{n}^{a_{n}(i n} \mid \mathbf{p}\right) \quad \Theta^{i n} \\
& -\psi_{n} \stackrel{\text { out }}{\leftarrow}-a_{n}^{\dagger}(\text { out })|0\rangle
\end{aligned}
$$

$$
\begin{aligned}
& \stackrel{i n}{i n} \ominus \quad-\sigma_{n}^{\prime}(i n)|0\rangle \psi_{n} \\
& 1 / 111 / 14
\end{aligned}
$$

Relative amplitudes R of an electron reflection, and relative amplitudes T of an electron transmission are

$$
\begin{array}{ll}
R_{+, n}=\langle 0|-a_{n}(\text { out })+a_{n}^{\dagger}(\text { in })|0\rangle, & R_{-, n}=\langle 0|+a_{n}(\text { out })-a_{n}^{\dagger}(\text { in })|0\rangle, \\
T_{+, n}=\left\langle\left. 0\right|^{+} a_{n}(\text { out })+a_{n}^{\dagger}(\mathrm{in}) \mid 0\right\rangle, & T_{-, n}=\langle 0|-a_{n}(\text { out })-a_{n}^{\dagger}(\text { in })|0\rangle,
\end{array}
$$

The corresponding probabilities satisfy the unitarity relations

$$
\left|R_{+, n}\right|^{2}=\left|R_{-, n}\right|^{2}, \quad\left|T_{+, n}\right|^{2}=\left|T_{-, n}\right|^{2}, \quad\left|R_{\zeta, n}\right|^{2}+\left|T_{\zeta, n}\right|^{2}=1 .
$$

Consistency with potential scattering theory

Let us consider the evolution of the in-state $+a_{n_{1}}^{\dagger}($ in $)|0\rangle$:
From the point of view of the time evolution this state can be reflected, with the probability $\left|R_{+, n}\right|^{2}$ and can be transmitted, with the probability $\left|T_{+, n}\right|^{2}$. From the point of view of the time independent potential scattering theory, we have to calculate two mean currents in our in-state, one J_{R} of out-particles $-a_{n_{1}}^{\dagger}$ (out) $|0\rangle$, and another one J_{T} of out-particles $+a_{n_{1}}^{\dagger}($ out $)|0\rangle$. Both currents are proportional (equal) to the mean numbers of the corresponding out-particles in our in-state,

$$
\begin{aligned}
J_{R} & =\langle 0|+a_{n_{1}}(\text { in })\left[-a_{n_{1}}^{+}(\text {out })-a_{n_{1}}(\text { out })\right]+a_{n_{1}}^{+}(\text {in })|0\rangle \\
& =\left|g\left(+\left.\right|^{+}\right)\right|^{-2}\left|g\left(-\left.\right|^{+}\right)\right|^{2}=\left|R_{+, n}\right|^{2} \\
J_{T} & =\langle 0|+a_{n_{1}}(\text { in })\left[{ }^{+} a_{n_{1}}^{+}(\text {out })^{+} a_{n_{1}}(\text { out })\right]+a_{n_{1}}^{+}(\text {in })|0\rangle \\
& =\left|g\left(+\left.\right|^{+}\right)\right|^{-2}=\left|T_{+, n}\right|^{2} .
\end{aligned}
$$

Thus, in the range Ω_{1} realization of rules of the potential scattering theory in the framework of QFT allows one to obtain the correct result $J_{R}+J_{T} \equiv 1$ ac

In- and out-particles in the Klein zone

in- and out-electrons are situated on the left of the step, and in- and out-positrons are situated on the right of the step. The vacuum is unstable, and processes of pair creation are possible. in-electrons that are moving to the step from the left are subjected to the complete reflection. in-positrons that are moving to the step from the right are subjected to the complete reflection. Our identification of states in the Klein zone coincides with the one proposed by Nikishov in the framework of RQM, Proc. Lebedev Inst. 111 (1979); It differs from an identification given by Hansen and Ravndal in Phys. Scrip. 23 (1981) and repeated in various publications.

Vacuum instability and pair creation in the Klein zone

The operator $V_{\Omega_{3}}$ relates in- and out-vacua, $\mid 0$, in $\rangle=V_{\Omega_{3}} \mid 0$, out \rangle,

$$
\begin{aligned}
& \left.\left.c_{v}=\langle 0, \text { out }| 0, \text { in }\right\rangle=\langle 0, \text { out }| V \mid 0, \text { out }\right\rangle=\prod_{n \in \Omega_{3}} g\left(\left.{ }^{-}\right|_{+}\right)^{-1} g\left(\left.{ }^{-}\right|_{-}\right) \\
& =\prod_{n \in \Omega_{3}} g\left(-\left.\right|^{+}\right)^{-1} g\left(+\left.\right|^{+}\right), \quad P_{v}=\left|c_{v}\right|=\prod_{n \in \Omega_{3}} p_{v}^{n}, \\
& p_{v}^{n}=\mid g\left(\left.\left(\left.^{-}\right|_{+}\right)\right|^{-2}\left|g\left(-\left.\right|_{-}\right)\right|^{2}=\left|g\left(-\left.\right|^{+}\right)\right|^{-2}\left|g\left(+\left.\right|^{+}\right)\right|^{2} .\right.
\end{aligned}
$$

Relative amplitudes of a pair creation and a pair annihilation

$$
\begin{gathered}
\left.w(+-\mid 0)_{n^{\prime} n}=c_{v}^{-1}\left\langle 0, \text { out }\left.\right|^{+} a_{n^{\prime}}(\text { out })+b_{n}(\text { out })\right| 0, \text { in }\right\rangle \\
=\delta_{n, n^{\prime}} w_{n}(+-\mid 0), \quad w_{n}(+-\mid 0)=g\left(+\left.\right|^{+}\right)^{-1}, \\
\left.w(0 \mid-+)_{n n^{\prime}}=c_{v}^{-1}\langle 0, \text { out }|-b_{n}^{\dagger}(\text { in })^{-} a_{n^{\prime}}^{\dagger}(\text { in }) \mid 0, \text { in }\right\rangle \\
= \\
\delta_{n, n^{\prime}} w_{n}(0 \mid-+), \quad w_{n}(0 \mid-+)=-g\left(^{-} \mid-\right)^{-1} .
\end{gathered}
$$

Pair creation in the Klein zone

Differential mean numbers of out-particles in the vacuum $\mid 0$, in \rangle are:

$$
\begin{aligned}
& \left.N_{n}^{a}(\text { out })=\langle 0, \text { in }|+a_{n}^{\dagger}(\text { out })^{+} a_{n}(\text { out }) \mid 0, \text { in }\right\rangle=\left|g\left(-\left.\right|^{+}\right)\right|^{-2}, \\
& \left.N_{n}^{b}(\text { out })=\langle 0, \text { in }|+b_{n}^{+}(\text {out })+b_{n}(\text { out }) \mid 0, \text { in }\right\rangle=\left|g\left(+\left.\right|^{-}\right)\right|^{2}, \\
& N_{n}^{c r}=N_{n}^{a}(\text { out })=N_{n}^{b}(\text { out })=\left|g\left(-\left.\right|^{+}\right)\right|^{-2}=\left|g\left(+\left.\right|^{-}\right)\right|^{2}, \\
& N=\sum_{n \in \Omega_{3}} N_{n}^{c r}=\sum_{n \in \Omega_{3}}\left|g\left(+\left.\right|^{-}\right)\right|^{-2}=\sum_{n \in \Omega_{3}}\left|g\left(-\left.\right|^{+}\right)\right|^{-2} .
\end{aligned}
$$

Vacuum-to-vacuum differential transition probability p_{v}^{n},

$$
\left.\begin{array}{l}
p_{v}^{n}=\left|g\left(-\left.\right|^{+}\right)\right|^{-2}\left|g\left(+\left.\right|^{+}\right)\right|^{2}=\left|g\left(+\left.\right|^{+}\right)\right|^{2}\left(N_{n}^{\mathrm{cr}}\right)^{-1} \\
\left|g\left(+\left.\right|^{-}\right)\right|^{2}=\left|g\left(+\left.\right|^{+}\right)\right|^{2}+1 \Longrightarrow\left|g\left(+\left.\right|^{+}\right)\right|^{2}=N_{n}^{\mathrm{cr}}-1,
\end{array}\right\}
$$

Reflection of particles in the Klein zone

Relative scattering amplitudes

$$
\begin{aligned}
& \left.w(+\mid+)_{n^{\prime} n}=c_{v}^{-1}\left\langle 0, \text { out }\left.\right|^{+} a_{n^{\prime}}(\text { out })-a_{n}^{+}(\text {in })\right| 0, \text { in }\right\rangle=\delta_{n, n^{\prime}} w_{n}(+\mid+), \\
& w_{n}(+\mid+)=g\left(^{+} \mid-\right) g\left(\left.{ }^{-}\right|_{-}\right)^{-1}=g\left(+\left.\right|^{-}\right) g\left(+\left.\right|^{+}\right)^{-1}, \\
& \left.w(-\mid-)_{n^{\prime} n}=c_{v}^{-1}\left\langle 0, \text { out }\left.\right|_{+} b_{n^{\prime}}(\text { out })-b_{n}^{+}(\text {in })\right| 0, \text { in }\right\rangle=\delta_{n, n^{\prime}} w_{n}(-\mid-), \\
& w_{n}(-\mid-)=g\left(\left.{ }^{-}\right|_{+}\right) g\left(\left(^{-} \mid-\right)^{-1}=g\left(-\left.\right|^{+}\right) g\left(+\left.\right|^{+}\right)^{-1},\right. \\
& \left|w_{n}(-\mid-)\right|^{2}=\left(1-N_{n}^{\text {cr }}\right)^{-1}=\left|w_{n}(+\mid+)\right|^{2} .
\end{aligned}
$$

Then the total probability of reflection of an electron and a positron on the x-electric potential step is

$$
\left|w_{n}(-\mid-)\right|^{2} p_{v}^{n}=1!, \quad\left|w_{n}(+\mid+)\right|^{2} p_{v}^{n}=1!
$$

Regularized Klein step

Sauter potential with small $\mathbb{U} \alpha \ll 1$ imitates the Klein step sufficiently well, and coincides with the latter as $\alpha \rightarrow 0$,

In the range Ω_{1} where $p_{0}>U$

$$
\begin{aligned}
& \left|g\left(+\left.\right|^{-}\right)\right|^{-2} \approx \frac{4 k}{(1-k)^{2}},\left|g\left(+\left.\right|^{+}\right)\right|^{2}=\left|g\left(+\left.\right|^{-}\right)\right|^{2}+1, \\
& k=\left\{\begin{array}{l}
k_{f}=k_{b} \frac{\pi_{0}(\mathrm{~L})+\pi_{\perp}}{\pi_{0}(\mathrm{R})+\pi_{\perp}}, \text { fermions } \\
k_{b}=\frac{\left|p^{\mathrm{P}}\right|}{\left|p^{L}\right|}, \text { bosons }
\end{array}, \quad k \text { kinematic factor } .\right.
\end{aligned}
$$

Transmission and reflection above the step

$$
\begin{aligned}
& \left|T_{\zeta, n}\right|^{2}=\left|g\left(+\left.\right|^{+}\right)\right|^{-2}=\frac{4 k}{(1+k)^{2}} \\
& \left|R_{\zeta, n}\right|^{2}=\left|g\left(+\left.\right|^{-}\right)\right|^{2}\left|g\left(+\left.\right|^{+}\right)\right|^{-2}=\frac{(1-k)^{2}}{(1+k)^{2}}
\end{aligned}
$$

For bosons, $k_{b}=\left|p^{\mathrm{R}}\right| /\left|p^{\mathrm{L}}\right|$ and there is a complete coincidence with the non relativistic result, see Landau and Lifshitz.
For fermions: Let $p_{\perp}=0$ then $\pi_{\perp}=m$, and
$\pi_{0}(\mathrm{~L})=p_{0}=m+E, \quad \pi_{0}(\mathrm{R})=p_{0}-\mathbb{U}=m+E-\mathbb{U}$,

$$
k_{f}=\mu k_{b}, \mu=\frac{\pi_{0}(\mathrm{~L})+m}{\pi_{0}(\mathrm{R})+m}=[1-\mathbb{U} /(E+2 m)]^{-1}
$$

In the nonrelativistic limit $\mathbb{U} \ll E+2 m, \mu \approx 1+\mathbb{U} /(E+2 m)$.

Reflection and pair creation on the step

Relative probability amplitudes of the reflection and of the electron-positron pair creation in the Klein zone are:

$$
\begin{aligned}
& \left|w_{n}(+-\mid 0)\right|^{2}=\left|g\left(+\left.\right|^{+}\right)\right|^{-2}=\frac{4|k|}{(1+k)^{2}}, \\
& p_{n}^{(v)}=\left|w_{n}(-\mid-)\right|^{2}=\left|g\left(+\left.\right|^{-}\right)\right|^{2}\left|g\left(+\left.\right|^{+}\right)\right|^{-2}=\frac{(1-k)^{2}}{(1+k)^{2}} .
\end{aligned}
$$

These expressions for $\left|w_{n}(+-\mid 0)\right|^{2}$ and $\left|w_{n}(-\mid-)\right|^{2}$ are similar to expressions for transmission and reflection probabilities in the ranges Ω_{1} and Ω_{5}.
However, the interpretation of these quantities in the range Ω_{3} differs essentially from their interpretation in the ranges Ω_{1} and Ω_{5}.
Moreover, here, in case of fermions, $k_{f}<0$. This formal similarity without a correct interpretation was the reason for a systematic misunderstanding in treating quantum processes in the Klein zone.

