Hidden Lagrangian constraints and differential Thomas decomposition

V.P.GERDT

Joint Institute for Nuclear Research, 141980 Dubna, Russia

D.Robertz

Centre for Mathematical Sciences, Plymouth University, Plymouth PL4 8AA,

United Kingdom

Brasil-JINR Forum 2015 June 18, Dubna, Russia

Introduction Computation of Lagrangian constraints: standard approach Constraints as integrability conditions Approach base

Plan

Introduction

- 2 Computation of Lagrangian constraints: standard approach
- 3 Constraints as integrability conditions
- 4 Approach based on Thomas decomposition

5 Examples

- (目) - (日) - (日)

Constrained dynamics

Local symmetry

All fundamental models in physics (QED, QCD, YM, SM, GR, SUSY, ST,...) are invariant under some local symmetry transformations: gauge (QED, QCD, YM, SM); local supersymmetry (SUSY); space-time diffeomorphisms (GR,ST).

- $\sqrt{}$ Such models are called constrained models or singular models.
- $\sqrt{}$ Local symmetry relates different solutions stemming from the same IC (position and velocity).
- $\sqrt{}$ General solution contains arbitrary time-dependent functions.
- \checkmark A continuous set of accelerations belongs to the same IC.
- $\sqrt{\text{All accelerations correspond to a subset of IC defined by}}$ (hidden) Lagrangian constraints.
- \sqrt{Q} .: How to compute them?

V.P.GERDT Joint Institute for Nuclear Research, Hidden Lagrangian constraints and differential Thomas decomp

・ロト ・日本 ・モート ・モート

Euler-Lagrange equations

All fundamental laws are understood in terms of action and Hamilton's principle.

Physics (field theories):

$$S = \int dt \int d^3 x \mathcal{L}(\varphi^a, \partial_{x_i} \varphi^a, \dot{\varphi}^a) \Rightarrow \partial_\mu \frac{\partial \mathcal{L}}{\partial (\partial_\mu \varphi^a)} - \frac{\partial \mathcal{L}}{\partial \varphi^a} = 0, \ \partial_0 \varphi^a \equiv \dot{\varphi}^a$$

Mechanics: (dynamical systems)

$$S = \int dt L(q^a, \dot{q}^a) \Longrightarrow rac{d}{dt} \left(rac{\partial L}{\partial \dot{q}^a}
ight) - rac{\partial L}{\partial q^a} = 0,$$

Lagrangian density \mathcal{L} and Lagrangian L are (typically) differential polynomials.

Singular models

Lagrangian is (singular) regular if Hessian $H_{i,j}$ is (not)invertible

$$H_{i,j} = \begin{cases} \frac{\partial^2 L}{\partial \dot{q}^i \, \partial \dot{q}^j} & \text{(Dynamical System)} \\ \\ \frac{\partial^2 \mathcal{L}}{\partial \dot{\varphi}^i \, \partial \dot{\varphi}^j} & \text{(Field Theoretic Model)} \end{cases}$$

In terms of Hessian the set E of Euler-Lagrange equations reads

$$E := \{ e_i = 0 \mid i = 1, \dots, m \},\$$

 $e_i := \left\{ egin{array}{l} H_{i,j} \, \ddot{q}^j + P_i & (ext{Dynamical System}) \ H_{i,j} \, \ddot{arphi}^j + P_i & (ext{Field Theoretic Model}) \end{array}
ight.$

 $H_{i,j}$ and P_i are differential polynomials of order ≤ 1 .

Standard computation via linear algebra (Wipf'1994)

- Step 1. Compute Hessian *H*, derive the set *E* of Euler-Lagrange equations of cardinality m := |E| and put $C := \{ \}$.
- Step 2. Compute the rank r of the Hessian taking into account equations in E.
- Step 3. If r = m, then go to Step 6. Otherwise, go to the next step.

Step 4. Compute a basis V of the nullspace of H, set up

$$C := \{ P_i V_{\alpha}^i \mid \alpha = 1, \dots, |V| \}$$

and enlarge the equation set

$$E:=E\cup\{\,c=0\mid c\in C\setminus\{0\}\,\}.$$

Step 5. Set m := r and go to Step 2. Step 6. Return *C*.

V.P.GERDT Joint Institute for Nuclear Research, Hidden Lagrangian constraints and differential Thomas decomp

伺い イヨト イヨト 三日

Introduction Computation of Lagrangian constraints: standard approach Constraints as integrability conditions Approach base

Pros and cons

- Pros
 - $\sqrt{}$ Application of computationally efficient linear algebra based methods to test singularity and to construct constraints.
 - $\sqrt{}$ Linear independence of constraints.
- Cons
 - $\checkmark\,$ The approach is not completely algorithmic. In particular,
 - It fails to account for the dependence of Hessian rank on area in the space (φ, ∂φ) or (q, q).
 - Algebraic completion of constraints needs reduction modulo radical ideal they generate that is very expensive computationally.
 - The output set *C* of constraints has to be further processed to extract the set of algebraically independent Lagrangian constraints.

(1日) (1日) (日)

 \surd Full or even partial implementation is unknown.

Integrability conditions and involution

Definition

Given a system S of PDEs of order q, its differential consequence of order $\leq q$ is called integrability condition to S.

All integrability conditions are detected and incorporated into the differential system by its completion to involution (Seiler'10).

In general, a nonlinear differential system does not admit its algorithmic completion to involution. Instead, one can decompose it (Thomas decomposition) fully algorithmically into finitely many involutive subsystems with disjoint set of solutions (Bächler, Gerdt, Lange-Hegermann, Robertz'12).

For a linear input system the algorithm performs its completion to involution without splitting.

Ranking of partial derivatives

The output of a Thomas decomposition algorithm is determined by an input differential system and by a ranking of partial derivatives

Definition

A total ordering \prec on the set of partial derivatives is a ranking if for all indices a, b, μ, ν, ρ and multi-indices α, β .

•
$$\partial_{\mu}\varphi^{a} \succ \varphi^{a}$$

• $\partial_{\mu}\varphi^{a} \succ \partial_{\nu}\varphi^{b} \iff \partial_{\rho}\partial_{\mu}\varphi^{a} \succ \partial_{\rho}\partial_{\nu}\varphi^{b}$
If $\alpha \succ \beta \Longrightarrow \partial_{\alpha}\varphi^{a} \succ \partial_{\beta}\varphi^{b}$ the ranking is orderly.
If $a \succ b \Longrightarrow \partial_{\alpha}\varphi^{a} \succ \partial_{\beta}\varphi^{b}$ the ranking is elimination.

Differential systems

Definition

Let $S^{=}$ and S^{\neq} be finite sets of differential polynomials such that $S^{=} \neq \emptyset$ and contains equations

 $(\forall s \in S^{=}) [s=0]$

whereas S^{\neq} contains inequations

$$(\forall s \in S^{\neq}) \ [s \neq 0]$$

Then the pair $(S^{=}, S^{\neq})$ of sets $S^{=}$ and S^{\neq} is differential system.

Denote by $\mathfrak{Sol}(S^{=}/S^{\neq})$ the set of common solutions to $\{s = 0 \mid s \in S^{=}\}$ that do not annihilate $s \in S^{\neq}$.

V.P.GERDT Joint Institute for Nuclear Research, Hidden Lagrangian constraints and differential Thomas decomp

- 「同下」 (日下) (日下) 日

Algebraically simple systems

Definition

A differential system $S = (S^{=}, S^{\neq})$ is said to be algebraically simple (with respect to \succ), if the following three conditions are satisfied, where $S_{\prec v}$ is the subsystem of S consisting of those equations and inequations whose leader is ranked lower than the variable v.

- All $p_i \in S^=$ and all $q_j \in S^{\neq}$ are non-constant polynomials.
- ② The leaders of all $p_i = 0$ and $q_j \neq 0$ are pairwise distinct.
- If v is the leader of p_i = 0 or q_j ≠ 0, then neither the initial nor the discriminant of that equation or inequation has a solution (over the complex numbers) in common with the subsystem S_{≺v}.

Differentially simple systems

Definition

A differential system $S = (S^{=}, S^{\neq})$ is said to be (differentially) simple (with respect to \succ), if the following three conditions are satisfied.

- **①** The system S is algebraically simple (with respect to \succ).
- **2** $S^{=}$ is involutive and minimal (as involutive basis of the ideal it generates).
- The left hand side of every inequation q_j ∈ S[≠] is reduced modulo the left hand sides of the equations in S⁼, in the sense that no pseudo-division of q_j ∈ S[≠] modulo any p_i ∈ S⁼ is possible.

V.P.GERDT Joint Institute for Nuclear Research, Hidden Lagrangian constraints and differential Thomas decomp

Decomposition into differentially simple subsystems

Theorem (Thomas' decomposition)

Any differential system $(S^{=}, S^{\neq})$ can be decomposed into a finite set of simple subsystems $(S_i^{=}, S_i^{\neq})$ with disjoint set of solutions

$$(S^{=}, S^{\neq}) \Longrightarrow \bigcup_{i} (S^{=}_{i}, S^{\neq}_{i}), \qquad \mathfrak{Sol}(S^{=}, S^{\neq}) = \biguplus_{i} \mathfrak{Sol}(S^{=}_{i}, S^{\neq}_{i})$$

To compute Lagrangian constraints we choose the orderly ∂_t -elimination ranking \succ s.t. for all *a*, *b* and nonnegative integers i_k (k = 1, 2, 3)

$$\partial_t \varphi^a \succ \frac{\partial^{i_1+i_2+i_3}}{\partial^{i_1}_{x_1}\partial^{i_2}_{x_2}\partial^{i_3}_{x_3}} \varphi^b$$

V.P.GERDT Joint Institute for Nuclear Research, Hidden Lagrangian constraints and differential Thomas decomp

Computation of Lagrangian constraints: algorithm

$$S \Longrightarrow \bigcup_i (S_i^=/S_i^{\neq})$$

• From each $S_i^{=}$ extract the set C_i of Lagrangean constraints

$$C_i := \{ s \in S_i^= \mid \operatorname{ld}(s) \prec \partial_t^2 \psi \}$$

• Output: $\bigcup_i (C_i/S_i^{\neq})$

V.P.GERDT Joint Institute for Nuclear Research, Hidden Lagrangian constraints and differential Thomas decomp

Pros and cons

• Pros

- $\sqrt{}$ The procedure is fully algorithmic.
- $\sqrt{}$ The rank dependence of Hessian on $(\varphi, \partial \varphi)$ or (q, \dot{q}) is automatically taken into account.
- $\sqrt{}$ Algebraic independence of the output constraints.
- √ Thomas decomposition algorithm has been implemented in MAPLE and the code is available on the Web page http://wwwb.math.rwthaachen.de/thomasdecomposition/index.php
- $\checkmark\,$ Each output subsystem algorithmically admits well-posedness of Cauchy problem.

Cons

 $\sqrt{}$ Thomas decomposition for ∂_t -elimination ranking computationally may be very costly.

・ロン ・回 と ・ ヨ と ・ ヨ と

(1+1)-dimensional chiral Schwinger model (Das,Ghosh'2009) I

$$\mathcal{L} = \frac{1}{2} (\partial_t A_0 - \partial_x A_1)^2 + \frac{1}{2} (\partial_t \phi)^2 - \frac{1}{2} (\partial_1 \phi)^2 + e (\partial_t \phi) A_0 + e \phi (\partial_t A_1) \\ + e (\partial_1 \phi) (A_0 - A_1) + \frac{1}{2} a e^2 (A_0^2 - A_1^2).$$

Here, *e*, *a* are parameters, *t*, *x* are independent variables and $\varphi^1 = A_0$, $\varphi^2 = A_1$, $\varphi^3 = \phi$ are dependent variables. The Euler-Lagrange equations:

$$\begin{cases} \frac{\partial_t^2 A_0}{\partial_t \partial_x A_0} - e\left(\partial_t \phi + \partial_x \phi\right) - a e^2 A_0 &= 0, \\ \frac{\partial_t \partial_x A_0}{\partial_t \partial_x A_0} - e\left(\partial_t \phi + \partial_x \phi\right) - \partial_x^2 A_1 - a e^2 A_1 &= 0, \\ \frac{\partial_t^2 \phi}{\partial_t \phi} + e\left(\partial_t A_0 - \partial_t A_1\right) - \partial_x^2 \phi + e\left(\partial_x A_0 - \partial_x A_1\right) &= 0. \end{cases}$$

V.P.GERDT Joint Institute for Nuclear Research, Hidden Lagrangian constraints and differential Thomas decomp

|▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ○ の Q ()

(1+1)-dimensional chiral Schwinger model (Das,Ghosh'2009) II

Hessian H = diag(1, 0, 1). Hence, the model is singular. We choose the following ranking:

$$w \prec v \prec u \prec w_x \prec v_x \prec u_x \prec w_{x,x} \prec \ldots \prec w_t \prec v_t \prec u_t$$
$$\prec w_{t,x} \prec v_{t,x} \prec u_{t,x} \prec w_{t,x,x} \prec \ldots$$

The Euler-Lagrange equations are linear. In this case Thomas' decomposition just complete them to involution without splitting:

$$(1 - a) \partial_t A_0 + (1 + a) \partial_x A_0 - \partial_t A_1 - \partial_x A_1 = 0,$$

$$(1 + a) (\partial_t^2 A_1 - \partial_x^2 A_0) - 2e(1 + a) (\partial_t \phi + \partial_x \phi) - ae^2 (A_0 + A_1) - a^2 e^2 A_1 = 0,$$

$$(a + 1) (\partial_t \partial_x A_1 - \partial_x^2 A_0) - e (\partial_t \phi + \partial_x \phi) + a e^2 A_1 = 0,$$

$$\partial_t^2 \phi - \partial_x^2 \phi - e a (\partial_t A_1 - \partial_x A_0) = 0.$$

The first equation is a Lagrangian constraints.

Dynamical system (Deriglazov'2010, Eq.8.1) I

$$L = q_2^2 (q_1)_t^2 + q_1^2 (q_2)_t^2 + 2 q_1 q_2 (q_1)_t (q_2)_t + q_1^2 + q_2^2$$

We choose the ranking \succ such that

$$q_2 \prec q_1 \prec (q_2)_t \prec (q_1)_t \prec (q_2)_{t,t} \prec (q_1)_{t,t} \prec \ldots$$

Euler-Lagrange equations (with underlined leaders) are

$$\begin{cases} 4 q_2 (q_2)_t (q_1)_t + 2 q_2^2 (q_1)_{t,t} + 2 q_1 q_2 (q_2)_{t,t} - 2 q_1 = 0 \\ 4 q_1 (q_2)_t (q_1)_t + 2 q_1^2 (q_2)_{t,t} + 2 q_1 q_2 (q_1)_{t,t} - 2 q_2 = 0 \end{cases}$$

and Hessian

$$H^{(1)} = \begin{pmatrix} 2 q_2^2 & 2 q_1 q_2 \\ 2 q_1 q_2 & 2 q_1^2 \end{pmatrix}$$

•

Dynamical system (Deriglazov'2010, Eq.8.1) II

Thomas' decomposition produces 3 differentially simple system

$$(T_1) \begin{cases} 2 q_2 (q_2)_{t,t} + 2 (q_2)_t^2 - 1 = 0, \\ q_1 - q_2 = 0, \\ q_2 \neq 0 \end{cases}$$

$$(T_2) \begin{cases} 2 q_2 (q_2)_{t,t} + 2 (q_2)_t^2 - 1 = 0, \\ \mathbf{q_1} + \mathbf{q_2} = \mathbf{0}, \\ q_2 \neq 0 \end{cases}$$

$$(T_2) \left\{ \begin{array}{rrr} q_1 &=& 0, \\ q_2 &=& 0. \end{array} \right.$$

The local Lagrangian constraints in the simple systems (T_1) and (T_2) can be combined in a single global constraint $q_1^2 - q_2^2 = 0$.

References

- A.Wipf (1994). Hamilton's formalism for systems with constraints. Lecture Notes in Physics, Vol. 434, pp. 22-58. arXiv:hep-th/9312078
- W.M.Seiler (2010). Involution. The Formal Theory of Differential Equations and its Applications in Computer Algebra. Algorithms and Computation in Mathematics, Vol. 24, Springer, Heidelberg.
- T.Bächler, M.Lange-Hegermann, V.Gerdt and D.Robertz (2012). Algorithmic Thomas decomposition of algebraic and differential systems. Journal of Symbolic Computation, Vol. 47, 1233–1266. arXiv:math.AC/1108.0817
- D.Robertz (2014). Formal Algorithmic Elimination for PDEs. Lecture Notes in Mathematics, Vol. 2121, Springer, Cham.
- D.Das and S,Ghosh (2009). Spectral discontinuities in constrained dynamical models. Journal of Physics A: Matematical and General, Vol. 42, No. 3, 3541 (12pp.) arXiv:math-ph/0812.3512
- A.Deriglazov (2010). Classical mechanics, Hamiltonian and Lagrangian formalism, Springer, Heidelberg.