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Constrained dynamics

Local symmetry

All fundamental models in physics (QED, QCD, YM, SM, GR,
SUSY, ST,...) are invariant under some local symmetry
transformations: gauge (QED, QCD, YM, SM); local
supersymmetry (SUSY); space-time diffeomorphisms (GR,ST).

√
Such models are called constrained models or singular models.√
Local symmetry relates different solutions stemming from the
same IC (position and velocity).√
General solution contains arbitrary time-dependent functions.√
A continuous set of accelerations belongs to the same IC.√
All accelerations correspond to a subset of IC defined by
(hidden) Lagrangian constraints.√
Q.: How to compute them?

V.P.Gerdt Joint Institute for Nuclear Research, 141980 Dubna, Russia[0.2cm] D.Robertz Centre for Mathematical Sciences, Plymouth University, Plymouth PL4 8AA, United KingdomHidden Lagrangian constraints and differential Thomas decomposition



Introduction Computation of Lagrangian constraints: standard approach Constraints as integrability conditions Approach based on Thomas decomposition Examples References

Euler-Lagrange equations

All fundamental laws are understood in terms of action and
Hamilton’s principle.

Physics (field theories):

S =

∫
dt

∫
d3xL(ϕa, ∂xiϕ

a, ϕ̇a)⇒ ∂µ
∂L

∂(∂µϕa)
− ∂L
∂ϕa

= 0, ∂0ϕ
a ≡ ϕ̇a

Mechanics: (dynamical systems)

S =

∫
dt L(qa, q̇a) =⇒ d

dt

(
∂L

∂q̇a

)
− ∂L

∂qa
= 0,

Lagrangian density L and Lagrangian L are (typically) differential
polynomials.
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Singular models

Lagrangian is (singular) regular if Hessian Hi ,j is (not)invertible

Hi ,j =


∂2L

∂q̇i ∂q̇j
(Dynamical System)

∂2L
∂ϕ̇i ∂ϕ̇j

(Field Theoretic Model)

In terms of Hessian the set E of Euler-Lagrange equations reads

E := { ei = 0 | i = 1, . . . ,m } ,

ei :=

{
Hi ,j q̈

j + Pi (Dynamical System)

Hi ,j ϕ̈
j + Pi (Field Theoretic Model)

Hi ,j and Pi are differential polynomials of order ≤ 1.
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Standard computation via linear algebra (Wipf’1994)

Step 1. Compute Hessian H, derive the set E of Euler-Lagrange
equations of cardinality m := |E | and put C := { } .

Step 2. Compute the rank r of the Hessian taking into account
equations in E .

Step 3. If r = m, then go to Step 6. Otherwise, go to the next step.

Step 4. Compute a basis V of the nullspace of H, set up

C := {PiV
i
α | α = 1, . . . , |V | }

and enlarge the equation set

E := E ∪ { c = 0 | c ∈ C \ {0} }.

Step 5. Set m := r and go to Step 2.

Step 6. Return C .
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Pros and cons

Pros
√

Application of computationally efficient linear algebra based
methods to test singularity and to construct constraints.√
Linear independence of constraints.

Cons√
The approach is not completely algorithmic. In particular,

It fails to account for the dependence of Hessian rank on area
in the space (ϕ, ∂ϕ) or (q, q̇).
Algebraic completion of constraints needs reduction modulo
radical ideal they generate that is very expensive
computationally.
The output set C of constraints has to be further processed to
extract the set of algebraically independent Lagrangian
constraints.

√
Full or even partial implementation is unknown.
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Integrability conditions and involution

Definition

Given a system S of PDEs of order q, its differential consequence
of order ≤ q is called integrability condition to S .

All integrability conditions are detected and incorporated into the
differential system by its completion to involution (Seiler’10).

In general, a nonlinear differential system does not admit its
algorithmic completion to involution. Instead, one can decompose
it (Thomas decomposition) fully algorithmically into finitely many
involutive subsystems with disjoint set of solutions (Bächler, Gerdt,
Lange-Hegermann, Robertz’12).

For a linear input system the algorithm performs its completion to
involution without splitting.
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Ranking of partial derivatives

The output of a Thomas decomposition algorithm is determined by
an input differential system and by a ranking of partial derivatives

Definition

A total ordering ≺ on the set of partial derivatives is a ranking if
for all indices a, b, µ, ν, ρ and multi-indices α,β.

1 ∂µϕ
a � ϕa

2 ∂µϕ
a � ∂νϕb ⇐⇒ ∂ρ∂µϕ

a � ∂ρ∂νϕb

If α � β =⇒ ∂αϕ
a � ∂βϕb the ranking is orderly.

If a � b =⇒ ∂αϕ
a � ∂βϕb the ranking is elimination.
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Differential systems

Definition

Let S= and S 6= be finite sets of differential polynomials such that
S= 6= ∅ and contains equations

(∀s ∈ S= ) [ s = 0 ]

whereas S 6= contains inequations

(∀s ∈ S 6= ) [ s 6= 0 ]

Then the pair
(
S=,S 6=

)
of sets S= and S 6= is differential system.

Denote by Sol(S=/S 6=) the set of common solutions to
{ s = 0 | s ∈ S=} that do not annihilate s ∈ S 6=.
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Algebraically simple systems

Definition

A differential system S =
(
S=,S 6=

)
is said to be algebraically

simple (with respect to �), if the following three conditions are
satisfied, where S≺v is the subsystem of S consisting of those
equations and inequations whose leader is ranked lower than the
variable v .

1 All pi ∈ S= and all qj ∈ S 6= are non-constant polynomials.

2 The leaders of all pi = 0 and qj 6= 0 are pairwise distinct.

3 If v is the leader of pi = 0 or qj 6= 0, then neither the initial
nor the discriminant of that equation or inequation has a
solution (over the complex numbers) in common with the
subsystem S≺v .
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Differentially simple systems

Definition

A differential system S =
(
S=,S 6=

)
is said to be (differentially)

simple (with respect to �), if the following three conditions are
satisfied.

1 The system S is algebraically simple (with respect to �).

2 S= is involutive and minimal (as involutive basis of the ideal it
generates).

3 The left hand side of every inequation qj ∈ S 6= is reduced
modulo the left hand sides of the equations in S=, in the
sense that no pseudo-division of qj ∈ S 6= modulo any pi ∈ S=

is possible.

V.P.Gerdt Joint Institute for Nuclear Research, 141980 Dubna, Russia[0.2cm] D.Robertz Centre for Mathematical Sciences, Plymouth University, Plymouth PL4 8AA, United KingdomHidden Lagrangian constraints and differential Thomas decomposition



Introduction Computation of Lagrangian constraints: standard approach Constraints as integrability conditions Approach based on Thomas decomposition Examples References

Decomposition into differentially simple subsystems

Theorem (Thomas’ decomposition)

Any differential system
(
S=,S 6=

)
can be decomposed into a finite

set of simple subsystems
(
S=
i , S

6=
i

)
with disjoint set of solutions

(S=, S 6=) =⇒
⋃
i

(S=
i , S

6=
i ) , Sol (S=,S 6=) =

⊎
i

Sol (S=
i ,S

6=
i )

To compute Lagrangian constraints we choose the orderly
∂t-elimination ranking � s.t. for all a, b and nonnegative integers
ik (k = 1, 2, 3)

∂tϕ
a � ∂ i1+i2+i3

∂ i1x1∂
i2
x2∂

i3
x3

ϕb

V.P.Gerdt Joint Institute for Nuclear Research, 141980 Dubna, Russia[0.2cm] D.Robertz Centre for Mathematical Sciences, Plymouth University, Plymouth PL4 8AA, United KingdomHidden Lagrangian constraints and differential Thomas decomposition



Introduction Computation of Lagrangian constraints: standard approach Constraints as integrability conditions Approach based on Thomas decomposition Examples References

Computation of Lagrangian constraints: algorithm

1 Input:


system S of Euler-Lagrange equations
∂t − elimination ranking �
ψ := min�{ϕa | a ∈ {1, . . . ,m}}

2 Compute Thomas decomposition

S =⇒
⋃
i

(S=
i /S

6=
i )

3 From each S=
i extract the set Ci of Lagrangean constraints

Ci := {s ∈ S=
i | ld(s) ≺ ∂2t ψ}

4 Output:
⋃
i

(Ci/S
6=
i )
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Pros and cons

Pros
√

The procedure is fully algorithmic.√
The rank dependence of Hessian on (ϕ, ∂ϕ) or (q, q̇) is
automatically taken into account.√
Algebraic independence of the output constraints.√
Thomas decomposition algorithm has been implemented in
Maple and the code is available on the Web page
http://wwwb.math.rwth-
aachen.de/thomasdecomposition/index.php√
Each output subsystem algorithmically admits well-posedness
of Cauchy problem.

Cons
√

Thomas decomposition for ∂t−elimination ranking
computationally may be very costly.
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(1+1)-dimensional chiral Schwinger model
(Das,Ghosh’2009) I

L =
1

2
(∂tA0 − ∂xA1)2 +

1

2
(∂tφ)2 − 1

2
(∂1φ)2 + e (∂tφ)A0 + e φ(∂t A1)

+ e (∂1φ) (A0 − A1) +
1

2
a e2 (A2

0 − A2
1) .

Here, e, a are parameters, t, x are independent variables and ϕ1 = A0,
ϕ2 = A1, ϕ3 = φ are dependent variables. The Euler-Lagrange equations:

∂2t A0 − ∂t∂xA1 − e (∂tφ+ ∂xφ)− a e2 A0 = 0 ,

∂t∂xA0 − e (∂tφ+ ∂xφ)− ∂2xA1 − a e2 A1 = 0 ,

∂2t φ+ e (∂tA0 − ∂tA1)− ∂2xφ+ e (∂xA0 − ∂xA1) = 0 .
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(1+1)-dimensional chiral Schwinger model
(Das,Ghosh’2009) II

Hessian H = diag(1, 0, 1). Hence, the model is singular. We
choose the following ranking:

w ≺ v ≺ u ≺ wx ≺ vx ≺ ux ≺ wx ,x ≺ . . . ≺ wt ≺ vt ≺ ut

≺ wt,x ≺ vt,x ≺ ut,x ≺ wt,x ,x ≺ . . .
The Euler-Lagrange equations are linear. In this case Thomas’
decomposition just complete them to involution without splitting:

(1 − a) ∂tA0 + (1 + a) ∂xA0 − ∂tA1 − ∂xA1=0 ,

(1 + a) (∂2t A1 − ∂2xA0)− 2e(1 + a)(∂tφ+ ∂xφ)− ae2(A0 + A1)− a2e2A1 = 0 ,

(a + 1)(∂t∂xA1 − ∂2xA0)− e (∂tφ+ ∂xφ) + a e2 A1 = 0 ,

∂2t φ− ∂2xφ− e a (∂tA1 − ∂xA0) = 0 .

The first equation is a Lagrangian constraints.
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Dynamical system (Deriglazov’2010, Eq.8.1) I

L = q22 (q1)2t + q21 (q2)2t + 2 q1 q2 (q1)t (q2)t + q21 + q22

We choose the ranking � such that

q2 ≺ q1 ≺ (q2)t ≺ (q1)t ≺ (q2)t,t ≺ (q1)t,t ≺ . . .

Euler-Lagrange equations (with underlined leaders) are{
4 q2 (q2)t (q1)t + 2 q22 (q1)t,t + 2 q1 q2 (q2)t,t − 2 q1 = 0

4 q1 (q2)t (q1)t + 2 q21 (q2)t,t + 2 q1 q2 (q1)t,t − 2 q2 = 0

and Hessian

H(1) =

(
2 q22 2 q1 q2

2 q1 q2 2 q21

)
.
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Dynamical system (Deriglazov’2010, Eq.8.1) II

Thomas’ decomposition produces 3 differentially simple system

(T1)


2 q2 (q2)t,t + 2 (q2)2t − 1 = 0,

q1 − q2 = 0,

q2 6= 0

(T2)


2 q2 (q2)t,t + 2 (q2)2t − 1 = 0,

q1 + q2 = 0,

q2 6= 0

(T2)

{
q1 = 0,

q2 = 0.

The local Lagrangian constraints in the simple systems (T1) and
(T2) can be combined in a single global constraint q2

1 − q
2
2 = 0 .
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