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Context 
Bethe-Salpeter equation:  
non perturbative regime in NN, NNN..., hadron structure, Graphene, 2D materials...; 
 
Solutions for bound-states in Euclidean space:  
with free propagators (Dorkin et al. FBS49, 233 (2011)), 3D reduction (Gross & Stadler, 
FBS49, 91 (2011)),  Dyson-Schwinger and BSE - QCD -(Roberts, Prog. Part. Nucl. 
Phys. 61, 50 (2008)), Dorkin, Kaptari, Kampfer, PRC91, 055201 (2015)…  
 
Minkowski space -Light-Front projection & expansion of the BSE kernel:  
Weinberg (1966)… Ji, Brodsky, Lepage, Karmanov, Carbonell, Mathiot, Miller, Sales… 
 
LF methods: reduction to the valence state dynamics  & truncation over Fock-
states within the kernel: "LF projection with a Quasi-Potential Approach" (Sales et al. 
PRC 61, 044003 (2000), PRC63, 064003 (2001),…Frederico & Salmè, FBS49, 163 
(2011)), Garsevanishvili et al.  Phys. Rep. 458 (2008) 247 
 
 "Iterated resolvent method" within hamiltonian approach - H-C Pauli  
-  Brodsky, Pauli, Pinsky, PhysRep301, 299 (1998)  - 
-   Revival with AdS/QCD models - de Teramond & Brodsky. 



Context Graphene 2D 

Castro Neto, Guinea, Peres, Novoselov, Geim, Rev. Mod. Phys. 81, 109 (2009) 



Perturbation Theory Integral Representation (PTIR) 
 
Nakanishi PTIR: ”Parametric representation of 
any Feynman diagram for interacting bosons, with a denominator 
carrying the overall analytic behavior in Minkowski space.” (PR 127, 
1380 (1962); PR 130, 1230 (1963); PR 133, B214 (1964); PR 135, 
B1224 (1964).) 
 
Uniqueness theorem for the PTIR multi-leg transition amplitudes for 
bosonic systems - ”Graph Theory and Feynman Integrals” (Gordon and 
Breach, NY, 1971). 
Solution of the Bethe-Salpeter equation in Minkowski space  
with Nakanishi PTIR for bound-state bosons: 
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Frederico, W. de Paula, I. Bediaga, C.M. Maekawa,
G. R. S. Zarnauskas, and A. C. dos Reis, Phys. Rev. D
84, 094001 (2011).

[22] G. F. Giudice, R. Rattazzi, and J. D. Wells, Nucl. Phys.
B630, 293 (2002).

[23] J. Carbonell, B. Desplanques, V. A. Karmanov, and J. F.
Mathiot, Phys. Rep. 300, 215 (1998).

[24] J. H. O. Sales, T. Frederico, B.V. Carlson, and P. U. Sauer,
Phys. Rev. C 61, 044003 (2000).

[25] J. H. O. Sales, T. Frederico, B.V. Carlson, and P. U. Sauer,
Phys. Rev. C 63, 064003 (2001).

[26] T. Frederico, J. H. O. Sales, B.V. Carlson, and P. U. Sauer,
Nucl. Phys. A737, 260 (2004).

[27] J. A. O. Marinho, T. Frederico, and P. U. Sauer, Phys. Rev.
D 76, 096001 (2007).

[28] J. A. O. Marinho, T. Frederico, E. Pace, G. Salme, and
P. U. Sauer, Phys. Rev. D 77, 116010 (2008).

[29] T. Frederico and G. Salmè, Few-Body Syst. 49, 163
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Context 
Solution of the Bethe-Salpeter equation in Minkowski space:  
 
With Nakanishi PTIR for bound-state bosons: 
 
PTIR & LF projection  bound state of bosons and fermions:  
Karmanov & Carbonell, EPJ A 27, 1 (2006); & 11 (2006) (X-ladder);  
39 (2009) 53 (EMFF); 46 (2010) 387 (2F), 
 
PTIR & LF projection bound and scattering states Bosons + uniqueness: 
Frederico, Salmè, Viviani, PRD 85, 036009 (2012); PRD89, 016010 (2014); 
arXiv:1504.01624 [hep-ph] 
 
Direct Solution in Minkowski space for bound and scattering states: 
Carbonell & Karmanov, bs: PLB727 (2013)319, scatt: PRD90 (2014) 056002,  
Transition ff: PRD91 (2015) 076010 
 
  
 
  
 
 
 



Nakanishi method for bound states 

WðpÞ ¼ VðpÞ þ VðpÞ!0ðpÞWðpÞ

¼ VðpÞ
X1

N¼0

½!0ðpÞVðpÞ&N; (38)

where the !0ðpÞ insertions bring information on the inter-
mediate particle propagations. A corresponding analysis
can be performed for the LF effective interactionwðpÞ, and
it is physically quite transparent, since it can be carried out
within a LF-time ordered framework. In particular, wðpÞ
contains all possible LF-time ordered exchanges, corre-
sponding to a sum over diagrams with any number of
intermediate particles: this happens even for the ladder
BSE. It should be pointed out that the ladder approxima-
tion of the LF eigenequation, Eq. (29), where wðpÞ is
approximated by the first term in the power expansion in
Eq. (38), does not account for the full complexity of the 4D
ladder BSE. The physical reason lies in the fact that the
iterations of the 4D ladder kernel and the 3D LF ladder
kernel (time-ordered graphs) generate different intermedi-
ate states. The LF ladder kernel and its iterations contain
only one exchanged particle (at a given global LF-time) in
the intermediate state, whereas the iterations of the ladder
4D kernel contain also many-body states, with increasing
number of exchanged particles (stretched boxes, see e.g.
[36]). This leads to a difference in the binding energies,
which is however small [24,37,38]. In principle, for any 4D
kernel given by a finite set of irreducible graphs, both BS
(27) and LF equation, Eq. (29), gives the same eigenvalue,
once wðpÞ comes from the solution of (38).

In the Quasi-potential framework the interacting LF
reverse projection operator (see Ref. [28])

"ðpÞ ¼ ½1þ!0ðpÞWðpÞ&"0ðpÞ (39)

leads to the following relations between the 3D valence
component and the 4D BS amplitude

j#i ¼ "ðpÞj!LFi (40)

‘ # j#i ¼ j!LFi: (41)

The 3D valence wave-function, !LF, has been already
introduced in Eq. (25). The analogous relations for the
free case read

j#0i ¼ "0ðpÞjc 0i (42)

‘ # j#0i ¼ jc 0i: (43)

It turns out that the full complexity of the Fock space in
the 4D BS amplitude appears, not only through the effec-
tive interaction that determines the valence wave function,
but also through the interacting reverse projection operator,
"ðpÞ.
Finally, let us remind the 3D integral equations that

follow from the eigenequation (29), for both the bound
and the scattering states, viz

!b
LFð";k?Þ ¼ hkþ;k?jg0ðpÞwðpÞj!b

LFi;

!ðþÞ
LF ð";k?Þ ¼ hkþ;k?j1þ gðpÞwðpÞjc 0i;

(44)

with g'1
0 ðpÞjc 0i ¼ 0.

III. INTEGRAL EQUATION FOR THE NAKANISHI
WEIGHT FUNCTION FOR BOUND AND

SCATTERING STATES

In this section, we illustrate how to obtain an integral
equation for the Nakanishi weight functions for scattering
states, starting from a BS equation for a system composed
by two massive scalars, exchanging a scalar particle. The
kernel is composed by the infinite sum of two-particle
irreducible diagrams [35,39], and the self-energy contribu-
tion to the massive two-particle propagation are discarded,
at the present stage.
In order to have a suitable introduction to the scattering

case, we first briefly discuss the S-wave bound-state case,
within our LF approach. The same integral equation for the
Nakanishi weight function has been devised by Carbonell
and Karmanov [11,12], but within the explicitly covariant
LF approach [23].

A. The bound states

In this subsection the S-wave bound-state integral equa-
tion for determining the Nakanishi weight function is
presented by using the LF language introduced in the
previous section (namely a non explicitly covariant formal-
ism). The BS amplitude is written in terms of the Nakanishi
PTIR [2,10,11], gbð#0; z0;$2Þ, as follows

$bðk; pÞ ¼ 'i
Z 1

'1
dz0

Z 1

0
d#0 gbð#0; z0;$2Þ

½#0 þm2 ' 1
4p

2 ' k2 ' p ( kz0 ' i%&2þn

¼ ið'1Þn
Z 1

'1
dz0

Z 1

0
d#0 gbð#0; z0;$2Þ

½k2 þ p ( kz0 ' #0 ' $2 þ i%&2þn (45)

where p2 ¼ M2 is the invariant mass of the interacting system and
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•  Uniqueness of the weight function: perturbation theory 

Solution of the bound state for bosons (ladder): 

•  Sophisticated algebraic manipulations. 

•  Simplification with Light-Front projection: 
       Karmanov, Carbonell, Eur. Phys. J. A 27, 1 (2006) 

 
•  Scattering: Frederico, Salme ̀, Viviani, Phys. Rev. D 85, 036009 (2012) 

CAPÍTULO 2. MOTIVAÇÃO E FUNDAMENTOS 28

2.4 A representação de Nakanishi

Na seção 2.3 utilizamos as regras de Feynman no espaço de configurações para cons-

truir a EBS, e então tomamos a transformada de Fourier para construir a EBS no espaço

dos momentos. Nesta seção, utilizaremos desde o início a representação gráfica e suas

respectivas regras de Feynman no espaço dos momentos para construirmos a EBS. Uti-

lizaremos o conceito de equação para o vértice, e a partir de um dado caso particular

construiremos a ideia da representação de Nakanishi para a amplitude de BS. As regras

de Feynman, em 2+1 dimensões, para o estado ligado de dois bósons escalares são:

• propagadores: i
p2−m2 ;

• conservação de energia-momento nos vértices: (2π)3δ(p1 + p2 + ...+ pn);

• Integração sobre todos os momentos internos: d3k
(2π)3 .

Chamamos de vértice Γ, o objeto representado graficamente por A representação gráfica

FIGURA 2.10 – Vértice

para a EBS é dada por Utilizando as regras de Feynman temos a seguinte EBS para o

vértice
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FIGURA 2.11 – EBS para o estado ligado

No caso específico onde a conservação de momento-energia é dada pelas relações
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2
+ k (2.47)
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p

2
− k′, (2.48)
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. (2.49)

A relação entre a amplitude de BS e o vértice é dada por
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exatamente a equação (2.45).
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inferior 0 inserindo a função de Heaviside:

= (n+ 2)

∫ +1

−1

dz

∫ ∞

0

dγ′′gn(γ
′′, z)

∫ ∞

0

dγ
θ(γ − γ′′)

(γ + A)n+1
(A.3)

que finalmente pode ser escrita da mesma forma como a integral original

=
1

n

∫ +1
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dz

∫ ∞

0

dγ

∫ γ

0 dγ′′gn(γ′′, z)

(γ + A)n+3

=

∫ +1
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dz

∫ ∞

0

dγ
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(γ + A)n+3
. (A.4)

Assim, usando a unicidade da RIPT de Nakanishi, a sseguinte relação de recorrência

entre as funções do numerador é obtida:

gn+1(γ, z) = (n + 2)

∫ γ

0

dγ′gn(γ
′, z). (A.5)

Esta identidade pode ser escrita na forma diferencial como

∂

∂γ
gn+1(γ, z) = (n + 2)gn(γ, z). (A.6)

Talvez seja desnecessário dizer, que esta derivação assume, além das limitações citadas

acima, que as funções gn(γ, z) são bem comportadas em γ = 0 e no limite γ → ∞.



Light-Front Time Evolution 

~!ðx; pÞ ¼
Z d4k

ð2!Þ4 e
ik$x!ðk; pÞ (19)

where

p" ¼ p"
1 þ p"

2 k" ¼ p"
1 & p"

2

2
(20)

with p2
i ! m2 (see Eq. (1)). The amplitude!ðk; pÞ satisfies

the homogeneous, (4), or the inhomogeneous, (1), BS
equation depending if one is considering bound or scatter-
ing states.
For X" ¼ 0, one has

~!ðx; pÞ ¼ h0jTf’Hðx"=2Þ’Hð&x"=2Þgjpi
¼ #ðxþÞh0j’ð~x=2Þe&iP&xþ=2’ð&~x=2Þjpieip&xþ=4 þ #ð&xþÞh0j’ð&~x=2ÞeiP&xþ=2’ð~x=2Þjpie&ip&xþ=4

¼ #ðxþÞ
X

n;n0
eip

&xþ=4h0j’ð~x=2Þjn0ihn0je&iP&xþ=2jnihnj’ð&~x=2Þjpiþ #ð&xþÞ

'
X

n;n0
e&ip&xþ=4h0j’ð&~x=2Þjn0ihn0jeiP&xþ=2jnihnj’ð~x=2Þjpi (21)

where jni and jn0i are states of the Fock basis used in
Eq. (11). It is easily realized that the matrix elements
hn0je&iP&xþ=2jni are not diagonal in the Fock space, apart
the case xþ ¼ 0, since the operator P& contains the inter-
action in its full glory. Therefore, all the Fock components
are acting in BS amplitude of the composite system.

C. The BS amplitude and the valence wave-function

The interesting case xþ ¼ 0 leads straightforwardly to
the relation between the valence component, c n¼2=p, and
the BS amplitude (see also [23]). In particular, one has

lim
xþ!0þ

~!ðx; pÞ ¼ h0j’ð~x=2Þ’ð&~x=2Þjpi (22)

If we perform the 4D Fourier transform of the quantity
~!ðx; pÞ$ðxþÞ (i.e restricting the reduced amplitude
to the LF hypersurface, or equal LF-times case (xþ ¼
xþ1 & xþ2 ¼ 0)), one can extract the valence wave function
c n¼2=pð%;k?Þ. As a matter of fact, on one hand, one can
write

Z
d3~xe&i~q$~x ~!ð~x; xþ ¼ 0; pÞ

¼ 1

2

Z dk&

2!

Z d3 ~k

ð2!Þ3 !ðk; pÞ
Z

d3~xeið~k&~qÞ$~x

¼
Z 1

&1

dk&

2!
!ðk; pÞ: (23)

On the other hand, one has

Z
d3~xe&i~k$~x ~!ð~x;xþ¼0þ;pÞ¼

Z
d3~xe&i~k$~xh0j’ð~x=2Þ’ð&~x=2Þjpi

¼
Z d3 ~p1ffiffiffiffiffiffiffiffiffi

2pþ
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q
Z d3 ~p2ffiffiffiffiffiffiffiffiffi
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2

q 2$3

"
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2
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2pþð2!Þ3'$3ð~p& ~q1& ~q2Þ
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2qþ1

q ffiffiffiffiffiffiffiffiffi
2qþ2

q
ð2!Þ3h0jað~p1Það~p2Þayð~q1Þayð~q2Þj0i

¼ pþ ffiffiffi
2

p

ðp2þkÞþðp2&kÞþc n¼2=pð%;k?Þ (24)

Summarizing, the valence component is given by the
Fourier transform of ~!ð~x; xþ ¼ 0þ; pÞ, and it reads
(cf [23])

c n¼2=pð%;k?Þ ¼
pþ
ffiffiffi
2

p %ð1& %Þ
Z 1

&1

dk&

2!
!ðk; pÞ

¼ pþ
ffiffiffi
2

p %ð1& %Þ&LFð%;k?Þ (25)

where % ¼ %1 and we have introduced the notation
&LFð%;k?Þ for future purpose (see the next subsection).

The expression (25) can be considered as a first bridge
between the Fock state decomposition of a composite-
system state, Eq. (11), and the BS amplitude. In particular,
the integration over k& projects the BS amplitude !ðk; pÞ
onto the LF-hyper-plane, i.e. xþ ¼ 0, and it leads to the
valence wave-function.
The LF projection can be directly applied to both the

homogeneous and inhomogeneous BSE (see Refs. [11,12]
for the LF covariant approach for the bound state case). For
instance, from Eq. (4) one has for the bound state
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system state, Eq. (11), and the BS amplitude. In particular,
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onto the LF-hyper-plane, i.e. xþ ¼ 0, and it leads to the
valence wave-function.
The LF projection can be directly applied to both the

homogeneous and inhomogeneous BSE (see Refs. [11,12]
for the LF covariant approach for the bound state case). For
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between the Fock state decomposition of a composite-
system state, Eq. (11), and the BS amplitude. In particular,
the integration over k& projects the BS amplitude !ðk; pÞ
onto the LF-hyper-plane, i.e. xþ ¼ 0, and it leads to the
valence wave-function.
The LF projection can be directly applied to both the
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· · ·
· · ·

x

+ = 0 only valence state remains! How to rebuilt the full BS amplitude? 
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where the integration over k− leads to fix the value of the variable z0 in Eq. (3) to 1 − 2ξ. The factor 1=
ffiffiffi
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comes from the

normalization of the Fock state with n ¼ 2, given the statistics property.
From Eq. (16) and the physically motivated request that the density in the transverse variable b⊥, conjugated to k⊥, be

finite for jb⊥j ¼ 0, one can deduce that gbðγ0; 1 − 2ξ; κ2Þ must vanish for γ0 → ∞. As a matter of fact, one has
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If the transverse density at the origin, i.e.,
j ~ψn¼2=pðξ; b⊥ ¼ 0Þj2, is finite, one can immediately realize
the needed falloff of gbðγ0; 1 − 2ξ; κ2Þ. Notice that the
denominator is always positive for a bound state. By intro-
ducing the variables ðγ; zÞ, as in Ref. [6],

γ ¼ k2⊥ 1 ≥ z ¼ 1 − 2ξ ≥ −1; (19)

one can rewrite the valence wave function as follows:
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The announced integral equation for the Nakanishi
weight function gbðγ; z; κ2Þ is obtained by inserting
Eq. (3) in both sides of the LF-projected BS equation
(see, also, Refs. [19–23]), viz.,
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Then, one gets [18] (see Ref. [6] for the corresponding elab-
oration within the explicitly covariant LF framework)
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where the new kernel VLF
b , that we call the Nakanishi kernel

for the sake of brevity, is related to the BS kernel iK in
Eq. (1), as follows:
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Still starting from the LF-projected BSE (21), a different
equation for gbðγ; z; κ2Þ can be obtained, if one takes into
account (i) the uniqueness of the Nakanishi weight func-
tion, as ensured by a theorem in Ref. [12] and (ii) the
PTIR expressions for both the BS amplitude and the BS
kernel, i.e., a four-leg transition amplitude (see, e.g.,
Refs. [3,18] for the actual PTIR of the off-shell T matrix).
Then, in place of Eq. (22), one could write the following
eigenequation (see Refs. [2–5,18,27,28] for the ladder
case):
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(24)

Within the PTIR framework, it is very important to notice
that both Eqs. (22) and (24) are equivalent to the initial BSE
(1) if the uniqueness theorem holds. Once the weight func-
tion gbðγ0; z; κ2Þ is known, then one can fully reconstruct
in Minkowski space [see Eq. (3)] the BS amplitude that
belongs to the class of physically acceptable solutions
(with positive norm and suitable for an investigation within
an S-matrix framework). Moreover, it is not surprising that
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If the transverse density at the origin, i.e.,
j ~ψn¼2=pðξ; b⊥ ¼ 0Þj2, is finite, one can immediately realize
the needed falloff of gbðγ0; 1 − 2ξ; κ2Þ. Notice that the
denominator is always positive for a bound state. By intro-
ducing the variables ðγ; zÞ, as in Ref. [6],
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Still starting from the LF-projected BSE (21), a different
equation for gbðγ; z; κ2Þ can be obtained, if one takes into
account (i) the uniqueness of the Nakanishi weight func-
tion, as ensured by a theorem in Ref. [12] and (ii) the
PTIR expressions for both the BS amplitude and the BS
kernel, i.e., a four-leg transition amplitude (see, e.g.,
Refs. [3,18] for the actual PTIR of the off-shell T matrix).
Then, in place of Eq. (22), one could write the following
eigenequation (see Refs. [2–5,18,27,28] for the ladder
case):
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Within the PTIR framework, it is very important to notice
that both Eqs. (22) and (24) are equivalent to the initial BSE
(1) if the uniqueness theorem holds. Once the weight func-
tion gbðγ0; z; κ2Þ is known, then one can fully reconstruct
in Minkowski space [see Eq. (3)] the BS amplitude that
belongs to the class of physically acceptable solutions
(with positive norm and suitable for an investigation within
an S-matrix framework). Moreover, it is not surprising that
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j ~ψn¼2=pðξ; b⊥ ¼ 0Þj2, is finite, one can immediately realize
the needed falloff of gbðγ0; 1 − 2ξ; κ2Þ. Notice that the
denominator is always positive for a bound state. By intro-
ducing the variables ðγ; zÞ, as in Ref. [6],

γ ¼ k2⊥ 1 ≥ z ¼ 1 − 2ξ ≥ −1; (19)

one can rewrite the valence wave function as follows:

ψn¼2=pðz;γÞ ¼
ð1− z2Þ
4

ffiffiffi
2

p

×
Z

∞

0
dγ0

gbðγ0; z;κ2Þ
½γ0þ γþ z2m2þð1− z2Þκ2− iϵ&2

:

(20)

The announced integral equation for the Nakanishi
weight function gbðγ; z; κ2Þ is obtained by inserting
Eq. (3) in both sides of the LF-projected BS equation
(see, also, Refs. [19–23]), viz.,
Z

dk−

2π
Φbðk; pÞ ¼

Z
dk−

2π
Gð12Þ

0 ðk; pÞ

×
Z

d4k0

ð2πÞ4
iKðk; k0; pÞΦbðk0; pÞ: (21)

Then, one gets [18] (see Ref. [6] for the corresponding elab-
oration within the explicitly covariant LF framework)

Z
∞

0
dγ0

gbðγ0; z; κ2Þ
½γ0 þ γ þ z2m2 þ ð1 − z2Þκ2 − iϵ&2

¼
Z

∞

0
dγ0

Z
1

−1
dz0VLF

b ðγ; z; γ0; z0Þgbðγ0; z0; κ2Þ; (22)

where the new kernel VLF
b , that we call the Nakanishi kernel

for the sake of brevity, is related to the BS kernel iK in
Eq. (1), as follows:

VLF
b ðγ;z;γ0;z0Þ¼ ipþ

Z
∞

−∞
dk−

2π
Gð12Þ

0 ðk;pÞ

×
Z

d4k0

ð2πÞ4
iKðk;k0;pÞ

½k02þp ·k0z0− γ0− κ2þ iϵ&3
:

(23)

Still starting from the LF-projected BSE (21), a different
equation for gbðγ; z; κ2Þ can be obtained, if one takes into
account (i) the uniqueness of the Nakanishi weight func-
tion, as ensured by a theorem in Ref. [12] and (ii) the
PTIR expressions for both the BS amplitude and the BS
kernel, i.e., a four-leg transition amplitude (see, e.g.,
Refs. [3,18] for the actual PTIR of the off-shell T matrix).
Then, in place of Eq. (22), one could write the following
eigenequation (see Refs. [2–5,18,27,28] for the ladder
case):

gbðγ; z; κ2Þ ¼
Z

∞

0
dγ0

Z
1

−1
dz0Vbðγ; z; γ0; z0; κ2Þgbðγ0; z0; κ2Þ:

(24)

Within the PTIR framework, it is very important to notice
that both Eqs. (22) and (24) are equivalent to the initial BSE
(1) if the uniqueness theorem holds. Once the weight func-
tion gbðγ0; z; κ2Þ is known, then one can fully reconstruct
in Minkowski space [see Eq. (3)] the BS amplitude that
belongs to the class of physically acceptable solutions
(with positive norm and suitable for an investigation within
an S-matrix framework). Moreover, it is not surprising that
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dk−
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½γ0 þ k2⊥ þ κ2 þ ð2ξ − 1Þ2 M2

4 − iϵ&2
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where the integration over k− leads to fix the value of the variable z0 in Eq. (3) to 1 − 2ξ. The factor 1=
ffiffiffi
2

p
comes from the

normalization of the Fock state with n ¼ 2, given the statistics property.
From Eq. (16) and the physically motivated request that the density in the transverse variable b⊥, conjugated to k⊥, be

finite for jb⊥j ¼ 0, one can deduce that gbðγ0; 1 − 2ξ; κ2Þ must vanish for γ0 → ∞. As a matter of fact, one has
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If the transverse density at the origin, i.e.,
j ~ψn¼2=pðξ; b⊥ ¼ 0Þj2, is finite, one can immediately realize
the needed falloff of gbðγ0; 1 − 2ξ; κ2Þ. Notice that the
denominator is always positive for a bound state. By intro-
ducing the variables ðγ; zÞ, as in Ref. [6],

γ ¼ k2⊥ 1 ≥ z ¼ 1 − 2ξ ≥ −1; (19)

one can rewrite the valence wave function as follows:

ψn¼2=pðz;γÞ ¼
ð1− z2Þ
4

ffiffiffi
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×
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0
dγ0

gbðγ0; z;κ2Þ
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:

(20)

The announced integral equation for the Nakanishi
weight function gbðγ; z; κ2Þ is obtained by inserting
Eq. (3) in both sides of the LF-projected BS equation
(see, also, Refs. [19–23]), viz.,
Z

dk−
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Φbðk; pÞ ¼

Z
dk−

2π
Gð12Þ

0 ðk; pÞ

×
Z

d4k0

ð2πÞ4
iKðk; k0; pÞΦbðk0; pÞ: (21)

Then, one gets [18] (see Ref. [6] for the corresponding elab-
oration within the explicitly covariant LF framework)
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¼
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b ðγ; z; γ0; z0Þgbðγ0; z0; κ2Þ; (22)

where the new kernel VLF
b , that we call the Nakanishi kernel

for the sake of brevity, is related to the BS kernel iK in
Eq. (1), as follows:
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Still starting from the LF-projected BSE (21), a different
equation for gbðγ; z; κ2Þ can be obtained, if one takes into
account (i) the uniqueness of the Nakanishi weight func-
tion, as ensured by a theorem in Ref. [12] and (ii) the
PTIR expressions for both the BS amplitude and the BS
kernel, i.e., a four-leg transition amplitude (see, e.g.,
Refs. [3,18] for the actual PTIR of the off-shell T matrix).
Then, in place of Eq. (22), one could write the following
eigenequation (see Refs. [2–5,18,27,28] for the ladder
case):

gbðγ; z; κ2Þ ¼
Z

∞

0
dγ0

Z
1

−1
dz0Vbðγ; z; γ0; z0; κ2Þgbðγ0; z0; κ2Þ:

(24)

Within the PTIR framework, it is very important to notice
that both Eqs. (22) and (24) are equivalent to the initial BSE
(1) if the uniqueness theorem holds. Once the weight func-
tion gbðγ0; z; κ2Þ is known, then one can fully reconstruct
in Minkowski space [see Eq. (3)] the BS amplitude that
belongs to the class of physically acceptable solutions
(with positive norm and suitable for an investigation within
an S-matrix framework). Moreover, it is not surprising that
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where the integration over k− leads to fix the value of the variable z0 in Eq. (3) to 1 − 2ξ. The factor 1=
ffiffiffi
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comes from the

normalization of the Fock state with n ¼ 2, given the statistics property.
From Eq. (16) and the physically motivated request that the density in the transverse variable b⊥, conjugated to k⊥, be

finite for jb⊥j ¼ 0, one can deduce that gbðγ0; 1 − 2ξ; κ2Þ must vanish for γ0 → ∞. As a matter of fact, one has
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and
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gbðγ0; 1 − 2ξ; κ2Þ
½γ0 þ κ2 þ ð2ξ − 1Þ2 M2

4 − iϵ&
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If the transverse density at the origin, i.e.,
j ~ψn¼2=pðξ; b⊥ ¼ 0Þj2, is finite, one can immediately realize
the needed falloff of gbðγ0; 1 − 2ξ; κ2Þ. Notice that the
denominator is always positive for a bound state. By intro-
ducing the variables ðγ; zÞ, as in Ref. [6],

γ ¼ k2⊥ 1 ≥ z ¼ 1 − 2ξ ≥ −1; (19)

one can rewrite the valence wave function as follows:

ψn¼2=pðz;γÞ ¼
ð1− z2Þ
4

ffiffiffi
2

p

×
Z

∞

0
dγ0

gbðγ0; z;κ2Þ
½γ0þ γþ z2m2þð1− z2Þκ2− iϵ&2

:

(20)

The announced integral equation for the Nakanishi
weight function gbðγ; z; κ2Þ is obtained by inserting
Eq. (3) in both sides of the LF-projected BS equation
(see, also, Refs. [19–23]), viz.,
Z

dk−

2π
Φbðk; pÞ ¼

Z
dk−

2π
Gð12Þ

0 ðk; pÞ

×
Z

d4k0

ð2πÞ4
iKðk; k0; pÞΦbðk0; pÞ: (21)

Then, one gets [18] (see Ref. [6] for the corresponding elab-
oration within the explicitly covariant LF framework)

Z
∞

0
dγ0

gbðγ0; z; κ2Þ
½γ0 þ γ þ z2m2 þ ð1 − z2Þκ2 − iϵ&2

¼
Z

∞

0
dγ0

Z
1

−1
dz0VLF

b ðγ; z; γ0; z0Þgbðγ0; z0; κ2Þ; (22)

where the new kernel VLF
b , that we call the Nakanishi kernel

for the sake of brevity, is related to the BS kernel iK in
Eq. (1), as follows:

VLF
b ðγ;z;γ0;z0Þ¼ ipþ

Z
∞

−∞
dk−

2π
Gð12Þ

0 ðk;pÞ

×
Z

d4k0

ð2πÞ4
iKðk;k0;pÞ

½k02þp ·k0z0− γ0− κ2þ iϵ&3
:

(23)

Still starting from the LF-projected BSE (21), a different
equation for gbðγ; z; κ2Þ can be obtained, if one takes into
account (i) the uniqueness of the Nakanishi weight func-
tion, as ensured by a theorem in Ref. [12] and (ii) the
PTIR expressions for both the BS amplitude and the BS
kernel, i.e., a four-leg transition amplitude (see, e.g.,
Refs. [3,18] for the actual PTIR of the off-shell T matrix).
Then, in place of Eq. (22), one could write the following
eigenequation (see Refs. [2–5,18,27,28] for the ladder
case):

gbðγ; z; κ2Þ ¼
Z

∞

0
dγ0

Z
1

−1
dz0Vbðγ; z; γ0; z0; κ2Þgbðγ0; z0; κ2Þ:

(24)

Within the PTIR framework, it is very important to notice
that both Eqs. (22) and (24) are equivalent to the initial BSE
(1) if the uniqueness theorem holds. Once the weight func-
tion gbðγ0; z; κ2Þ is known, then one can fully reconstruct
in Minkowski space [see Eq. (3)] the BS amplitude that
belongs to the class of physically acceptable solutions
(with positive norm and suitable for an investigation within
an S-matrix framework). Moreover, it is not surprising that

QUANTITATIVE STUDIES OF THE HOMOGENEOUS … PHYSICAL REVIEW D 89, 016010 (2014)

016010-5

à Applying Uniqueness à 

Pole dislocation method: de Melo et al Nucl.Phys. A631 (1998) 574C 

2 =
M2

4
�m2



through the information stored in the valence component,
one can map the full BS amplitude, since the whole and rich
content of the BS amplitude can be transferred to the LF
kernel, i.e., the kernel projected onto the null plane. This
result is quite general and holds both in perturbative and
nonperturbative regimes, and, even more, for both bound
and scattering states [19–23].

III. LF NAKANISHI KERNEL IN
LADDER APPROXIMATION

At the present stage, our numerical investigation is
restricted to the ladder approximation of the BSE, where
the BS kernel is given by

iKðLdÞðk; k0Þ ¼ ið−igÞ2
ðk − k0Þ2 − μ2 þ iϵ

; (25)

with μ the mass of the exchanged scalar. Explicit expres-
sions for both ladder and cross-ladder approximations of

VLF
b ðγ; z; γ0; z0Þ obtained within the covariant LF framework

can be found in Refs. [6,7].
In Ref. [18], where a nonexplicitly covariant LF frame-

work was chosen, the scattering case was analyzed in
great detail, and the ladder approximation of the
Nakanishi kernel in the S-wave bound state [see
Eq. (22)] VðLdÞ

b was obtained through a proper limit of
the scattering kernel. In what follows, a more direct
and simple way to obtain VðLdÞ

b is presented (see
Appendix A for more details), eventually achieving an
expression suitable for exploiting the uniqueness theorem
of the Nakanishi weight function [12]. As to the numeri-
cal calculations, the results evaluated with our LF
approach and the ones shown in Refs. [3,6] are compared
in Sec. V.
In a reference frame, where p⊥ ¼ 0 and p% ¼ M,

the ladder approximation of VLF
b ðγ; z; γ0; z0Þ to be inserted

in the integral equation (22) is written as follows
(see Appendix A for details):

VðLdÞ
b ðγ; z; γ0; z0Þ ¼ −g2pþ

Z
d4k00

ð2πÞ4
1

½k002 þ p · k00z0 − γ0 − κ2 þ iϵ'3

×
Z

∞

−∞
dk−

2π
1

½ðp2 þ kÞ2 −m2 þ iϵ'
1

½ðp2 − kÞ2 −m2 þ iϵ'
1

ðk − k00Þ2 − μ2 þ iϵ

¼ − g2

2ð4πÞ2

Z
∞

−∞
dγ00

θðγ00Þ
½γ þ γ00 þ z2m2 þ κ2ð1 − z2Þ − iϵ'2

×
!
ð1þ zÞ
ð1þ ζ0Þ

θðζ0 − zÞh0ðγ00; z; γ0; ζ0; μ2Þ þ ð1 − zÞ
ð1 − ζ0Þ

θðz − ζ0Þh0ðγ00;−z; γ0;−ζ0; μ2Þ
"
; (26)

where

h0ðγ00; z; γ0; ζ0; μ2Þ ¼ θ
!
γ00

ð1þ ζ0Þ
ð1þ zÞ

− γ0 − μ2 − 2μ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ζ02

M2

4
þ κ2 þ γ0

r "

×
!
− Bbðz; ζ0; γ0; γ00; μ2Þ
Abðζ0; γ0; κ2ÞΔðz; ζ0; γ0; γ0; κ2; μ2Þ

1

γ00
þ ð1þ ζ0Þ

ð1þ zÞ

Z
yþ

y−
dy

y2

½y2Abðζ0; γ0; κ2Þ þ yðμ2 þ γ0Þ þ μ2'2

"

−
ð1þ ζ0Þ
ð1þ zÞ

Z
∞

0
dy

y2

½y2Abðζ0; γ0; κ2Þ þ yðμ2 þ γ0Þ þ μ2'2
; (27)

with

Abðζ0; γ0; κ2Þ ¼ ζ02
M2

4
þ κ2 þ γ0 ≥ 0

Bbðz; ζ0; γ0; γ0; μ2Þ ¼ μ2 þ γ0 − γ00
ð1þ ζ0Þ
ð1þ zÞ

≤ 0

Δ2ðz; ζ0; γ0; γ00; κ2; μ2Þ ¼ B2
bðz; ζ0; γ0; γ00; μ2Þ − 4μ2Abðζ0; γ0; κ2Þ ≥ 0

y% ¼ 1

2Abðζ0; γ0; κ2Þ
½−Bbðz; ζ0; γ0; γ00; μ2Þ % Δðz; ζ0; γ0; γ00; κ2; μ2Þ': (28)

It is relevant for what follows that for z → ð−1Þ, (i) the theta function does not yield a constraint anymore, and (ii) the
function Bb → −∞, and (iii) the two integrals on y cancel each other. Then, one gets
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Xðv; ζ; ζ0Þ ¼ vð1 − vÞð1þ ζ0Þ

Γðv; z; ζ0; γ0Þ ¼ ð1þ zÞ
ð1þ ζ0Þ

!
v

ð1 − vÞ

"
ζ02

M2

4
þ κ2ð1þ ζ2Þ þ γ0

#
þ μ2

v
þ γ0

$
: (A3)

The previous expression coincides with the one in Ref. [6].
For combining the denominators in the last line of Eq. (A1) and in Eq. (A2) the standard Feynman trick can be used, viz.,

1

BA2
¼ lim

λ→0þ

1

λ

"
1

BA
− 1

BðAþ λÞ

#
¼ lim

λ→0þ

1

λ

!Z
1

0
dξ

1

½B − ξðB − AÞ&2
−
Z

1

0
dξ

1

½B − ξðB − AÞ þ ξλ&2

$
; (A4)

with

A ¼ γ þ z2m2 þ κ2ð1 − z2Þ þ Γðv;'z;'ζ0; γ0Þ − iϵ;

B ¼ γ þ z2m2 þ κ2ð1 − z2Þ − iϵ; (A5)

obtaining the following expression

VðLdÞ
b ðγ; z; γ0; ζ0Þ ¼ − g2

2ð4πÞ2

"
ð1þ zÞ
ð1þ ζ0Þ

θðζ0 − zÞH0ðγ; z; γ0; ζ0; μ2Þ þ ð1 − zÞ
ð1 − ζ0Þ

θðz − ζ0ÞH0ðγ;−z; γ0;−ζ0; μ2Þ
#
; (A6)

where

H0ðγ; z; γ0; ζ0μ2Þ ¼ lim
λ→0þ

1

λ
½Hðγ; z; γ0; ζ0; μ2; λÞ −Hðγ; z; γ0; ζ0; μ2; 0Þ&; (A7)

with

Hðγ; z; γ0; ζ0; μ2; λÞ ¼ ð1þ zÞ
ð1þ ζ0Þ

Z
1

0

dv
ð1 − vÞ2

Z
1

0
dξ

Z
∞

−∞
dγ00

δ½γ00 − ξΓðv; z; ζ0; γ0Þ − ξλ&
½γ þ γ00 þ z2m2 þ κ2ð1 − z2Þ − iϵ&2

: (A8)

The positivity of γ0 [cf. Eq. (22)] entails the positivity of Γðv; z; ζ0; γ0Þ and, eventually, of γ00. Given the linear dependence
upon ξ in the delta function, one can productively perform first the integration on ξ, obtaining

Hðγ; z; γ0; ζ0; μ2; λÞ ¼
Z

∞

−∞
dγ00

θðγ00Þhðγ00; z; γ0; ζ0; μ2; λÞ
½γ þ γ00 þ z2m2 þ κ2ð1 − z2Þ − iϵ&2

; (A9)

where

hðγ00; z; γ0; ζ0; μ2; λÞ ¼ ð1þ zÞ
ð1þ ζ0Þ

Z
1

0

dv
ð1 − vÞ2

Z
1

0
dξδ½γ00 − ξΓðv; z; ζ0; γ0Þ − ξλ&

¼ ð1þ zÞ
ð1þ ζ0Þ

Z
1

0

dv
ð1 − vÞ2

θðΓðv; z; ζ0; γ0Þ − γ00 þ λÞ
Γðv; z; ζ0; γ0Þ þ λ

; (A10)

since ξ must belong to the interval [0,1]. The derivative of hðγ00; z; γ0; ζ0; μ2; λÞ implied by Eq. (A7) is given by
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since ξ must belong to the interval [0,1]. The derivative of hðγ00; z; γ0; ζ0; μ2; λÞ implied by Eq. (A7) is given by
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The potential term is
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The derivations follows the same steps as given in [11],
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2) obtained as an integral over Feyn-
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is performed analytically.
For the Wick-Cutkosky model (µ = 0), where

the scalar boson exchange would be responsible for a
Coulomb type interaction potential, the kernel reduces
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It is apparent that for � = 0, no simplification is found,
namely the dependence on �

0 cannot be integrated out,
in a clear distinction of the 3+1 case (see e.g.[12]).

V. PTIR AND NONPERTURBATIVE
UNIQUENESS

We work the right side of equation (9) to build an
expression that contains a denominator like:
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This factorization is necessary to allow the use of the
uniqueness conjecture of the Nakanishi weight function
in the nonperturbative regime, in order to simplify the
form of the integral equation (11). This generalizes the
procedure used in the four-dimensional case, and here
n = 1:
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From the conjecture of uniqueness of the Nakanishi weight function for nonperturbative domain, it follows that
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and in the particular case of µ = 0 (Wick-Cutkosky
model), the solution factorizes as

g
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and we still can reduce the form of the integral equation
to a di↵erential form
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with the boundary conditions f(1,2) = f(�1,2) = 0.
All details of the derivation are given in Appendix A.

VI. NUMERICAL RESULTS

In order to implement the quantitative studies of the
Nakanishi weight function for the S-wave BS amplitude
of a two-scalar system, with a massive scalar exchange,
we have adopted a proper basis. This basis allows us
to expand the non singular weight function by taking

into account the features of g

(Ld)
b (�, z;2) discussed in

Sects. ?? and ??; namely i) the symmetry with respect

to z, ii) the constraint g

(Ld)
b (�, z = ±1;2) = 0 and iii)

the fall-o↵ in �. In particular, Gegenbauer polynomi-
als with proper indexes have been chosen for describing
the z dependence, while the Laguerre polynomials have
been adopted for the �-dependence. In short, we have
expanded the Nakanishi weight function as follows

g

(Ld)
b (�, z;2) =

NzX

`=0

NgX

j=0

A`j G`(z) Lj(�) (24)

where i) the functions G`(z) are given in terms of even

Gegenbauer polynomials, C(5/2)
2` (z) by

G`(z) = 4 (1� z

2) �(5/2)

s
(2`+ 5/2) (2`)!

⇡�(2`+ 5)
C

(5/2)
2` (z)(25)

and ii) the functions Lj(�) are expressed in terms of the
Laguerre polynomials, Lj(a�), by

Lj(�) =
p
a Lj(a�) e

�a�/2
. (26)

The following orthonormality conditions are fulfilled
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dz G`(z) Gn(z) = �`n ,

Z 1

0
d� Lj(�) L`(�) = a

Z 1

0
d� e

�a�
Lj(a�) L`(a�) = �j`(27)

In order to speed up the convergence, in the actual calcu-
lations the parameter a = 6.0 has been adopted, and the
variable � has been rescaled according to � ! 2�/a0 with
a0 = 12. It is worth noting that the two parameters a

and a0 control, loosely speaking, the range of relevance of
the Laguerre polynomials and the structure of the kernel,
respectively. Finally, the integration over the variable z

has been performed by using a Gauss-Legendre quadra-
ture rule, while the Gauss-Laguerre quadrature has been
adopted for the variable �.

A. Eigenvalues and Eigenvectors

We have first solved Eq. (??), i.e. the one proposed
in Ref. [? ], but using our basis instead of the spline
basis adopted there. With the spline basis, for both z

and �, some instabilities appear and in [? ] a small pa-
rameter was introduced to achieve stable results (see also
below). Our basis allows us to overcome such a problem,
since it contains the above mentioned general features of

g

(Ld)
b (�, z = ±1;2). This first step was necessary to gain
confidence in our basis, through the comparison with the
results in [? ] (see what follows). As a second step, we
evaluated eigenvalues and eigenvectors of Eq. (??), which
was deduced by invoking the uniqueness theorem. As for
this equation, it should be pointed out that a completely
di↵erent numerical method was chosen in [10]. In partic-
ular, it was applied an iterative procedure, suggested by
the structure of the ladder kernel obtained in [10].

In the following Tables a detailed comparison between
our results and the ones obtained in Refs. [? ] and
[10] is presented. Let us remind that in [10], though the
proposed ladder kernel contains dressed propagators and
a sum of exchanged meson, the numerical evaluations
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From the conjecture of uniqueness of the Nakanishi weight function for nonperturbative domain, it follows that
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and in the particular case of µ = 0 (Wick-Cutkosky
model), the solution factorizes as
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and we still can reduce the form of the integral equation
to a di↵erential form
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with the boundary conditions f(1,2) = f(�1,2) = 0.
All details of the derivation are given in Appendix A.

VI. NUMERICAL RESULTS

In order to implement the quantitative studies of the
Nakanishi weight function for the S-wave BS amplitude
of a two-scalar system, with a massive scalar exchange,
we have adopted a proper basis. This basis allows us
to expand the non singular weight function by taking

into account the features of g

(Ld)
b (�, z;2) discussed in

Sects. ?? and ??; namely i) the symmetry with respect

to z, ii) the constraint g

(Ld)
b (�, z = ±1;2) = 0 and iii)

the fall-o↵ in �. In particular, Gegenbauer polynomi-
als with proper indexes have been chosen for describing
the z dependence, while the Laguerre polynomials have
been adopted for the �-dependence. In short, we have
expanded the Nakanishi weight function as follows

g

(Ld)
b (�, z;2) =

NzX

`=0

NgX

j=0

A`j G`(z) Lj(�) (24)

where i) the functions G`(z) are given in terms of even
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In order to speed up the convergence, in the actual calcu-
lations the parameter a = 6.0 has been adopted, and the
variable � has been rescaled according to � ! 2�/a0 with
a0 = 12. It is worth noting that the two parameters a

and a0 control, loosely speaking, the range of relevance of
the Laguerre polynomials and the structure of the kernel,
respectively. Finally, the integration over the variable z

has been performed by using a Gauss-Legendre quadra-
ture rule, while the Gauss-Laguerre quadrature has been
adopted for the variable �.

A. Eigenvalues and Eigenvectors

We have first solved Eq. (??), i.e. the one proposed
in Ref. [? ], but using our basis instead of the spline
basis adopted there. With the spline basis, for both z

and �, some instabilities appear and in [? ] a small pa-
rameter was introduced to achieve stable results (see also
below). Our basis allows us to overcome such a problem,
since it contains the above mentioned general features of

g

(Ld)
b (�, z = ±1;2). This first step was necessary to gain
confidence in our basis, through the comparison with the
results in [? ] (see what follows). As a second step, we
evaluated eigenvalues and eigenvectors of Eq. (??), which
was deduced by invoking the uniqueness theorem. As for
this equation, it should be pointed out that a completely
di↵erent numerical method was chosen in [10]. In partic-
ular, it was applied an iterative procedure, suggested by
the structure of the ladder kernel obtained in [10].

In the following Tables a detailed comparison between
our results and the ones obtained in Refs. [? ] and
[10] is presented. Let us remind that in [10], though the
proposed ladder kernel contains dressed propagators and
a sum of exchanged meson, the numerical evaluations
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From the conjecture of uniqueness of the Nakanishi weight function for nonperturbative domain, it follows that
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and in the particular case of µ = 0 (Wick-Cutkosky
model), the solution factorizes as
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with the boundary conditions f(1,2) = f(�1,2) = 0.
All details of the derivation are given in Appendix A.

VI. NUMERICAL RESULTS

In order to implement the quantitative studies of the
Nakanishi weight function for the S-wave BS amplitude
of a two-scalar system, with a massive scalar exchange,
we have adopted a proper basis. This basis allows us
to expand the non singular weight function by taking

into account the features of g

(Ld)
b (�, z;2) discussed in

Sects. ?? and ??; namely i) the symmetry with respect

to z, ii) the constraint g

(Ld)
b (�, z = ±1;2) = 0 and iii)

the fall-o↵ in �. In particular, Gegenbauer polynomi-
als with proper indexes have been chosen for describing
the z dependence, while the Laguerre polynomials have
been adopted for the �-dependence. In short, we have
expanded the Nakanishi weight function as follows
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NzX

`=0
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j=0
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where i) the functions G`(z) are given in terms of even
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and ii) the functions Lj(�) are expressed in terms of the
Laguerre polynomials, Lj(a�), by
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. (26)

The following orthonormality conditions are fulfilled
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In order to speed up the convergence, in the actual calcu-
lations the parameter a = 6.0 has been adopted, and the
variable � has been rescaled according to � ! 2�/a0 with
a0 = 12. It is worth noting that the two parameters a

and a0 control, loosely speaking, the range of relevance of
the Laguerre polynomials and the structure of the kernel,
respectively. Finally, the integration over the variable z

has been performed by using a Gauss-Legendre quadra-
ture rule, while the Gauss-Laguerre quadrature has been
adopted for the variable �.

A. Eigenvalues and Eigenvectors

We have first solved Eq. (??), i.e. the one proposed
in Ref. [? ], but using our basis instead of the spline
basis adopted there. With the spline basis, for both z

and �, some instabilities appear and in [? ] a small pa-
rameter was introduced to achieve stable results (see also
below). Our basis allows us to overcome such a problem,
since it contains the above mentioned general features of

g

(Ld)
b (�, z = ±1;2). This first step was necessary to gain
confidence in our basis, through the comparison with the
results in [? ] (see what follows). As a second step, we
evaluated eigenvalues and eigenvectors of Eq. (??), which
was deduced by invoking the uniqueness theorem. As for
this equation, it should be pointed out that a completely
di↵erent numerical method was chosen in [10]. In partic-
ular, it was applied an iterative procedure, suggested by
the structure of the ladder kernel obtained in [10].

In the following Tables a detailed comparison between
our results and the ones obtained in Refs. [? ] and
[10] is presented. Let us remind that in [10], though the
proposed ladder kernel contains dressed propagators and
a sum of exchanged meson, the numerical evaluations
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Two final remarks are in order. First, let us remind that
for μ → 0 and n ¼ 2 in Eq. (3), the Nakanishi amplitude
factorizes as gbðγ0; z; κ2Þ → δðγ0Þfðz; κ2Þ (see, e.g.,
Ref. [30]), and, therefore, in the Wick-Cutkosky model,
one gets

ψWiC
n¼2=pðξ; k⊥Þ ∝

fðz; κ2Þ
½γ þ z2m2 þ ð1 − z2Þκ2&2

: (36)

Second, we would emphasize that the valence wave func-
tion behaves as expected (see Ref. [26]) for large values of
k2⊥ ¼ γ once we choose n ¼ 2. As a matter of fact, the
Nakanishi weight function drops out for increasing γ0,
and one has for γ → ∞,

ψn¼2=pðξ;k⊥Þ¼
ð1−z2Þ
4

ffiffiffi
2

p
Z

∞

0
dγ0

gbðγ0;z;κ2Þ
½γ0þγþz2m2þð1−z2Þκ2&2

→
CðzÞ
γ2

; (37)

with a γ tail independent of the mass of the exchanged
scalar.
In the next section, the numerical results of the LF dis-

tributions obtained in ladder approximation are presented.
We can anticipate that such LF distributions evaluated by
using the solutions of Eqs. (29)) and (32) for a given mass
of the exchanged meson and binding energy overlap,
though the numerical Nakanishi weight functions
gðLdÞb ðγ0; z; κ2Þ show few-percent differences for low values
of γ, as discussed in what follows.

V. NUMERICAL COMPARISONS

In order to implement the quantitative studies of the
Nakanishi weight function for the S-wave BS amplitude
of a two-scalar system with a massive scalar exchange,
we have adopted a proper basis. This basis allows us to
expand the nonsingular weight function by taking into
account the features of gðLdÞb ðγ; z; κ2Þ discussed in
Secs. II and III, namely, (i) the symmetry with respect to
z, (ii) the constraint gðLdÞb ðγ; z ¼ '1; κ2Þ ¼ 0; and (iii) the
falloff in γ. In particular, Gegenbauer polynomials with
proper indexes have been chosen for describing the z
dependence, while the Laguerre polynomials have been
adopted for the γ dependence. In short, we have expanded
the Nakanishi weight function as follows:

gðLdÞb ðγ; z; κ2Þ ¼
XNz

l¼0

XNg

j¼0

AljGlðzÞLjðγÞ; (38)

where (i) the functions GlðzÞ are given in terms of even
Gegenbauer polynomials Cð5=2Þ

2l ðzÞ by

GlðzÞ¼4ð1−z2ÞΓð5=2Þ
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ð2lþ5=2Þð2lÞ!

πΓð2lþ5Þ

s

Cð5=2Þ
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and (ii) the functions LjðγÞ are expressed in terms of the
Laguerre polynomials LjðaγÞ by

LjðγÞ ¼
ffiffiffi
a

p
LjðaγÞe−aγ=2: (40)

The following orthonormality conditions are fulfilled:
Z

1

−1
dzGlðzÞGnðzÞ ¼ δln;

Z
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0
dγLjðγÞLlðγÞ ¼ a

Z
∞

0
dγe−aγLjðaγÞLlðaγÞ ¼ δjl:

(41)

In order to speed up the convergence, in the actual calcu-
lations the parameter a ¼ 6.0 has been adopted, and the
variable γ has been rescaled according to γ → 2γ=a0 with
a0 ¼ 12. It is worth noting that the two parameters a and a0
control, loosely speaking, the range of relevance of the
Laguerre polynomials and the structure of the kernel,
respectively. Finally, the integration over the variable z
has been performed by using a Gauss-Legendre quadrature
rule, while the Gauss-Laguerre quadrature has been
adopted for the variable γ.

A. Eigenvalues and eigenvectors

We have first solved Eq. (29), i.e., the one proposed in
Ref. [6], but using our basis instead of the spline basis
adopted there. With the spline basis for both z and γ, some
instabilities appear, and in Ref. [6] a small parameter
was introduced to achieve stable results (see also below).
Our basis allows us to overcome such a problem, since
it contains the above-mentioned general features of
gðLdÞb ðγ; z ¼ '1; κ2Þ. This first step was necessary to gain
confidence in our basis through the comparison with
the results in Ref. [6] (see what follows). As a second step,
we evaluated the eigenvalues and eigenvectors of Eq. (33),
which was deduced by invoking the uniqueness theorem.
As for this equation, it should be pointed out that a
completely different numerical method was chosen in
Ref. [3]. In particular, it was applied an iterative procedure,
suggested by the structure of the ladder kernel obtained
in [3].
In the following tables, a detailed comparison betweenour

resultsand theonesobtained inRefs. [3,6] ispresented.Letus
remind that in Ref. [3], though the proposed ladder kernel
containsdressedpropagators andasumofexchangedmeson,
the numerical evaluations were performed without such
extras, and, therefore, their results can be directly compared
tooursand theones inRef. [6],withonly thecaveatofadiffer-
ent definition of the coupling constant α. As already pointed
out in Refs. [3,6], the kernel contains a highly nonlinear
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Two final remarks are in order. First, let us remind that
for μ → 0 and n ¼ 2 in Eq. (3), the Nakanishi amplitude
factorizes as gbðγ0; z; κ2Þ → δðγ0Þfðz; κ2Þ (see, e.g.,
Ref. [30]), and, therefore, in the Wick-Cutkosky model,
one gets

ψWiC
n¼2=pðξ; k⊥Þ ∝

fðz; κ2Þ
½γ þ z2m2 þ ð1 − z2Þκ2&2

: (36)

Second, we would emphasize that the valence wave func-
tion behaves as expected (see Ref. [26]) for large values of
k2⊥ ¼ γ once we choose n ¼ 2. As a matter of fact, the
Nakanishi weight function drops out for increasing γ0,
and one has for γ → ∞,

ψn¼2=pðξ;k⊥Þ¼
ð1−z2Þ
4

ffiffiffi
2

p
Z

∞

0
dγ0

gbðγ0;z;κ2Þ
½γ0þγþz2m2þð1−z2Þκ2&2

→
CðzÞ
γ2

; (37)

with a γ tail independent of the mass of the exchanged
scalar.
In the next section, the numerical results of the LF dis-

tributions obtained in ladder approximation are presented.
We can anticipate that such LF distributions evaluated by
using the solutions of Eqs. (29)) and (32) for a given mass
of the exchanged meson and binding energy overlap,
though the numerical Nakanishi weight functions
gðLdÞb ðγ0; z; κ2Þ show few-percent differences for low values
of γ, as discussed in what follows.

V. NUMERICAL COMPARISONS

In order to implement the quantitative studies of the
Nakanishi weight function for the S-wave BS amplitude
of a two-scalar system with a massive scalar exchange,
we have adopted a proper basis. This basis allows us to
expand the nonsingular weight function by taking into
account the features of gðLdÞb ðγ; z; κ2Þ discussed in
Secs. II and III, namely, (i) the symmetry with respect to
z, (ii) the constraint gðLdÞb ðγ; z ¼ '1; κ2Þ ¼ 0; and (iii) the
falloff in γ. In particular, Gegenbauer polynomials with
proper indexes have been chosen for describing the z
dependence, while the Laguerre polynomials have been
adopted for the γ dependence. In short, we have expanded
the Nakanishi weight function as follows:

gðLdÞb ðγ; z; κ2Þ ¼
XNz

l¼0

XNg

j¼0

AljGlðzÞLjðγÞ; (38)

where (i) the functions GlðzÞ are given in terms of even
Gegenbauer polynomials Cð5=2Þ

2l ðzÞ by

GlðzÞ¼4ð1−z2ÞΓð5=2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ5=2Þð2lÞ!

πΓð2lþ5Þ

s

Cð5=2Þ
2l ðzÞ; (39)

and (ii) the functions LjðγÞ are expressed in terms of the
Laguerre polynomials LjðaγÞ by

LjðγÞ ¼
ffiffiffi
a

p
LjðaγÞe−aγ=2: (40)

The following orthonormality conditions are fulfilled:
Z

1

−1
dzGlðzÞGnðzÞ ¼ δln;

Z
∞

0
dγLjðγÞLlðγÞ ¼ a

Z
∞

0
dγe−aγLjðaγÞLlðaγÞ ¼ δjl:

(41)

In order to speed up the convergence, in the actual calcu-
lations the parameter a ¼ 6.0 has been adopted, and the
variable γ has been rescaled according to γ → 2γ=a0 with
a0 ¼ 12. It is worth noting that the two parameters a and a0
control, loosely speaking, the range of relevance of the
Laguerre polynomials and the structure of the kernel,
respectively. Finally, the integration over the variable z
has been performed by using a Gauss-Legendre quadrature
rule, while the Gauss-Laguerre quadrature has been
adopted for the variable γ.

A. Eigenvalues and eigenvectors

We have first solved Eq. (29), i.e., the one proposed in
Ref. [6], but using our basis instead of the spline basis
adopted there. With the spline basis for both z and γ, some
instabilities appear, and in Ref. [6] a small parameter
was introduced to achieve stable results (see also below).
Our basis allows us to overcome such a problem, since
it contains the above-mentioned general features of
gðLdÞb ðγ; z ¼ '1; κ2Þ. This first step was necessary to gain
confidence in our basis through the comparison with
the results in Ref. [6] (see what follows). As a second step,
we evaluated the eigenvalues and eigenvectors of Eq. (33),
which was deduced by invoking the uniqueness theorem.
As for this equation, it should be pointed out that a
completely different numerical method was chosen in
Ref. [3]. In particular, it was applied an iterative procedure,
suggested by the structure of the ladder kernel obtained
in [3].
In the following tables, a detailed comparison betweenour

resultsand theonesobtained inRefs. [3,6] ispresented.Letus
remind that in Ref. [3], though the proposed ladder kernel
containsdressedpropagators andasumofexchangedmeson,
the numerical evaluations were performed without such
extras, and, therefore, their results can be directly compared
tooursand theones inRef. [6],withonly thecaveatofadiffer-
ent definition of the coupling constant α. As already pointed
out in Refs. [3,6], the kernel contains a highly nonlinear
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Two final remarks are in order. First, let us remind that
for μ → 0 and n ¼ 2 in Eq. (3), the Nakanishi amplitude
factorizes as gbðγ0; z; κ2Þ → δðγ0Þfðz; κ2Þ (see, e.g.,
Ref. [30]), and, therefore, in the Wick-Cutkosky model,
one gets

ψWiC
n¼2=pðξ; k⊥Þ ∝

fðz; κ2Þ
½γ þ z2m2 þ ð1 − z2Þκ2&2

: (36)

Second, we would emphasize that the valence wave func-
tion behaves as expected (see Ref. [26]) for large values of
k2⊥ ¼ γ once we choose n ¼ 2. As a matter of fact, the
Nakanishi weight function drops out for increasing γ0,
and one has for γ → ∞,

ψn¼2=pðξ;k⊥Þ¼
ð1−z2Þ
4

ffiffiffi
2

p
Z

∞

0
dγ0

gbðγ0;z;κ2Þ
½γ0þγþz2m2þð1−z2Þκ2&2

→
CðzÞ
γ2

; (37)

with a γ tail independent of the mass of the exchanged
scalar.
In the next section, the numerical results of the LF dis-

tributions obtained in ladder approximation are presented.
We can anticipate that such LF distributions evaluated by
using the solutions of Eqs. (29)) and (32) for a given mass
of the exchanged meson and binding energy overlap,
though the numerical Nakanishi weight functions
gðLdÞb ðγ0; z; κ2Þ show few-percent differences for low values
of γ, as discussed in what follows.

V. NUMERICAL COMPARISONS

In order to implement the quantitative studies of the
Nakanishi weight function for the S-wave BS amplitude
of a two-scalar system with a massive scalar exchange,
we have adopted a proper basis. This basis allows us to
expand the nonsingular weight function by taking into
account the features of gðLdÞb ðγ; z; κ2Þ discussed in
Secs. II and III, namely, (i) the symmetry with respect to
z, (ii) the constraint gðLdÞb ðγ; z ¼ '1; κ2Þ ¼ 0; and (iii) the
falloff in γ. In particular, Gegenbauer polynomials with
proper indexes have been chosen for describing the z
dependence, while the Laguerre polynomials have been
adopted for the γ dependence. In short, we have expanded
the Nakanishi weight function as follows:

gðLdÞb ðγ; z; κ2Þ ¼
XNz

l¼0

XNg

j¼0

AljGlðzÞLjðγÞ; (38)

where (i) the functions GlðzÞ are given in terms of even
Gegenbauer polynomials Cð5=2Þ

2l ðzÞ by

GlðzÞ¼4ð1−z2ÞΓð5=2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ5=2Þð2lÞ!

πΓð2lþ5Þ

s

Cð5=2Þ
2l ðzÞ; (39)

and (ii) the functions LjðγÞ are expressed in terms of the
Laguerre polynomials LjðaγÞ by

LjðγÞ ¼
ffiffiffi
a

p
LjðaγÞe−aγ=2: (40)

The following orthonormality conditions are fulfilled:
Z

1

−1
dzGlðzÞGnðzÞ ¼ δln;

Z
∞

0
dγLjðγÞLlðγÞ ¼ a

Z
∞

0
dγe−aγLjðaγÞLlðaγÞ ¼ δjl:

(41)

In order to speed up the convergence, in the actual calcu-
lations the parameter a ¼ 6.0 has been adopted, and the
variable γ has been rescaled according to γ → 2γ=a0 with
a0 ¼ 12. It is worth noting that the two parameters a and a0
control, loosely speaking, the range of relevance of the
Laguerre polynomials and the structure of the kernel,
respectively. Finally, the integration over the variable z
has been performed by using a Gauss-Legendre quadrature
rule, while the Gauss-Laguerre quadrature has been
adopted for the variable γ.

A. Eigenvalues and eigenvectors

We have first solved Eq. (29), i.e., the one proposed in
Ref. [6], but using our basis instead of the spline basis
adopted there. With the spline basis for both z and γ, some
instabilities appear, and in Ref. [6] a small parameter
was introduced to achieve stable results (see also below).
Our basis allows us to overcome such a problem, since
it contains the above-mentioned general features of
gðLdÞb ðγ; z ¼ '1; κ2Þ. This first step was necessary to gain
confidence in our basis through the comparison with
the results in Ref. [6] (see what follows). As a second step,
we evaluated the eigenvalues and eigenvectors of Eq. (33),
which was deduced by invoking the uniqueness theorem.
As for this equation, it should be pointed out that a
completely different numerical method was chosen in
Ref. [3]. In particular, it was applied an iterative procedure,
suggested by the structure of the ladder kernel obtained
in [3].
In the following tables, a detailed comparison betweenour

resultsand theonesobtained inRefs. [3,6] ispresented.Letus
remind that in Ref. [3], though the proposed ladder kernel
containsdressedpropagators andasumofexchangedmeson,
the numerical evaluations were performed without such
extras, and, therefore, their results can be directly compared
tooursand theones inRef. [6],withonly thecaveatofadiffer-
ent definition of the coupling constant α. As already pointed
out in Refs. [3,6], the kernel contains a highly nonlinear
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Two final remarks are in order. First, let us remind that
for μ → 0 and n ¼ 2 in Eq. (3), the Nakanishi amplitude
factorizes as gbðγ0; z; κ2Þ → δðγ0Þfðz; κ2Þ (see, e.g.,
Ref. [30]), and, therefore, in the Wick-Cutkosky model,
one gets

ψWiC
n¼2=pðξ; k⊥Þ ∝

fðz; κ2Þ
½γ þ z2m2 þ ð1 − z2Þκ2&2

: (36)

Second, we would emphasize that the valence wave func-
tion behaves as expected (see Ref. [26]) for large values of
k2⊥ ¼ γ once we choose n ¼ 2. As a matter of fact, the
Nakanishi weight function drops out for increasing γ0,
and one has for γ → ∞,

ψn¼2=pðξ;k⊥Þ¼
ð1−z2Þ
4

ffiffiffi
2

p
Z

∞

0
dγ0

gbðγ0;z;κ2Þ
½γ0þγþz2m2þð1−z2Þκ2&2

→
CðzÞ
γ2

; (37)

with a γ tail independent of the mass of the exchanged
scalar.
In the next section, the numerical results of the LF dis-

tributions obtained in ladder approximation are presented.
We can anticipate that such LF distributions evaluated by
using the solutions of Eqs. (29)) and (32) for a given mass
of the exchanged meson and binding energy overlap,
though the numerical Nakanishi weight functions
gðLdÞb ðγ0; z; κ2Þ show few-percent differences for low values
of γ, as discussed in what follows.

V. NUMERICAL COMPARISONS

In order to implement the quantitative studies of the
Nakanishi weight function for the S-wave BS amplitude
of a two-scalar system with a massive scalar exchange,
we have adopted a proper basis. This basis allows us to
expand the nonsingular weight function by taking into
account the features of gðLdÞb ðγ; z; κ2Þ discussed in
Secs. II and III, namely, (i) the symmetry with respect to
z, (ii) the constraint gðLdÞb ðγ; z ¼ '1; κ2Þ ¼ 0; and (iii) the
falloff in γ. In particular, Gegenbauer polynomials with
proper indexes have been chosen for describing the z
dependence, while the Laguerre polynomials have been
adopted for the γ dependence. In short, we have expanded
the Nakanishi weight function as follows:

gðLdÞb ðγ; z; κ2Þ ¼
XNz

l¼0

XNg

j¼0

AljGlðzÞLjðγÞ; (38)

where (i) the functions GlðzÞ are given in terms of even
Gegenbauer polynomials Cð5=2Þ

2l ðzÞ by

GlðzÞ¼4ð1−z2ÞΓð5=2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ5=2Þð2lÞ!

πΓð2lþ5Þ

s

Cð5=2Þ
2l ðzÞ; (39)

and (ii) the functions LjðγÞ are expressed in terms of the
Laguerre polynomials LjðaγÞ by

LjðγÞ ¼
ffiffiffi
a

p
LjðaγÞe−aγ=2: (40)

The following orthonormality conditions are fulfilled:
Z

1

−1
dzGlðzÞGnðzÞ ¼ δln;

Z
∞

0
dγLjðγÞLlðγÞ ¼ a

Z
∞

0
dγe−aγLjðaγÞLlðaγÞ ¼ δjl:

(41)

In order to speed up the convergence, in the actual calcu-
lations the parameter a ¼ 6.0 has been adopted, and the
variable γ has been rescaled according to γ → 2γ=a0 with
a0 ¼ 12. It is worth noting that the two parameters a and a0
control, loosely speaking, the range of relevance of the
Laguerre polynomials and the structure of the kernel,
respectively. Finally, the integration over the variable z
has been performed by using a Gauss-Legendre quadrature
rule, while the Gauss-Laguerre quadrature has been
adopted for the variable γ.

A. Eigenvalues and eigenvectors

We have first solved Eq. (29), i.e., the one proposed in
Ref. [6], but using our basis instead of the spline basis
adopted there. With the spline basis for both z and γ, some
instabilities appear, and in Ref. [6] a small parameter
was introduced to achieve stable results (see also below).
Our basis allows us to overcome such a problem, since
it contains the above-mentioned general features of
gðLdÞb ðγ; z ¼ '1; κ2Þ. This first step was necessary to gain
confidence in our basis through the comparison with
the results in Ref. [6] (see what follows). As a second step,
we evaluated the eigenvalues and eigenvectors of Eq. (33),
which was deduced by invoking the uniqueness theorem.
As for this equation, it should be pointed out that a
completely different numerical method was chosen in
Ref. [3]. In particular, it was applied an iterative procedure,
suggested by the structure of the ladder kernel obtained
in [3].
In the following tables, a detailed comparison betweenour

resultsand theonesobtained inRefs. [3,6] ispresented.Letus
remind that in Ref. [3], though the proposed ladder kernel
containsdressedpropagators andasumofexchangedmeson,
the numerical evaluations were performed without such
extras, and, therefore, their results can be directly compared
tooursand theones inRef. [6],withonly thecaveatofadiffer-
ent definition of the coupling constant α. As already pointed
out in Refs. [3,6], the kernel contains a highly nonlinear
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Two final remarks are in order. First, let us remind that
for μ → 0 and n ¼ 2 in Eq. (3), the Nakanishi amplitude
factorizes as gbðγ0; z; κ2Þ → δðγ0Þfðz; κ2Þ (see, e.g.,
Ref. [30]), and, therefore, in the Wick-Cutkosky model,
one gets

ψWiC
n¼2=pðξ; k⊥Þ ∝

fðz; κ2Þ
½γ þ z2m2 þ ð1 − z2Þκ2&2

: (36)

Second, we would emphasize that the valence wave func-
tion behaves as expected (see Ref. [26]) for large values of
k2⊥ ¼ γ once we choose n ¼ 2. As a matter of fact, the
Nakanishi weight function drops out for increasing γ0,
and one has for γ → ∞,

ψn¼2=pðξ;k⊥Þ¼
ð1−z2Þ
4

ffiffiffi
2

p
Z

∞

0
dγ0

gbðγ0;z;κ2Þ
½γ0þγþz2m2þð1−z2Þκ2&2

→
CðzÞ
γ2

; (37)

with a γ tail independent of the mass of the exchanged
scalar.
In the next section, the numerical results of the LF dis-

tributions obtained in ladder approximation are presented.
We can anticipate that such LF distributions evaluated by
using the solutions of Eqs. (29)) and (32) for a given mass
of the exchanged meson and binding energy overlap,
though the numerical Nakanishi weight functions
gðLdÞb ðγ0; z; κ2Þ show few-percent differences for low values
of γ, as discussed in what follows.

V. NUMERICAL COMPARISONS

In order to implement the quantitative studies of the
Nakanishi weight function for the S-wave BS amplitude
of a two-scalar system with a massive scalar exchange,
we have adopted a proper basis. This basis allows us to
expand the nonsingular weight function by taking into
account the features of gðLdÞb ðγ; z; κ2Þ discussed in
Secs. II and III, namely, (i) the symmetry with respect to
z, (ii) the constraint gðLdÞb ðγ; z ¼ '1; κ2Þ ¼ 0; and (iii) the
falloff in γ. In particular, Gegenbauer polynomials with
proper indexes have been chosen for describing the z
dependence, while the Laguerre polynomials have been
adopted for the γ dependence. In short, we have expanded
the Nakanishi weight function as follows:

gðLdÞb ðγ; z; κ2Þ ¼
XNz

l¼0

XNg

j¼0

AljGlðzÞLjðγÞ; (38)

where (i) the functions GlðzÞ are given in terms of even
Gegenbauer polynomials Cð5=2Þ

2l ðzÞ by

GlðzÞ¼4ð1−z2ÞΓð5=2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ5=2Þð2lÞ!

πΓð2lþ5Þ

s

Cð5=2Þ
2l ðzÞ; (39)

and (ii) the functions LjðγÞ are expressed in terms of the
Laguerre polynomials LjðaγÞ by

LjðγÞ ¼
ffiffiffi
a

p
LjðaγÞe−aγ=2: (40)

The following orthonormality conditions are fulfilled:
Z

1

−1
dzGlðzÞGnðzÞ ¼ δln;

Z
∞

0
dγLjðγÞLlðγÞ ¼ a

Z
∞

0
dγe−aγLjðaγÞLlðaγÞ ¼ δjl:

(41)

In order to speed up the convergence, in the actual calcu-
lations the parameter a ¼ 6.0 has been adopted, and the
variable γ has been rescaled according to γ → 2γ=a0 with
a0 ¼ 12. It is worth noting that the two parameters a and a0
control, loosely speaking, the range of relevance of the
Laguerre polynomials and the structure of the kernel,
respectively. Finally, the integration over the variable z
has been performed by using a Gauss-Legendre quadrature
rule, while the Gauss-Laguerre quadrature has been
adopted for the variable γ.

A. Eigenvalues and eigenvectors

We have first solved Eq. (29), i.e., the one proposed in
Ref. [6], but using our basis instead of the spline basis
adopted there. With the spline basis for both z and γ, some
instabilities appear, and in Ref. [6] a small parameter
was introduced to achieve stable results (see also below).
Our basis allows us to overcome such a problem, since
it contains the above-mentioned general features of
gðLdÞb ðγ; z ¼ '1; κ2Þ. This first step was necessary to gain
confidence in our basis through the comparison with
the results in Ref. [6] (see what follows). As a second step,
we evaluated the eigenvalues and eigenvectors of Eq. (33),
which was deduced by invoking the uniqueness theorem.
As for this equation, it should be pointed out that a
completely different numerical method was chosen in
Ref. [3]. In particular, it was applied an iterative procedure,
suggested by the structure of the ladder kernel obtained
in [3].
In the following tables, a detailed comparison betweenour

resultsand theonesobtained inRefs. [3,6] ispresented.Letus
remind that in Ref. [3], though the proposed ladder kernel
containsdressedpropagators andasumofexchangedmeson,
the numerical evaluations were performed without such
extras, and, therefore, their results can be directly compared
tooursand theones inRef. [6],withonly thecaveatofadiffer-
ent definition of the coupling constant α. As already pointed
out in Refs. [3,6], the kernel contains a highly nonlinear
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Two final remarks are in order. First, let us remind that
for μ → 0 and n ¼ 2 in Eq. (3), the Nakanishi amplitude
factorizes as gbðγ0; z; κ2Þ → δðγ0Þfðz; κ2Þ (see, e.g.,
Ref. [30]), and, therefore, in the Wick-Cutkosky model,
one gets

ψWiC
n¼2=pðξ; k⊥Þ ∝

fðz; κ2Þ
½γ þ z2m2 þ ð1 − z2Þκ2&2

: (36)

Second, we would emphasize that the valence wave func-
tion behaves as expected (see Ref. [26]) for large values of
k2⊥ ¼ γ once we choose n ¼ 2. As a matter of fact, the
Nakanishi weight function drops out for increasing γ0,
and one has for γ → ∞,

ψn¼2=pðξ;k⊥Þ¼
ð1−z2Þ
4

ffiffiffi
2

p
Z

∞

0
dγ0

gbðγ0;z;κ2Þ
½γ0þγþz2m2þð1−z2Þκ2&2

→
CðzÞ
γ2

; (37)

with a γ tail independent of the mass of the exchanged
scalar.
In the next section, the numerical results of the LF dis-

tributions obtained in ladder approximation are presented.
We can anticipate that such LF distributions evaluated by
using the solutions of Eqs. (29)) and (32) for a given mass
of the exchanged meson and binding energy overlap,
though the numerical Nakanishi weight functions
gðLdÞb ðγ0; z; κ2Þ show few-percent differences for low values
of γ, as discussed in what follows.

V. NUMERICAL COMPARISONS

In order to implement the quantitative studies of the
Nakanishi weight function for the S-wave BS amplitude
of a two-scalar system with a massive scalar exchange,
we have adopted a proper basis. This basis allows us to
expand the nonsingular weight function by taking into
account the features of gðLdÞb ðγ; z; κ2Þ discussed in
Secs. II and III, namely, (i) the symmetry with respect to
z, (ii) the constraint gðLdÞb ðγ; z ¼ '1; κ2Þ ¼ 0; and (iii) the
falloff in γ. In particular, Gegenbauer polynomials with
proper indexes have been chosen for describing the z
dependence, while the Laguerre polynomials have been
adopted for the γ dependence. In short, we have expanded
the Nakanishi weight function as follows:

gðLdÞb ðγ; z; κ2Þ ¼
XNz

l¼0

XNg

j¼0

AljGlðzÞLjðγÞ; (38)

where (i) the functions GlðzÞ are given in terms of even
Gegenbauer polynomials Cð5=2Þ

2l ðzÞ by

GlðzÞ¼4ð1−z2ÞΓð5=2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ5=2Þð2lÞ!

πΓð2lþ5Þ

s

Cð5=2Þ
2l ðzÞ; (39)

and (ii) the functions LjðγÞ are expressed in terms of the
Laguerre polynomials LjðaγÞ by

LjðγÞ ¼
ffiffiffi
a

p
LjðaγÞe−aγ=2: (40)

The following orthonormality conditions are fulfilled:
Z

1

−1
dzGlðzÞGnðzÞ ¼ δln;

Z
∞

0
dγLjðγÞLlðγÞ ¼ a

Z
∞

0
dγe−aγLjðaγÞLlðaγÞ ¼ δjl:

(41)

In order to speed up the convergence, in the actual calcu-
lations the parameter a ¼ 6.0 has been adopted, and the
variable γ has been rescaled according to γ → 2γ=a0 with
a0 ¼ 12. It is worth noting that the two parameters a and a0
control, loosely speaking, the range of relevance of the
Laguerre polynomials and the structure of the kernel,
respectively. Finally, the integration over the variable z
has been performed by using a Gauss-Legendre quadrature
rule, while the Gauss-Laguerre quadrature has been
adopted for the variable γ.

A. Eigenvalues and eigenvectors

We have first solved Eq. (29), i.e., the one proposed in
Ref. [6], but using our basis instead of the spline basis
adopted there. With the spline basis for both z and γ, some
instabilities appear, and in Ref. [6] a small parameter
was introduced to achieve stable results (see also below).
Our basis allows us to overcome such a problem, since
it contains the above-mentioned general features of
gðLdÞb ðγ; z ¼ '1; κ2Þ. This first step was necessary to gain
confidence in our basis through the comparison with
the results in Ref. [6] (see what follows). As a second step,
we evaluated the eigenvalues and eigenvectors of Eq. (33),
which was deduced by invoking the uniqueness theorem.
As for this equation, it should be pointed out that a
completely different numerical method was chosen in
Ref. [3]. In particular, it was applied an iterative procedure,
suggested by the structure of the ladder kernel obtained
in [3].
In the following tables, a detailed comparison betweenour

resultsand theonesobtained inRefs. [3,6] ispresented.Letus
remind that in Ref. [3], though the proposed ladder kernel
containsdressedpropagators andasumofexchangedmeson,
the numerical evaluations were performed without such
extras, and, therefore, their results can be directly compared
tooursand theones inRef. [6],withonly thecaveatofadiffer-
ent definition of the coupling constant α. As already pointed
out in Refs. [3,6], the kernel contains a highly nonlinear

QUANTITATIVE STUDIES OF THE HOMOGENEOUS … PHYSICAL REVIEW D 89, 016010 (2014)

016010-9

Solution of the eigenvalue problem for g2 for each given B

B=2m-M  binding energy 



Coupling constant (3+1) vs. Binding 
dependence upon themassM of the interacting system, but a
linear dependence upon the coupling constant α, given the
adopted ladder approximation. Therefore, it is customary
(i) first to choose avalue for the binding energy in the interval

0 ≤
B
m

¼ 2 −M
m

≤ 2;

and(ii) then to lookfor theminimalvalueof thecouplingcon-
stant that allows such a binding energy. A comment on the
range of the usually chosen interval is in order. As is well
known (see Ref. [31]), all the ϕ3 models do not show any

TABLE I. Values of α ¼ g2=ð16πm2Þ obtained by solving the
eigenequations (29) and (32) (i.e., the eigenequation with the
application of the uniqueness theorem). Results correspond to
μ=m ¼ 0.15, 0.50 varying the binding energies, B=m. The
second column contains the results obtained in Ref. [6] by
using the spline basis and Eq. (29); the third column shows
our results obtained from Eq. (29) by using our basis
[Eqs. (38)–(40)] with Nz ¼ 18, Ng ¼ 32, and a ¼ 6 in
Eq. (40); the fourth column contains our results obtained from
the eigenequation (32) and our basis.

μ=m ¼ 0.15

B=m α [6] α Eq. (29) α Eq. (32)
0.01 0.5716 0.5716 0.5716a

0.10 1.437 1.437 1.437
0.20 2.100 2.099 2.099
0.50 3.611 3.610 3.611
1.00 5.315 5.313 5.314

μ=m ¼ 0.50

B=m α [6] α Eq. (29) α Eq. (32)
0.01 1.440 1.440 1.440
0.10 2.498 2.498 2.498
0.20 3.251 3.251 3.251
0.50 4.901 4.901 4.901
1.00 6.712 6.711 6.711
aFor μ=m ¼ 0.15 and B=m ¼ 0.01, the stability of the
coupling constant (α < 1) is reached for Ng ≥ 46.

TABLE II. Values of α ¼ g2=ð16πm2Þ obtained by solving the
eigenequations (32) (i.e., with the application of the uniqueness
theorem) and (29). Results correspond to μ=m ¼ 0.50 varying the
binding energies, B=m. The second column shows the values
obtained in Ref. [3], where the uniqueness theorem was
exploited and an iterative method was adopted; the third
column corresponds to the solution of Eq. (32) by using our
basis [cf. Eqs. (38)–(40)]; the fourth column contains our
results from Eq. (29).

μ=m ¼ 0.50

B=m α[3] α Eq. (32) α Eq. (29)
0.002 1.211 1.216 1.216
0.02 1.624 1.623 1.623
0.20 3.252 3.251 3.251
0.40 4.416 4.415 4.416
0.80 6.096 6.094 6.094
1.20 7.206 7.204 7.204
1.60 7.850 7.849 7.849
2.00 8.062 8.061 8.061
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FIG. 1. The Nakanishi weight function gðLdÞb ðγ; z; κ2Þ for
μ=m ¼ 0.5 and B=m ¼ 0.2, 0.5, 1.0 (from the top) vs γ=m2

and two values of z. Thick lines refer to z ¼ 0 and thin lines
to z ¼ 0.4, as indicated by the inset. Solid lines: results from
Eq. (32). Dotted lines: results from Eq. (29).
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Testing Uniqueness [Frederico, Salmè, Viviani PRD89, 016010 (2014)] 

Ladder approx.  



Valence Probability 3+1 

points was 80 for each variable in gðLdÞ]. As for Eq. (32), one
has been able to get rid of the numerical inversion of the
matrix, since,defacto, ithasbeenmathematicallyperformed.
Finally, it is important noticing that for both equations, the
involvedmatrices are real but not symmetric, and, therefore,
pairs of complex eigenvalues can appear.
In order to achieve a very good convergence for both

eigenvalues and eigenvectors [in particular, for Eq. (32)],
the numerical studies with the basis in Eqs. (38)–(40)
has been extended up to Nz ¼ 18 and Ng ¼ 32, for all
the values of B=m, except for B=m ¼ 0.01 where we
extend Ng up to 48. Indeed, for B=m ≥ 0.1 a nice stability
of the eigenvalues can be reached already for Nz ¼ 8 and
Ng > 24. In general, the stability of the eigenvalues settles
well before that the convergence of the eigenvectors.
In Table I, the results for the coupling constant α corre-

sponding to Eqs. (29) and (32) for μ=m ¼ 0.15, 0.50 and
a set of binding energies B=m are shown. In particular, in

the second column, the results obtained in Ref. [6] by using
the spline basis are reported, while our results corresponding
to both Eqs. (29) and (32) are presented in the third column
and the fourthone, respectively. It is important to note that for
B=m ¼ 0.01 and μ=m ¼ 0.15, the stability of the eigenvalue
obtained through Eq. (32) is reached with Ng ≥ 46, when
a ¼ 6 is chosen, while Ng ¼ 28 is enough when a ¼ 12
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FIG. 3. The longitudinal LF distribution ϕðξÞ for the
valence component Eq. (34) vs the longitudinal-momentum
fraction ξ for μ=m ¼ 0.05, 0.15, 0.50. Dash-double-dotted
line: B=m ¼ 0.20. Dotted line: B=m ¼ 0.50. Solid line:
B=m ¼ 1.0. Dashed line: B=m ¼ 2.0. Recall that

R
1
0 dξϕðξÞ ¼

Pval (cf. Table III).

TABLE III. Values of Pval Eq. (33) evaluated by using the
weight function gðLdÞb ðγ; z; κ2Þ corresponding to Eq. (32) (i.e.,
with the application of the uniqueness theorem) are shown for
three values of μ=m and varying the binding energy, B=m.
Notice that for B=m ¼ 0.001, the values Nz ¼ 16, Ng ¼ 48,
and a ¼ 12 have been adopted in Eqs. (38) and (40) for
obtaining a better convergence.

μ=m ¼ 0.05

B/m α Pval
0.001 0.1685 0.94
0.01 0.3521 0.89
0.10 1.191 0.75
0.20 1.850 0.72
0.50 3.358 0.68
1.00 5.056 0.66
2.00 6.336 0.65

μ=m ¼ 0.15

B=m α Pval
0.001 0.3667 0.97
0.01 0.5716 0.94
0.10 1.437 0.80
0.20 2.099 0.75
0.50 3.611 0.70
1.00 5.314 0.67
2.00 6.598 0.66

μ=m ¼ 0.50

B=m α Pval
0.001 1.167 0.98
0.01 1.440 0.96
0.10 2.498 0.87
0.20 3.251 0.83
0.50 4.900 0.77
1.00 6.711 0.74
2.00 8.061 0.72
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1

B/m µ = 0.1 Eucl. µ = 0.5 Eucl.

0.01 0.82 0.79 5.33 5.31

0.1 4.26 4.26/4.268† 14.88 14.88

0.2 8.07 8.06 22.67 22.67

0.5 19.50 19.51 42.33 42.33

1 36.05 36.03/36.052 † 67.38 67.39

TABLE I. Values of g2/m3
calculated with ladder approxi-

mationfor di↵erent binding energies B and exchanged boson

masses µ. Comparison with Euclidean space calculations in-

cluding from Nieuwenhuis and Tjon, Few-Body Syst. 21, 167

(1996) (

†
).

Coupling constant (2+1) vs. Binding 

Ladder approx. 
 

 n=1 



Nakanishi weight function 
dependence upon themassM of the interacting system, but a
linear dependence upon the coupling constant α, given the
adopted ladder approximation. Therefore, it is customary
(i) first to choose avalue for the binding energy in the interval

0 ≤
B
m

¼ 2 −M
m

≤ 2;

and(ii) then to lookfor theminimalvalueof thecouplingcon-
stant that allows such a binding energy. A comment on the
range of the usually chosen interval is in order. As is well
known (see Ref. [31]), all the ϕ3 models do not show any

TABLE I. Values of α ¼ g2=ð16πm2Þ obtained by solving the
eigenequations (29) and (32) (i.e., the eigenequation with the
application of the uniqueness theorem). Results correspond to
μ=m ¼ 0.15, 0.50 varying the binding energies, B=m. The
second column contains the results obtained in Ref. [6] by
using the spline basis and Eq. (29); the third column shows
our results obtained from Eq. (29) by using our basis
[Eqs. (38)–(40)] with Nz ¼ 18, Ng ¼ 32, and a ¼ 6 in
Eq. (40); the fourth column contains our results obtained from
the eigenequation (32) and our basis.

μ=m ¼ 0.15

B=m α [6] α Eq. (29) α Eq. (32)
0.01 0.5716 0.5716 0.5716a

0.10 1.437 1.437 1.437
0.20 2.100 2.099 2.099
0.50 3.611 3.610 3.611
1.00 5.315 5.313 5.314

μ=m ¼ 0.50

B=m α [6] α Eq. (29) α Eq. (32)
0.01 1.440 1.440 1.440
0.10 2.498 2.498 2.498
0.20 3.251 3.251 3.251
0.50 4.901 4.901 4.901
1.00 6.712 6.711 6.711
aFor μ=m ¼ 0.15 and B=m ¼ 0.01, the stability of the
coupling constant (α < 1) is reached for Ng ≥ 46.

TABLE II. Values of α ¼ g2=ð16πm2Þ obtained by solving the
eigenequations (32) (i.e., with the application of the uniqueness
theorem) and (29). Results correspond to μ=m ¼ 0.50 varying the
binding energies, B=m. The second column shows the values
obtained in Ref. [3], where the uniqueness theorem was
exploited and an iterative method was adopted; the third
column corresponds to the solution of Eq. (32) by using our
basis [cf. Eqs. (38)–(40)]; the fourth column contains our
results from Eq. (29).

μ=m ¼ 0.50

B=m α[3] α Eq. (32) α Eq. (29)
0.002 1.211 1.216 1.216
0.02 1.624 1.623 1.623
0.20 3.252 3.251 3.251
0.40 4.416 4.415 4.416
0.80 6.096 6.094 6.094
1.20 7.206 7.204 7.204
1.60 7.850 7.849 7.849
2.00 8.062 8.061 8.061
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FIG. 1. The Nakanishi weight function gðLdÞb ðγ; z; κ2Þ for
μ=m ¼ 0.5 and B=m ¼ 0.2, 0.5, 1.0 (from the top) vs γ=m2

and two values of z. Thick lines refer to z ¼ 0 and thin lines
to z ¼ 0.4, as indicated by the inset. Solid lines: results from
Eq. (32). Dotted lines: results from Eq. (29).
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ground state; nonetheless, they are widely adopted for
illustrative purposes and for gaining insights into the effec-
tiveness of theoretical tools.Here,we also adhere to this gen-
eral attitude (seeRef. [32] for somedetailsonhowand towhat
extent it is possible to reconcile the general features of theϕ3

modelsand theactualcalculations).After introducingabasis,
it should be noticed that in the case of Eq. (29), one has a
generalized eigenvalue problem (cf. Ref. [6]) that in a sym-
bolic form reads

1

α
BðMÞgðLdÞ ¼ AðLdÞðMÞgðLdÞ; (42)

while for Eq. (32), one has a genuine eigenvalue problem,
viz.,

1

α
g ¼ DðLdÞðMÞgðLdÞ: (43)

The possibility to reduce the first problem to the second one
relies on the existence of the inverse of the integral operator
BðMÞ and the numerical feasibility of such inversion with
enough accuracy. In particular, in Ref. [6], where the spline
basiswas adopted, a small parameterwas added to thematrix
BðMÞ in order to achieve a good stability. We have investi-
gated if adopting our basis, which includes the expected
falloff of the weight function for large values of γ, one has
to similarly introduce a small parameter. Fortunately, with
our basis, the small quantity to be added to the diagonal terms
of AðLdÞðMÞ is ϵ ¼ 10−9 [the largest number of Gaussian
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FIG. 2. The Nakanishi weight function gðLdÞb ðγ; z; κ2Þ for μ=m ¼ 0.5 and B=m ¼ 0.2, 0.5, 1.0 (from the top) vs z and four values of
γ=m2. Thick lines refer to γ ¼ 0 and γ ¼ 0.01m2, while thin lines to γ ¼ 0.8m2 and γ ¼ 1m2, as indicated by the inset. Solid lines:
results from Eq. (32). Dotted lines: results from Eq. (29).
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Valence wave function 
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is adopted (with thisvalue fora, theconvergenceof theeigen-
vectors is not satisfactory for Ng ¼ 28).
Table II shows the comparison with the results from

Ref. [3]. It should be pointed out that in Ref. [3], only
the value μ=m ¼ 0.50 was considered, and the coupling
constant contained an extra factor π with respect to the def-
inition adopted in the present paper and in Ref. [6]. It is

important to remind that the eigenvalues shown in
Ref. [3] compared very favorably with the ones obtained
in Ref. [33], where the BS equation in ladder approximation
was solved in Euclidean space. Moreover, one can find in
Refs. [34,35] more evaluations both within the LF
Hamiltonian dynamics and in Euclidean space, which appear
in nice agreement with our calculations.
Finally, it should be pointed that all the digits of our

results presented in the tables are stable, and the numerical
uncertainties affect only the digit beyond the ones shown, at
the level of a few units.
In Figs. 1 and 2, the comparison between the weight

functions obtained from Eqs. (29)) and (31) is shown for
μ=m ¼ 0.50 and B=m ¼ 0.2, 0.5, 1.0. Few-percent
differences appear for small values of γ and are bigger
for small values of the binding energy. In this case,
the characteristic momentum associated with the weak-
binding energy is much smaller than the mass scale of
the system, and, therefore, to appropriately describe the
Nakanishi weight function, one should use a larger basis
which accurately spans both the small and large momentum
regions. This demands more numerical efforts that
can be postponed, since our present aim is to validate the
Nakanishi approach over the largest range of dynamical
regimes, which can be covered by the basis we have chosen
(see, e.g., Table I and B=m ¼ 0.01 and μ=m ¼ 0.15).
Notably, the above-mentioned differences do not have
any sizable effect on the LF distributions (see the next
subsection).
As a further check, we evaluated the solution of Eq. (29)

corresponding to μ=m ¼ 0.50 and B=m ¼ 1.0, by introduc-
ing a small parameter as in Ref. [6]. In particular, we
adopted ϵ ¼ 10−4 for comparing with the weight function
presented in Figs. 2 and 3 in Ref. [6], and we obtained the
same results. It is worth noting that also by adopting the
small parameter ϵ ¼ 10−4, we did not find any sizable
effects on the LF distributions.

B. Valence probability and LF distributions

After determining the expansion coefficients of the
Nakanishi weight function, as given in Eq. (38), and
imposing the normalization condition on the BS ampli-
tude, Eq. (B14)), one can calculate the valence compo-
nent of the interacting system, Eq. (16). Then, very
interesting (in particular, from the phenomenological
point of view) quantities can be evaluated. First of
all, the valence probability Eq. (33) can be obtained.
The results are shown in Table III for μ=m ¼ 0.05,
μ=m ¼ 0.15, and μ=m ¼ 0.5. Several values of B=m have
been chosen for covering the interval 0 < B=m ≤ 2.
It should be recalled that the asymptotic value Pval ¼ 1
reached for B=m → 0 is more and more closely
approached for smaller and smaller values of B=m (or
equivalently smaller values of α) when μ=m decreases.
Since in Table III there are also the results for
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FIG. 4. The transverse LF distribution PðγÞ for the valence
component Eq. (35) vs the adimensional variable γ=m2,
for μ=m ¼ 0.05, 0.15, 0.50. Dash-double-dotted line:
B=m ¼ 0.20. Dotted line: B=m ¼ 0.50. Solid line: B=m ¼ 1.0.
Dashed line: B=m ¼ 2.0. Recall that γ ¼ k2⊥ and

R∞
0 dγPðγÞ ¼

Pval (cf. Table III).
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points was 80 for each variable in gðLdÞ]. As for Eq. (32), one
has been able to get rid of the numerical inversion of the
matrix, since,defacto, ithasbeenmathematicallyperformed.
Finally, it is important noticing that for both equations, the
involvedmatrices are real but not symmetric, and, therefore,
pairs of complex eigenvalues can appear.
In order to achieve a very good convergence for both

eigenvalues and eigenvectors [in particular, for Eq. (32)],
the numerical studies with the basis in Eqs. (38)–(40)
has been extended up to Nz ¼ 18 and Ng ¼ 32, for all
the values of B=m, except for B=m ¼ 0.01 where we
extend Ng up to 48. Indeed, for B=m ≥ 0.1 a nice stability
of the eigenvalues can be reached already for Nz ¼ 8 and
Ng > 24. In general, the stability of the eigenvalues settles
well before that the convergence of the eigenvectors.
In Table I, the results for the coupling constant α corre-

sponding to Eqs. (29) and (32) for μ=m ¼ 0.15, 0.50 and
a set of binding energies B=m are shown. In particular, in

the second column, the results obtained in Ref. [6] by using
the spline basis are reported, while our results corresponding
to both Eqs. (29) and (32) are presented in the third column
and the fourthone, respectively. It is important to note that for
B=m ¼ 0.01 and μ=m ¼ 0.15, the stability of the eigenvalue
obtained through Eq. (32) is reached with Ng ≥ 46, when
a ¼ 6 is chosen, while Ng ¼ 28 is enough when a ¼ 12
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FIG. 3. The longitudinal LF distribution ϕðξÞ for the
valence component Eq. (34) vs the longitudinal-momentum
fraction ξ for μ=m ¼ 0.05, 0.15, 0.50. Dash-double-dotted
line: B=m ¼ 0.20. Dotted line: B=m ¼ 0.50. Solid line:
B=m ¼ 1.0. Dashed line: B=m ¼ 2.0. Recall that

R
1
0 dξϕðξÞ ¼

Pval (cf. Table III).

TABLE III. Values of Pval Eq. (33) evaluated by using the
weight function gðLdÞb ðγ; z; κ2Þ corresponding to Eq. (32) (i.e.,
with the application of the uniqueness theorem) are shown for
three values of μ=m and varying the binding energy, B=m.
Notice that for B=m ¼ 0.001, the values Nz ¼ 16, Ng ¼ 48,
and a ¼ 12 have been adopted in Eqs. (38) and (40) for
obtaining a better convergence.

μ=m ¼ 0.05

B/m α Pval
0.001 0.1685 0.94
0.01 0.3521 0.89
0.10 1.191 0.75
0.20 1.850 0.72
0.50 3.358 0.68
1.00 5.056 0.66
2.00 6.336 0.65

μ=m ¼ 0.15

B=m α Pval
0.001 0.3667 0.97
0.01 0.5716 0.94
0.10 1.437 0.80
0.20 2.099 0.75
0.50 3.611 0.70
1.00 5.314 0.67
2.00 6.598 0.66

μ=m ¼ 0.50

B=m α Pval
0.001 1.167 0.98
0.01 1.440 0.96
0.10 2.498 0.87
0.20 3.251 0.83
0.50 4.900 0.77
1.00 6.711 0.74
2.00 8.061 0.72
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The states in the continuum:
projection onto LF of the scattered part of the BS amplitude

�(+)(k, p) = (2⇡)4�(4)
�
k � ki

�
+ G(12)

0 (k, p)
Z d4k0

(2⇡)4
i K(k, k0, p)�(+)(k0, p),

Scattered part of the valence wave function :

Z dk�

2⇡


�(+)(k, p) � (2⇡)4�(4)(k � ki )

�
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Z dk�
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G(12)
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+

Z dk�

2⇡
G(12)

0 (k, p)
Z d4k0

(2⇡)4
i K(k, k0, p)


�(+)(k0, p) � (2⇡)4�(4)(k0 � ki )

�
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Scattering Eq. for the Nakanishi weight function:

Z 1

�1
dz0

Z 1

�1
d�0 g(+)(�0, z0, z; �i , zi )

[�0 + � + z2m2 + (1 � z2)2 + M
2 z z0( M

2 zi + k�i ) + 2z0cos✓p��i � i✏]2
=

= ILF (�, z; �i , zi , cos✓) +
Z 1

�1
d�0

Z 1

�1
d⇣

Z 1

�1
d⇣0 VLF

s (�, z; �i , zi , �
0, ⇣, ⇣0, cos✓) g(+)(�0, ⇣, ⇣0 ; �i , zi ).

) full scattering amplitude directly from the valence wave function!
(�i = |ki?|2 is the incident transverse momentum.)
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The scattering amplitude

f (s, ✓) = �
1

M 8⇡
lim

k̃0!k̃f

hk̃ 0|g�1
0 (p)|�(+)

LF ; p, k̃i i

is explicitly given by:
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The scattering amplitude

f (s, ✓) = �
i

M 8 ⇡
lim

(�,z)!(�f ,zf )

h
� + (1 � z2)2 + z2m2

i 
ILF (�, z; �i , zi )+

+

Z 1

�1
d�0

Z 1

�1
d⇣

Z 1

�1
d⇣0 V LF

s (�, z; �i , zi , �
0, ⇣, ⇣0, cos✓)g(+)(�0, ⇣, ⇣0; �i , zi )

�
,

where �f = �i and zf = zi .

Notice that the factor � + (1 � z2)2 + z2m2 vanishing for (�, z) ! (�f , zf ), is
canceled out by the corresponding one in ILF and V LF

s .

i 

-1 

1 

-1 

+ 



  Support of  

For                only                       survives 
     in the ladder approximation 

g(+)(�0, ...)

M ! 2m g(+)(�0 > 0, ...)
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Zero-energy scattering (2 = 0 & M = 2m): Ladder approx.

g(+)(�, z) =
g2

µ2
✓(�)

h
✓(z) ✓(1 � z � �/µ2) + ✓(�z) ✓(1 + z � �00/µ2)
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+
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2(4⇡)2
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✓(z0 � z) h(�, z; �0, z0;µ2)|2=0

+
�
z ! �z, z0 ! �z0�⇤ g(+)(�0, z0)

) scattering length can be obtained.
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Prospects in 3+1 
•  Nakanishi PTIR for mesons and barions: higher Fock-states 
•  Quark self-energy, SD and qq-scattering 
•  Form-Factors, GPD’s… 
•  Relativistic few-nucleon systems 
•  Relativistic few-meson systems  
•  Heavy meson decay & FSI  
•  CP violation in  

     (Bediaga, TF, Lourenço PRD89 (2014) 094013) 
 
 

Prospects in 2+1 
•  Scattering e-hàe-h and effect on the conductivity 
•  Electron Self-energy Schwinger-Dyson - nanoribbons 
•  Light-front Bethe-Salpeter equation excitons 
•  Curved surfaces and excitons + Nakanishi 
•  Raman spectroscopy with relativistic models … 
•  ….                  
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