Higher spin fields in twistor formulation

Sergey Fedoruk

BLTP JINR, Dubna, Russia

(with J.A.de Azcárraga, J.M. Izquierdo, J. Lukierski) based on JHEP 1504 (2015) 010

Brazil - JINR Forum
"Frontiers in Nuclear, Elementary Particle and Condensed Matter Physics"
Dubna, June 15-19, 2015

This talk provides a brief description of $D=3$ and $D=4$ world-line models for massive particles moving in a new type of enlarged spacetime, with $D-1$ additional vector coordinates, which after quantization lead to towers of massive higher spin (HS) fields.
Plan of my talk:

- It will be presented the main features of the twistorial formulation of the massless higher-spin fields theory and the required changes for the massive case.
- Two classically equivalent formulations will be presented: one with a hybrid spacetime/bispinor variables and a second described by a free two-twistor dynamics with constraints.
- After first quantization of the pure twistor models in the $D=3$ and $D=4$ cases, we will obtain that the massive wave functions are given as functions on the $S L(2, \mathbb{R})$ and $S L(2, \mathbb{C})$ group manifolds respectively, which describe arbitrary on-shell momenta and spin degrees of freedom.
- Combining the Fourier and twistor transformations we will obtain integral twistor transform which compares conventional massive multi-spinor space-time fields to the components in the expansion of the massive twistor field.
- Finally, we will present some comments related to the further studies of twistor description of massive HS fields.

HS particle in tensorial space-time

I.Bandos, J.Lukierski, D.Sorokin, 1999, 2000
M.A.Vasiliev 2001

- The $D=4 \mathrm{HS}$ model in tensorial space $\left(x^{\alpha \dot{\beta}}, y^{\alpha \beta}, \bar{y}^{\dot{\alpha} \dot{\beta}}\right)$ is provided by the following action

$$
S=\int d \tau\left(\pi_{\alpha} \bar{\pi}_{\dot{\beta}} \dot{\bar{x}}^{\alpha \dot{\beta}}+\pi_{\alpha} \pi_{\beta} \dot{y}^{\alpha \beta}+\bar{\pi}_{\dot{\alpha}} \bar{\pi}_{\dot{\beta}} \dot{\bar{y}}^{\dot{\alpha} \dot{\beta}}+\pi_{\alpha} \dot{y}^{\alpha}+\bar{\pi}_{\dot{\alpha}} \dot{\bar{y}}^{\dot{\alpha}}\right)
$$

$y^{\alpha \beta}$ are three additional complex coordinates; π_{α} and y^{α} are commuting Weyl spinors. The constraints lead to unfolded equations on HS field $\Psi_{0}\left(x^{\alpha \dot{\beta}}, y^{\alpha \beta}, \bar{y}^{\dot{\alpha} \dot{\beta}} ; y^{\alpha}, \bar{y}^{\dot{\alpha}}\right)$:

$$
\left(p_{\alpha \dot{\beta}}-\pi_{\alpha} \bar{\pi}_{\dot{\beta}}\right) \Psi_{0}=0, \quad\left(p_{\alpha \beta}-\pi_{\alpha} \bar{\pi}_{\beta}\right) \Psi_{0}=0, \quad\left(\bar{p}_{\dot{\alpha} \dot{\beta}}-\bar{\pi}_{\dot{\alpha}} \bar{\pi}_{\dot{\beta}}\right) \Psi_{0}=0
$$

- Transition to the twistor description is achieved by Penrose incidence relation:

$$
\omega^{\alpha}=x^{\alpha \dot{\beta}} \bar{\pi}_{\dot{\beta}}+2 y^{\alpha \beta} \pi_{\beta}+y^{\alpha}, \quad \bar{\omega}^{\dot{\alpha}}=\pi_{\beta} x^{\beta \dot{\alpha}}+2 \bar{y}^{\dot{\alpha} \dot{\beta}} \bar{\pi}_{\dot{\beta}}+\bar{y}^{\dot{\alpha}} .
$$

Then the action can be rewritten (modulo boundary terms) as the one-twistor particle model

$$
S=-\frac{1}{2} \int d \tau\left(\bar{Z}_{A} \dot{Z}^{A}+\text { h.c. }\right)=-\frac{1}{2} \int d \tau\left(\omega^{\alpha} \dot{\pi}_{\alpha}-\bar{\pi}_{\dot{\alpha}} \dot{\bar{\omega}}^{\dot{\alpha}}+\text { h.c. }\right),
$$

where the $D=4$ twistor $Z^{A}, A=1, \ldots, 4$ is described by a pair of Weyl spinors

$$
Z^{A}=\left(\pi_{\alpha}, \bar{\omega}^{\dot{\alpha}}\right)
$$

- At quantization in holomorphic representation twistor field $\Phi_{0}\left(Z^{A}\right)$ combines infinite tower of arbitrary helicity massless fields, which are determined by the integral transformation

$$
\psi_{\alpha_{1} \ldots \alpha_{n}}(x)=\left.\int d \pi e^{i \pi_{\gamma} \bar{\pi}_{\dot{\gamma}} x^{\gamma \dot{\gamma}}} \pi_{\alpha_{1}} \ldots \pi_{\alpha_{n}} \Phi_{0}(\pi, \bar{\omega})\right|_{\bar{\omega}^{\dot{\beta}}=\pi_{\beta} x^{\beta \dot{\beta}}}
$$

Massless states with fixed helicity are eigenvectors of the helicity operator

$$
h=\frac{i}{2} \bar{Z}_{A} z^{A} .
$$

- Basic twistor relation $p_{\alpha \dot{\beta}} \sim \pi_{\alpha} \bar{\pi}_{\dot{\beta}} \quad$ requires to use more than one twistor in the massive case $\quad p^{\alpha \dot{\beta}} p_{\alpha \dot{\beta}} \neq 0 \quad$ since $\quad \pi^{\alpha} \pi_{\alpha} \equiv 0$. So, we have to use at least two twistors, including spinors $\pi_{\alpha}^{i}, i=1,2$.
- In massless case, used variables reflect a generalized conformal symmetry $\operatorname{Sp}(8)$: - tensorial space-time $\left(x^{\alpha \dot{\beta}}, y^{\alpha \beta}, \bar{y}^{\dot{\alpha} \dot{\beta}}\right)$ is the coset space $\frac{S p(8)}{G L(4) \otimes K}$;
- Sp(8) transformations are realized as linear transformation of the twistor $Z^{A}=\left(\pi_{\alpha}, \bar{\omega}^{\dot{\alpha}}\right)$. - tensorial coordinates correspond to the generalized momenta generators in M-theory extension of the $N=1$ Poincare superalgebra

$$
\left\{Q_{\alpha}, \bar{Q}_{\dot{\beta}}\right\}=P_{\alpha \dot{\beta}}, \quad\left\{Q_{\alpha}, Q_{\beta}\right\}=Z_{\alpha \beta}, \quad\left\{\bar{Q}_{\dot{\alpha}}, \bar{Q}_{\dot{\beta}}\right\}=\bar{Z}_{\dot{\alpha} \dot{\beta}}
$$

- In massive case we do not know what supergroup is

> HS generalization of the Poincare group.

The use of two (super) twistors involves consideration

$$
\text { of } N=2 \text { Poincare supersymmetry with generators } Q_{\alpha}^{i}, \bar{Q}_{\dot{\alpha}}^{i} \text {. }
$$

One of the possible generalizations is superalgebras with the most common right-hand side in the following anticommutators

$$
\left\{Q_{\alpha}^{i}, \bar{Q}_{\dot{\beta}}^{j}\right\}=\left(\sigma_{a}\right)^{i j} P_{\alpha \dot{\beta}}^{a}=\epsilon^{i j} P_{\alpha \dot{\beta}}+\left(\sigma_{r}\right)^{i j} P_{\alpha \dot{\beta}}^{r}, \quad a=0,1,2,3, \quad r=1,2,3 .
$$

This involves the use of three additional vector variables $y_{r}^{\alpha \dot{\beta}}$ in addition to the position vector $x^{\alpha \dot{\beta}}$.

- HS massless generalization of Shirafuji model is defined by the action
(I.Bandos, J.Lukierski, D.Sorokin, 2000; M.A.Vasiliev 2001)

$$
S_{m i x}^{(m=0)}=\int d \tau\left(\pi_{\alpha} \bar{\pi}_{\dot{\beta}} \dot{x}^{\alpha \dot{\beta}}+\pi_{\alpha} \pi_{\beta} \dot{y}^{\alpha \beta}+\bar{\pi}_{\dot{\alpha}} \bar{\pi}_{\dot{\beta}} \dot{y}^{\dot{\alpha} \dot{\beta}}+\pi_{\alpha} \dot{y}^{\alpha}+\bar{\pi}_{\dot{\alpha}} \dot{\bar{y}}^{\alpha}\right)
$$

This system possesses the constraints

$$
p_{\alpha \dot{\beta}}-\pi_{\alpha} \bar{\pi}_{\dot{\beta}} \approx 0, \quad p_{\alpha \beta}-\pi_{\alpha} \pi_{\beta} \approx 0, \quad p_{\dot{\alpha} \dot{\beta}}-\bar{\pi}_{\dot{\alpha}} \bar{\pi}_{\dot{\beta}} \approx 0
$$

which produce unfolded equations for HS wave function.

- We consider the following HS massive generalization of Shirafuji model:

$$
\begin{gathered}
S_{m i x}^{(m \neq 0)}=\int d \tau\left[\pi_{\alpha}^{i} \bar{\pi}_{\dot{\beta} i} \dot{x}^{\alpha \dot{\beta}}+\pi_{\alpha}^{i}\left(\sigma^{r}\right)_{i}^{j} \bar{\pi}_{\dot{\beta} j} \dot{y}_{r}^{\alpha \dot{\beta}}+\pi_{\alpha}^{i} \dot{y}_{i}^{\alpha}+\bar{\pi}_{\dot{\alpha} i} \dot{\bar{y}}^{\alpha i}\right. \\
\left.+\rho\left(\pi_{\alpha}^{i} \pi_{i}^{\alpha}+2 M\right)+\bar{\rho}\left(\bar{\pi}_{\dot{\alpha}}^{i} \bar{\pi}_{i}^{\dot{\alpha}}+2 \bar{M}\right)\right]
\end{gathered}
$$

where $y_{r}^{\alpha \dot{\beta}}$ are three additional vector coordinates. As we will see below, these variables play the role of conjugated coordinates to the phase coordinates, which define Pauli-Lubanski vector.

- Proposed HS massive Shirafuji action leads to the constraints

$$
p_{\alpha \dot{\beta}}^{a}-u_{\alpha \dot{\beta}}^{a} \approx 0, \quad u_{\alpha \dot{\beta}}^{a}=\pi_{\alpha}^{i}\left(\sigma^{a}\right)_{i}^{j} \bar{\pi}_{\dot{\beta} j}, \quad a=0,1,2,3,
$$

which give massive generalization of HS unfolded equations after quatization and imply at $a=0$ massive particle spectrum:

$$
p_{\alpha \dot{\beta}} p^{\alpha \dot{\beta}}=p^{\mu} p_{\mu}=2|M|^{2}=m^{2} .
$$

Group-theoretic analysis of the model has a more effective after pass to pure twistor formulation.

- One half of the twistor variables are the spinors $\pi_{\alpha}^{i}, \bar{\pi}_{\dot{\alpha} i}$.

The second half of the twistors is defined by the following HS generalization of the incidence relations

$$
\bar{\omega}^{\dot{\alpha} i}=\pi_{\beta}^{i} x^{\beta \dot{\alpha}}+\pi_{\beta}^{j}\left(\sigma^{r}\right)_{j}^{i} y_{r}^{\beta \dot{\alpha}}+\bar{y}^{\dot{\alpha} i}, \quad \omega_{i}^{\alpha}=x^{\alpha \dot{\beta}} \bar{\pi}_{\dot{\beta} i}+y_{r}^{\alpha \dot{\beta}}\left(\sigma^{r}\right)_{i}^{j} \bar{\pi}_{\dot{\beta} j}+y_{i}^{\alpha} .
$$

- The $D=4$ twistors $(S p(8)$ spinors in HS massless limit and $S U(2,2)$ spinors in fixed helicity limit) can be expressed by two pairs of two-component Weyl spinors

$$
Z^{A i}=\binom{\pi_{\alpha}^{i}}{\bar{\omega}^{\dot{\alpha} i}}, \quad \bar{Z}_{A i}=\left(\omega_{i}^{\alpha},-\bar{\pi}_{\dot{\alpha} i}\right), \quad A=1,2,3,4 .
$$

- Two-twistorial realization of the $D=4$ Poincaré algebra is the following

$$
P_{\alpha \dot{\beta}}=\pi_{\alpha}^{i} \bar{\pi}_{\dot{\beta} i}, \quad M_{\alpha \beta}=\pi_{(\alpha}^{i} \omega_{\beta) i}, \quad M_{\dot{\alpha} \dot{\beta}}=\bar{\omega}_{(\dot{\alpha}}^{i} \bar{\pi}_{\dot{\beta}) i} .
$$

The Pauli-Lubański four-vector $W_{\mu}=\frac{1}{2} \epsilon_{\mu \nu \rho \sigma} P^{\nu} M^{\rho \sigma}$ can be written as follows

$$
W^{\alpha \dot{\beta}}=S_{r} u_{r}^{\alpha \dot{\beta}}, \quad r=1,2,3
$$

where $\quad S_{r}=-\frac{i}{2}\left(\pi_{\alpha}^{i} \omega_{j}^{\alpha}-\bar{\pi}_{\dot{\alpha} j} \bar{\omega}^{\dot{\alpha} i}\right)\left(\sigma_{r}\right)_{i}{ }^{j}$.
It follows that

$$
W^{\mu} W_{\mu}=-m^{2} \vec{S}^{2}
$$

After quantization, we obtain the well known relativistic spin square spectrum with \vec{S}^{2} replaced by $s(s+1)\left(s=0, \frac{1}{2}, 1, \ldots\right)$.

- Applying incidence relations in mixed action we get twistor formulation of HS massive particle:

$$
S_{t w i s t o r}^{(m \neq 0)}=\int d \tau\left[\pi_{\alpha}^{i} \dot{\omega}_{i}^{\alpha}+\bar{\pi}_{\dot{\alpha} i} \dot{\bar{\omega}}^{\dot{\alpha} i}+\mu\left(\pi_{\alpha}^{i} \pi_{i}^{\alpha}+2 M\right)+\bar{\mu}\left(\bar{\pi}_{\dot{\alpha}}^{i} \bar{\pi}_{i}^{\dot{\alpha}}+2 \bar{M}\right)\right] .
$$

In these formulation there are presented basic constraints

$$
G \equiv \pi_{\alpha}^{i} \pi_{i}^{\alpha}+2 M \approx 0, \quad \bar{G} \equiv \bar{\pi}_{\dot{\alpha}}^{i} \bar{\pi}_{i}^{\dot{\alpha}}+2 \bar{M} \approx 0
$$

- These constraints mean that the spinors

$$
g_{\alpha}^{i} \equiv M^{-1 / 2} \pi_{\alpha}^{i}, \quad \bar{g}_{\dot{\alpha} i} \equiv M^{-1 / 2} \bar{\pi}_{\dot{\alpha} i} ; \quad \epsilon^{\alpha \beta} g_{\alpha}^{i} g_{\beta}^{k}=\epsilon^{i k}
$$

constitute a pair of complex-conjugated spinorial $D=4$ Lorentz harmonics (I.Bandos, 1990; F.Delduc, A.Galperin, E.Sokatchev, 1992; SF, V.Zima, 1995).

Composite real four-vectors

$$
e_{\mu}^{a}=\frac{1}{2 M}\left(\sigma_{\mu}\right)^{\alpha \dot{\beta}} u_{\alpha \dot{\beta}}^{a}, \quad e_{\mu a} e_{b}^{\mu}=\eta_{a b}, \quad \eta_{a b}=(1,-1,-1,-1)
$$

describe an orthonormal vectorial Lorentz frame defining $D=4$ vectorial Lorentz harmonics (E.Sokatchev, 1986).

- For the local gauge transformations generated by the constraints G, \bar{G} we introduce the gauge fixing conditions

$$
i\left(\pi_{\alpha}^{i} \bar{\omega}_{i}^{\alpha}-\bar{\pi}_{\dot{\alpha} i} \omega^{\dot{\alpha} i}\right) \approx 0, \quad \pi_{\alpha}^{i} \bar{\omega}_{i}^{\alpha}+\bar{\pi}_{\dot{\alpha} i} \omega^{\dot{\alpha} i} \approx 0
$$

The Dirac brackets for the twistor components are the following

$$
\begin{gathered}
\left\{\pi_{\alpha}^{k}, \pi_{\beta}^{j}\right\}_{*}=\left\{\pi_{\alpha}^{k}, \bar{\pi}_{\dot{\beta} j}\right\}_{*}=0 \\
\left\{\omega_{k}^{\alpha}, \pi_{\beta}^{j}\right\}_{*}=\delta_{\beta}^{\alpha} \delta_{k}^{j}+\frac{1}{2 M} \pi_{k}^{\alpha} \pi_{\beta}^{j}, \quad\left\{\bar{\omega}^{\dot{\alpha} k}, \pi_{\beta}^{j}\right\}_{*}=0 \\
\left\{\omega_{k}^{\alpha}, \omega_{j}^{\beta}\right\}_{*}=-\frac{1}{M}\left(\pi_{k}^{\alpha} \bar{\omega}_{j}^{\beta}-\pi_{j}^{\beta} \bar{\omega}_{k}^{\alpha}\right), \quad\left\{\omega_{k}^{\alpha}, \bar{\omega}^{\dot{\beta} j}\right\}_{*}=0
\end{gathered}
$$

- We will consider the $(\pi, \bar{\pi})$-realization of quantized version of the DB algebra. In such a realization, after using the ordering with π 's at the left and ω 's at the right, we obtain $\hat{\pi}_{\alpha}^{k}=\pi_{\alpha}^{k}, \hat{\bar{\pi}}_{\dot{\alpha} k}=\bar{\pi}_{\dot{\alpha} k}$ and

$$
\hat{\omega}_{k}^{\alpha}=i \frac{\partial}{\partial \pi_{\alpha}^{k}}+\frac{i}{2 M} \pi_{k}^{\alpha} \pi_{\beta}^{j} \frac{\partial}{\partial \pi_{\beta}^{j}}, \quad \hat{\omega}^{\dot{\alpha} k}=i \frac{\partial}{\partial \bar{\pi}_{\dot{\alpha} k}}-\frac{i}{2 \bar{M}} \bar{\pi}^{\dot{\alpha} k} \bar{\pi}_{\dot{\beta} j} \frac{\partial}{\partial \bar{\pi}_{\dot{\beta} j}}
$$

The quantum counterparts of the spin operators

$$
\hat{S}_{r}=\frac{1}{2}\left(\pi_{\alpha}^{i} \frac{\partial}{\partial \pi_{\alpha}^{k}}-\bar{\pi}_{\dot{\alpha} k} \frac{\partial}{\partial \bar{\pi}_{\dot{\alpha} i}}\right)\left(\sigma_{r}\right)_{i}^{k} .
$$

The square of the Pauli-Lubański vector becomes $\hat{W}^{\mu} \hat{W}_{\mu}=-m^{2} \hat{S}^{r} \hat{S}^{r}$, which will be used below to define spin states.

Thus, the twistorial wave function is defined on the space parametrized by $\pi_{\alpha}^{i}, \bar{\pi}_{\dot{\alpha} i}$ which satisfy the constraints G, \bar{G} and the matrix $g_{\alpha}^{i}=M^{-1 / 2} \pi_{\alpha}^{i}$ defines the $S L(2, \mathbb{C})$ group manifold. Thus, the twistorial wave function $\psi=\Psi\left(\pi_{\alpha}^{i}, \bar{\pi}_{\dot{\alpha} i}\right)$ is defined on $\operatorname{SL}(2, \mathbb{C})$ parametrized by π_{α}^{i}.

Let us analyze the twistorial wave function.

- One can use the well known decomposition of $S L(2, \mathbb{C})$ elements

$$
g=h v, \quad g_{\alpha}{ }^{i}=h_{\alpha}{ }^{\mathrm{k}} v_{\mathrm{k}}{ }^{i},
$$

in terms of the product of an hermitian matrix $h=h^{\dagger}$ with unit determinant and an $S U(2)$ matrix $v, v^{\dagger} v=1$.

- The three parameters of the matrix h parametrize the coset $S L(2, \mathbb{C}) / S U(2)$ which defines the three-dimensional mass hyperboloid for timelike four-momenta:

$$
p_{\alpha \dot{\beta}}=h_{\alpha}{ }^{i} \bar{h}_{\dot{\beta} \dot{1}}
$$

- The unitary matrix v paramerizes $\mathbb{S}^{3} \sim S U(2)$ and is linked with the spin degrees of a massive particle. In particular, the spin operators take the form

$$
\hat{S}_{r}=\frac{1}{2}\left(\sigma_{r}\right)_{j}^{k} v_{\mathrm{i}}{ }^{j} \frac{\partial}{\partial v_{\mathrm{i}}{ }^{k}} .
$$

- We can consider the variables $v_{i}{ }^{k}$ as the harmonic variables that were introduced early to describe $N=2$ superfield formulations (GIKOS). In the notation

$$
v_{\mathrm{i}}{ }^{k}=\left(v_{\mathrm{i}}{ }^{1}, v_{\mathrm{i}}{ }^{2}\right)=\left(v_{\mathrm{i}}^{+}, v_{\mathrm{i}}^{-}\right), \quad v^{+\mathrm{i}} v_{\mathrm{i}}^{-}=1, \quad\left(v_{\mathrm{i}}^{ \pm}\right)^{*}=\mp v^{\mp i}
$$

the spin operators take the form

$$
D^{0} \equiv 2 \hat{S}_{3}=v_{i}^{+} \frac{\partial}{\partial v_{i}^{+}}-v_{i}^{-} \frac{\partial}{\partial v_{i}^{-}}, \quad D^{ \pm \pm} \equiv \hat{S}_{1} \pm i \hat{S}_{2}=v_{i}^{ \pm} \frac{\partial}{\partial v_{i}^{\mp}}
$$

and the square of the Pauli-Lubański vector is given by the formula

$$
\hat{W}^{\mu} \hat{W}_{\mu}=-\frac{m^{2}}{4}\left[\left(D^{0}\right)^{2}+2\left\{D^{++}, D^{--}\right\}\right] .
$$

- Since the variables $v_{i}^{ \pm}$parametrize a compact space, the general wave function on $S L(2, \mathbb{C})$ has the following harmonic expansion (we use the $S U(2)$-covariant expansion)

$$
\Psi\left(h_{\alpha}{ }^{i}, v_{i}^{k}\right)=\sum_{K, N=0}^{\infty} v_{\left(i_{1}\right.}^{+} \ldots v_{i_{N}}^{+} v_{j_{1}}^{-} \ldots v_{\left.j_{K}\right)}^{-} f^{i_{1} \ldots i_{N} j_{1} \ldots j_{K}}(h),
$$

where the coefficient fields $f^{\left(\mathrm{i}_{1} \ldots \mathrm{i}_{N} j_{1} \ldots j_{K}\right)}(h)$ are symmetric with respect to all indices and depend on the on-shell four-momenta p_{μ}.

Each monomial in the expansion is an eigenvector of the Casimir operator:

$$
\hat{W}^{\mu} \hat{W}_{\mu}\left(v_{i}^{+}\right)^{N}\left(v_{j}^{-}\right)^{K} f^{(\mathrm{i})_{N}(\mathrm{j})_{K}}=-m^{2} s(s+1)\left(v_{\mathrm{i}}^{+}\right)^{N}\left(v_{j}^{-}\right)^{K} f^{(\mathrm{i})_{N}(\mathrm{j})_{K}}, \quad s=\frac{N+K}{2} .
$$

So, the wave function expression is the general expansion into arbitrary spin states.

- By means of the nonsingular transformation $v_{i}^{ \pm} \rightarrow \pi_{\alpha}^{ \pm}$or $v_{i}^{\mp} \rightarrow \bar{\pi}_{\dot{\alpha}}^{ \pm}$where

$$
\left(\pi_{\alpha}^{+}, \pi_{\alpha}^{-}\right)=\left(\pi_{\alpha}^{1}, \pi_{\alpha}^{2}\right), \quad\left(\bar{\pi}_{\dot{\alpha}}^{+}, \bar{\pi}_{\dot{\alpha}}^{-}\right)=\left(\bar{\pi}_{\dot{\alpha} 2},-\bar{\pi}_{\dot{\alpha} 1}\right),
$$

and by redefining component fields the expansion can be rewritten in $S L(2, \mathbb{C})$-covar. form.

- But we would like to stress that the spin content in the expansion is degenerate.

This degeneracy can be however removed by the harmonic condition $D^{++} \tilde{\Psi}^{(+)}=0$.
As a solution of this condition, we obtain the following wave function

$$
\tilde{\Psi}^{(+)}\left(h_{\alpha}{ }^{i}, v_{i}^{ \pm}\right)=\sum_{N=0}^{\infty} v_{i_{1}}^{+} \ldots v_{i_{N}}^{+} f^{\mathrm{i}_{1} \ldots \mathrm{i}_{N}}(h) .
$$

This twistor wave function rewritten in Lorentz covariant way takes the form

$$
\tilde{\Psi}^{(+)}\left(\pi_{\alpha}^{ \pm}, \bar{\pi}_{\dot{\alpha}}^{ \pm}\right)=\sum_{N=0}^{\infty} \pi_{\alpha_{1}}^{+} \ldots \pi_{\alpha_{N}}^{+} \psi^{\alpha_{1} \ldots \alpha_{N}}\left(p_{\mu}\right)
$$

Note that these twistor wave function also depends on π_{α}^{-}and $\bar{\pi}_{\dot{\alpha}}^{ \pm}$through p_{μ}.

- Spin $s=L / 2$ massive particles are described by the fields $\psi^{\alpha_{1} \ldots \alpha_{L}}\left(p_{\mu}\right)$. The corresponding multispinor spacetime fields are obtained by an integral Fourier-twistor transform which combines the Fourier and twistor transformations:

$$
\begin{aligned}
\phi_{\alpha_{1} \ldots \alpha_{L}}(x)= & \int d^{6} \pi e^{-i x^{\mu}} p_{\mu} \pi_{\alpha_{1}}^{-} \ldots \pi_{\alpha_{L}}^{-} \tilde{\Psi}^{(+)}\left(\pi^{ \pm}, \bar{\pi}^{ \pm}\right) \\
\phi_{\alpha_{1} \ldots \alpha_{L-1}} \dot{\beta}_{1}(x)= & \int d^{6} \pi e^{-i x^{\mu}} p_{\mu} \pi_{\alpha_{1}}^{-} \ldots \pi_{\alpha_{L-1}}^{-} \bar{\pi}^{-\dot{\beta}_{1}} \tilde{\Psi}^{(+)}\left(\pi^{ \pm}, \bar{\pi}^{ \pm}\right) \\
\phi^{\dot{\beta}_{1} \ldots \dot{\beta}_{L}}(x)= & \int d^{6} \pi e^{-i x^{\mu}} p_{\mu} \bar{\pi}^{-\dot{\beta}_{1}} \ldots \bar{\pi}^{-\dot{\beta}_{L}} \tilde{\Psi}^{(+)}\left(\pi^{ \pm}, \bar{\pi}^{ \pm}\right)
\end{aligned}
$$

where p_{μ} is defined as a bilinear product of twistors. In the integrals for a given L, only the term $\pi_{\alpha_{1}}^{+} \ldots \pi_{\alpha_{L}}^{+} \psi^{\alpha_{1} \ldots \alpha_{L}}\left(p_{\mu}\right)$ in the twistorial wave function gives non-zero contribution.

- We can show that the multispinors $\phi_{\alpha_{1} \ldots \alpha_{N}} \dot{\beta}_{1} \ldots \dot{\beta}_{M}$ satisfy automatically the following sequence of Dirac-Fierz-Pauli field equations

$$
\begin{aligned}
i \partial_{\alpha \dot{\beta}_{M}} \phi_{\alpha_{1} \ldots \alpha_{N}} \dot{\beta}_{1} \ldots \dot{\beta}_{M} & =m \phi_{\alpha \alpha_{1} \ldots \alpha_{N}} \dot{\beta}_{1} \ldots \dot{\beta}_{M-1} \\
i \partial^{\alpha \dot{\beta}_{M}} \phi_{\alpha \alpha_{1} \ldots \alpha_{N}} \dot{\beta}_{1} \ldots \dot{\beta}_{M-1} & =m \phi_{\alpha_{1} \ldots \alpha_{N}} \dot{\beta}_{1} \ldots \dot{\beta}_{M}
\end{aligned}
$$

and the generalized Lorenz conditions

$$
\partial^{\dot{\beta} \alpha} \phi_{\alpha_{1} \ldots \alpha_{N-1} \alpha \dot{\beta}} \dot{\beta}_{1} \ldots \dot{\beta}_{M-1}=0 .
$$

In $D=3$ case twistorial formulation of massive HS particle is similar to the $D=4$ case.

- $D=3$ twistors are real four-dimensional $\operatorname{Sp}(4 ; \mathbb{R})=\overline{S O(3,2)}$ spinors:

$$
t^{A i}=\binom{\lambda_{\alpha}^{i}}{\mu^{\alpha i}}, \quad \alpha=1,2, \quad i=1,2, \quad A=1, \ldots, 4
$$

Pure twistor action of massive HS particle takes the form

$$
S_{\text {twistor }}^{(D=3)}=\int d \tau\left[\lambda_{\alpha}^{i} \dot{\mu}^{\alpha i}+\ell\left(\lambda_{\alpha}^{i} \lambda_{i}^{\alpha}+\sqrt{2} m\right)\right]
$$

- Due to the mass constraint $\lambda_{\alpha}^{i} \lambda_{i}^{\alpha}+\sqrt{2} m \approx 0$ the real matrices $h_{\alpha}{ }^{i}=2^{1 / 4} m^{-1 / 2} \lambda_{\alpha}{ }^{i}$ have determinant equal to one and characterize the $S L(2 ; \mathbb{R})$ group manifold.
So, HS $D=3$ twistor wave function is given as function on the $S L(2 ; \mathbb{R})$ group manifold.
Spin operator $\frac{1}{2 m} \epsilon_{\mu \nu \rho} p^{\mu} M^{\nu \rho}=S$ is realized as follows $\hat{S}=\frac{i}{2} \epsilon_{i j} \lambda_{\alpha}^{i} \frac{\partial}{\partial \lambda_{\alpha}^{j}}$.
- Let us decompose twistor wave function into a superposition of momentum-dependent eigenfunctions of the spin operator.

For it we pass to corresponding $S U(1,1)$ matrix

$$
g=U h U^{-1}, \quad U=e^{-i \pi \sigma_{1} / 4}, \quad g=\left(\begin{array}{cc}
a & \bar{b} \\
b & \bar{a}
\end{array}\right), \quad|a|^{2}-|b|^{2}=1
$$

One can introduce the natural parametrization of the $S U(1,1)$ matrices

$$
a=\cosh (r / 2) e^{i(\psi+\varphi) / 2}, \quad b=\sinh (r / 2) e^{i(\psi-\varphi) / 2}
$$

where $0 \leq \varphi \leq 2 \pi, \quad 0<r<\infty, \quad-2 \pi \leq \psi<2 \pi$. In terms of the angle ψ, the spin operator takes the simple form

$$
\hat{S}=i \frac{\partial}{\partial \psi}
$$

i.e., it describes the $D=3 U(1)$ spin.

- To obtain the Hilbert space of the quantized model we use the $S U(1,1)$ regular representation on the $S U(1,1)$ manifold when the wave function is square-integrable and satisfies the periodicity conditions

$$
\Psi(\varphi, r, \psi)=\Psi(\varphi+4 \pi, r, \psi)=\Psi(\varphi, r, \psi+4 \pi)=\Psi(\varphi+2 \pi, r, \psi+2 \pi)
$$

One can use the double Fourier expansion

$$
\Psi(\varphi, r, \psi)=\sum_{k, n=-\infty}^{\infty} f_{k n}(r) e^{-i(k \varphi+n \psi)}=\sum_{n=-\infty}^{\infty} e^{-i n \psi} F_{n}(r, \varphi)
$$

where the pairs (k, n) such that the numbers k and n are both integer or half-integer.

- The eigenvalues of the operator \hat{S} coincide with parameter n in the expansion. As a result, the spin in our model takes quantized integer and half-integer values. The functions $F_{n}(r, \varphi)=\tilde{F}_{n}\left(p_{\mu} ; m\right)$ describe states with definite $D=3$ spin equal to n.
- Lorentz covariant expansion is obtained after transition to the $S U(1,1)$ spinor coordinates

$$
\xi_{\alpha}=\sqrt{m}\binom{a}{b}, \quad \bar{\xi}^{\alpha}=\left(\xi_{\alpha}\right)^{\dagger}=\sqrt{m}(\bar{a}, \bar{b}), \quad \bar{\xi}^{\alpha}\left(\sigma_{3}\right)_{\alpha}^{\beta} \xi_{\beta}=m
$$

when anti-holomorphic wave functions $\left(\frac{\partial}{\partial \xi_{\alpha}} \Psi(\xi, \bar{\xi})=0\right)$ is given by the power series

$$
\Psi(\bar{\xi})=\sum_{N=0}^{\infty} \bar{\xi}^{\alpha_{1}} \ldots \bar{\xi}^{\alpha_{N}} \psi^{(+)}{ }_{\alpha_{1} \ldots \alpha_{N}}\left(p_{\mu}\right)
$$

- The corresponding spacetime fields are then given by

$$
\phi_{\alpha_{1} \ldots \alpha_{N}}(x)=\int \mu^{3}(\xi) e^{-i\left(\tilde{\xi} \gamma_{\mu} \xi\right) x^{\mu}} \xi_{\alpha_{1}} \ldots \xi_{\alpha_{N}} \Psi(\xi) .
$$

where $\widetilde{\xi}^{\alpha}=\bar{\xi}^{\beta}\left(\gamma_{0}\right)_{\beta}{ }^{\alpha}$ is the Dirac conjugated spinor.
These fields satisfy automatically the $D=3$ Bargmann-Wigner equations

$$
\partial_{\mu}\left(\gamma^{\mu}\right)_{\beta}^{\alpha_{1}} \phi_{\alpha_{1} \alpha_{2} \ldots \alpha_{N}}-m \phi_{\beta \alpha_{2} \ldots \alpha_{N}}=0
$$

- We present $D=3$ and $D=4$ massive HS particle models in a mixed formulation as well as in a pure twistor formulation.
- In pure twistor formulation the $D=3$ and $D=4$ wave functions are given as functions on the $S L(2, \mathbb{R})$ and $S L(2, \mathbb{C})$ group manifolds respectively, which describe arbitrary on-shell momenta and spin degrees of freedom.
- There were presented massive field twistor transformations, which associate the HS twistor wave functions with tower of conventional space-time fields.
- In mixed formulation the wave functions are defined by a massive version of Vasiliev's free unfolded equations. For example, considering the differential realization of the spinorial variables $\hat{\pi}_{\alpha}^{\prime}=-i \partial / \partial y_{i}^{\alpha}$ in $D=4$, and leaving only position space-time vector we will obtain the unfolded equation supplemented with the mass quantum constraints:

$$
\begin{gathered}
\left(i \partial_{\alpha \dot{\beta}}-\frac{\partial^{2}}{\partial y_{i}^{\alpha} \partial \bar{y}^{\dot{\beta} i}}\right) \Psi(x, y, \bar{y})=0 \\
\left(\frac{\partial^{2}}{\partial y_{i}^{\alpha} \partial y_{\alpha}^{i}}-2 M\right) \Psi(x, y, \bar{y})=0, \quad\left(\frac{\partial^{2}}{\partial \bar{y}_{i}^{\dot{\alpha}} \partial \bar{y}_{\dot{\alpha}}^{i}}-2 \bar{M}\right) \Psi(x, y, \bar{y})=0 .
\end{gathered}
$$

It is interesting to make a generalization of these equations to the case of the (A)dS spacetime and HS gravity background.

- The discussed models give the same mass for all HS fields, that is very strict condition. In a physical HS case, when considering e.g. spin excitations in string theory, the masses are spin-dependent: $m^{2} \quad \rightarrow \quad m^{2}\left(\vec{S}^{2}\right)$.
In the twistor formulation, the spinorial mass-shell conditions may be considered as 'complex roots' of the standard mass-shell condition. It is an interesting problem to see how to introduce, in the complex mass parameter M, a dependence on the twistor variables that could lead to HS multiplets with masses on a Regge trajectory.

THANK YOU FOR YOUR ATTENTION!

