LATTICE STUDIES ON PROTON SPIN STRUCTURE

Mridupawan Deka (JINR)

Brazil-JINR Forum, 2015

June 18, 2015

Introduction

- ▶ The polarized DIS revealed that quarks (both valence and sea) carry only a small fraction, ~ 20%. [EMC, J. Ashman *et al.*,1988].
- Subsequent experiments confirmed the EMC results, 20 30%.
- What are the other candidates for the missing proton spin? "Proton Spin Crisis"!!

Spin sum rule:
$$\frac{1}{2} = J_q + J_g = \frac{1}{2}\Sigma_q + L_q + J_g$$
 [X. Ji, 1997]

• Controversy remains : $J_g \stackrel{?}{=} \Sigma_g + L_g$

[Chen *et al.*, 2008; X. Ji, 2008; Wakamatsu, 2010; E. Leader, 2011; Y. Hatta, 2011; · · ·]

Starts with QCD action in continuum

$$S = \int d^4x \overline{\psi} (\gamma^{\mu} D^{\mu} + m) \psi + \frac{1}{2} \text{Tr} \int d^4x F^{\mu\nu} F_{\mu\nu}$$

• Euclidean rotation: $t \rightarrow -it$.

•
$$A_{\mu} \Rightarrow U_{\mu}(x) \equiv e^{igA_{\mu}(x+a\hat{\mu}/2)}$$

- Fermionic fields: $\psi(x) \rightarrow \psi(na)$.
- Monte Carlo simulation to produce a representative ensemble of $\{U_{\mu}(x)\}$ with the weight $[\text{Det }M] e^{-s_g}$.
- Quenched Approximation: Det M = 1.

Recent Results

Future

Brief Introduction 2-pt Correlation Functions 3-pt Functions Ratios CI and DI Operators

O(*a*)-improved fermion actions [C. Alexandrou, 2014; K. Jansen, Lattice 2008]

Action	Advantages	Disadvantages		
Clover improved Wilson	computationally fast	breaks chiral symmetry		
Twisted Mass (TM)	computationally fast	breaks chiral symmetry		
Staggered	computationally fast	four doublers (fourth root issue)		
Domain wall (DW)	improved chiral symmetry	computationally expensive		
Overlap	exact chiral symmetry	computationally expensive		

Collaborations:

Clover	QCDSF, BMW, ALPHA, CLS, PACS-CS, NPQCD
Twisted Mass	ETMC
Staggered	MILC
Domain wall	RBC + UKQCD
Overlap	JLQCD

Primary Quantities:

- Gauge configurations, *U*.
- Quark propagator, M^{-1} , on every configuration.

Construct:

- Two-point correlation functions.
- Three-point correlation functions.

Two-point Correlation Functions

$$G_{NN}(t_2, \vec{p}) = \sum_{\vec{x}_2} e^{-i\vec{p}.(\vec{x}_2 - \vec{x}_0)} \langle 0|T[\chi(x_2) \ \bar{\chi}(x_0)]|0\rangle$$

Inserting Energy eigenstates:

$$Tr[\Gamma G_{NN}(t_2, \vec{p})] = A e^{-E_p(t_2 - t_0)} + Higher states$$

Path Integral formalism and Wick Contraction:

$$\operatorname{Tr}[\Gamma G_{NN}(t_2, \vec{p})] = \sum_{\vec{x}_2} e^{-i\vec{p} \cdot (\vec{x}_2 - \vec{x}_0)} \sum_{\{U\}} \operatorname{Tr}\{f[M^{-1}(x_2, x_0) M^{-1}(x_2, x_0) M^{-1}(x_2, x_0); U]\}$$

Three-point Correlation Functions

The three point-function for an operator, \mathcal{T} ,

$$\begin{aligned} G_{N\mathcal{T}N}(\vec{p}, t_2; \vec{q}, t_1; \vec{p}', t_0) &= \sum_{\vec{x}_2, \vec{x}_1} e^{-i\vec{p}.\vec{x}_2} e^{i\vec{q}.\vec{x}_1} e^{i\vec{p}'.\vec{x}_0} \langle 0| \mathrm{T}(\chi(x_2)\mathcal{T}(x_1)\bar{\chi}(x_0))|0\rangle \\ &= \sum_{\vec{x}_2} e^{-i\vec{p}.(\vec{x}_2-\vec{x}_0)} e^{+i\vec{q}.(\vec{x}_1-\vec{x}_0)} \\ &\sum_{\{U\}} \mathrm{Tr} \big\{ f \left[M^{-1} M^{-1} M^{-1} M^{-1}; U \right] \big\} \end{aligned}$$

$$\operatorname{Tr}\left[\Gamma G_{N\mathcal{T}N}(\vec{p}, t_2; \vec{q}, t_1; \vec{p}', t_0)\right] \xrightarrow{t_1 \gg t_0, \ t_2 \gg t_1} B e^{-E_p(t_2 - t_1)} e^{-E_{p'}(t_1 - t_0)} \mathcal{M}(\Delta^2)$$

 $\mathcal{M}(\Delta^2) = \langle p, s | \mathcal{T} | p', s' \rangle. \ \Delta^2$ is the momentum transfer squared.

Future

Brief Introduction 2-pt Correlation Functions 3-pt Functions Ratios CI and DI Operators

Ratios

$$\frac{\operatorname{Tr}\left[\Gamma_{\mathrm{pol,unpol}}G_{N\mathcal{T}N}(\vec{p},t_{2};\vec{q},t_{1};\vec{p}\,',t_{0})\right]}{\operatorname{Tr}\left[\Gamma_{\mathrm{unpol}}G_{NN}(\vec{p},t_{2})\right]}$$

$$\times \sqrt{\frac{\operatorname{Tr}\left[\Gamma_{\mathrm{unpol}}G_{NN}(\vec{p}\,',t_{2}-t_{1}+t_{0})\right]}{\operatorname{Tr}\left[\Gamma_{\mathrm{unpol}}G_{NN}(\vec{p},t_{2}-t_{1}+t_{0})\right]}}$$

$$\times \sqrt{\frac{\operatorname{Tr}\left[\Gamma_{\mathrm{unpol}}G_{NN}(\vec{p},t_{1})\right]}{\operatorname{Tr}\left[\Gamma_{\mathrm{unpol}}G_{NN}(\vec{p}\,',t_{1})\right]}} \cdot \frac{\operatorname{Tr}\left[\Gamma_{\mathrm{unpol}}G_{NN}(\vec{p}\,',t_{2})\right]}{\operatorname{Tr}\left[\Gamma_{\mathrm{unpol}}G_{NN}(\vec{p}\,',t_{1})\right]}$$

$$\frac{t_{1} \gg t_{0}, t_{2} \gg t_{1}}{\mathcal{M}(\Delta^{2})f(E_{p},E_{p'},m)}$$

Connected and Disconnected Insertions

Recent Results

$$G_{N\mathcal{T}N}(\vec{p}, t_2; \vec{q}, t_1; \vec{p}', t_0) = \sum_{\vec{x}_2, \vec{x}_1} e^{-i\vec{p}.\vec{x}_2} e^{i\vec{q}.\vec{x}_1} e^{i\vec{p}'.\vec{x}_0} \langle 0| T(\chi(x_2)\mathcal{T}(x_1)\bar{\chi}(x_0))|0\rangle$$

The three-point functions for quarks have two different contributions: connected (CI) and disconnected insertions (DI).

 CI three-point functions are relatively easier to compute and well studied.

- ▶ DI three-point functions are computationally challenging: Involves propagators from *all-to-all* points.
- *strange* quark contributions come only from DI. *up* and *down* quarks have contributions both from CI and DI.
- > DI and disconnected diagrams are not the same.

$$G_{N\mathcal{T}N}|_{\mathrm{DI}} \equiv \langle \chi \mathcal{T} \bar{\chi} \rangle - \langle \mathcal{T} \rangle \langle \chi \bar{\chi} \rangle$$

$$\frac{1}{2} = J_q + J_g = \frac{1}{2}\Sigma_q + L_q + J_g$$

• Quark Spin:
$$\langle p, s | \overline{\psi}_q \gamma_\mu \gamma_5 \psi_q | p, s \rangle \sim \Sigma_q$$
.

Angular momenta

$$\begin{aligned} J_{q} : \mathcal{T}_{\{4i\}}^{q} &= \overline{\psi}_{q} \gamma_{\{4}(-i \overleftrightarrow{D})_{i\}} \psi_{q} \quad , \quad J_{g} : \mathcal{T}_{\{4i\}}^{g} = -i F_{4\alpha} F_{i\alpha} \\ \text{ME:} \ \langle p, s | \mathcal{T}_{\{4i\}}^{q,g} | p', s' \rangle &\sim [a_{1}T_{1}(\Delta^{2}) + a_{2}T_{2}(\Delta^{2}) + a_{3}T_{3}(\Delta^{2})] \\ J_{q,g} &= \frac{1}{2} [T_{1}(0) + T_{2}(0)] \end{aligned}$$

• Quark orbital angular momenta: $L_q = J_q - \frac{1}{2}\Sigma_q$

Decomposition of Total and Orbital Angular Momenta

χQCD Collaboration [M. Deka, *et al.*, 2015]

Introduction

Lattice Formalism

Recent Results

Future

Total and Orbital Angular Momenta Quark Angular Momenta and Spin: CI Quark Spin: DI Quark Spin: Preliminary Gluon Spin: Preliminary

	CI(u) CI(d)		CI(u+d)	DI(u/d)	DI(s)	Glue
$T_1(0)$	0.413(38)	0.150(19)	0.565(43)	0.038(7)	0.024(6)	0.334(55)
$T_{2}(0)$	0.286(108)	-0.220(77)	0(77) 0.062(21) -0.002(2) -		-0.001(3)	-0.056(51)
2J	0.700(123)	-0.069(79)	0.628(49)	0.036(7)	0.023(7)	0.278(75)
$\Delta\Sigma$ (Dong et al.,	0.91(11)	-0.30(12)	0.62(9)	-0.12(1)	-0.12(1)	_
2L	-0.21(16)	0.23(15)	0.01(10)	0.16(1)	0.14(1)	_

Few drawbacks:

- Quenched approximation ⇒ Gluon contributions likely being supressed
- ▶ Higher pion masses, lowest being 478 (4) MeV
- Smaller lattice, $16^3 \times 24 \Rightarrow$ Finite volume effect

Quark Angular Momenta and Spin: Connected Insertions

[Syritsyn, USQCD All-Hands Meeting, 2015]

Quark Spin: Disconnected Insertions

[Syritsyn, Lattice 2013]

[D. de Florian, et al., 2009]

Spin	Global Analysis		
Δu	0.814(28)(34)		
Δd	-0.456(35)(25)		
Δs	-0.112(28)(31)		
$\Delta\Sigma$	0.245(42)(62)		

$$g_A^{(3)} = \Delta u - \Delta d = 1.270(3)$$

[Beringer et al., 2012]
 $g_A^{(8)} = \Delta u + \Delta d - 2\Delta s = 0.58(3)$
[Close and Roberts, 1993]

 χ QCD Collaboration [Y. B. Yang, *et al.*, Lattice 2014]

•
$$\Delta u(\text{CI}) = 0.86(3), \Delta d(\text{CI}) = -0.278(5).$$

•
$$\Delta u, \Delta d(DI) = -0.12(3), \Delta s = -0.05(1).$$

•
$$\Delta u + \Delta d = 0.35(6)$$
 (CI + DI).

•
$$\Delta \Sigma = 0.30(6).$$

•
$$24^3 \times 64$$
 lattice. $m_{\pi} = 330$ MeV.

 $m_{\pi} \longrightarrow 140 \text{ MeV}.$

Gluon Spin: Preliminary

χQCD Collaboration [R. S. Sufian, *et al.*, Lattice 2014]

 $S_G = 18(3)\%$ at $p = 0, m_{\pi} = 640$ MeV.

LHP & NME

 χ **QCD**

 χ QCD LHP & NME

LHP & NME

Scientific Objectives

Nucleon Structure with Isotropic Wilson Lattices

Goal : Compute Nucleon Structure and Quark Matrix Elements with high statistical precision and robust control of systematic errors

Wilson fermions are economical and permit

higher statistics for better precision and noisy observables (TMDs, GPDs)

- experiments with newer techniques
 - · controlling excited states
 - computing disconnected diagrams
 - · exploring hadron states with high momentum

ID	a[fm]	Volume	mπ	m _π L	Traj. available	Conn.cost per conf.[NMEp]	%%	
D4	0.085	32 ³ x64	400	5.5	5100	500		
D5	0.081	32 ³ x64	300	4.0	2600	825	~20%	Systematics study [NMEp]
D6	0.080	48 ³ x96	190	3.7	700	7,125		
D7	0.080	64 ³ x128	190	4.9	900 (++ by 07/01)	32,055	~80%	proposed in [LHPp]
D8	0.080	64 ³ x128	140	4.1	Started	Next Year (hopefully)		

JLab Isotropic clover-improved Wilson lattices:

Thank you !!