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Lovelock Gravity
GR equations of motion in vacua should satisfy:
(a) EV = E'm (b) EY = EY(gi: Omeik; OmOngik), (c) ViE” = 0.

If also (d): equations linear in second derivatives of g, then
EV = GU + NgV regardless of spacetime dimension, D.
Without (d) depends on D, (Lovelock, 1971):

[(D+1)/2]-1 o
El= 3 abRih, R e+ e,
p=1
The Lagrangian read as
[(D+1)/2]-1 o
L= > abalenRiG o R e

p=1



Horndeski theory (in D = 4)

(Horndeski, 1974) The most general scalar-tensor interaction such
that equations of motion depend only on
(glk; 8ngIk; 8manglk§ va am¢a 8manqs)-
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tR)4H s~ pQF " +4W " +p g + 200)}

(Horndeski, 1976) The gauge field-tensor interaction such that (a)
equations of motion depend only on

(8ab; Om&ab; OmOn&ab; Aiy OmAi, OmOnA;); b ‘charge’ conserves; (c)
flat space limit is Maxwell theory:

L= Ley + Litaxwen + RFF



Revival of Interest

1990s: late-time cosmic accelerated expansion. Motivation for
modifications of gravity: large at long range, negligible at solar
system range.

2000s: DGP model, massive gravity e.t.c. Galilean symmetry,
m(x) = 7(x) + bux* 4 c, is essential.

Galileon models in flat space: both Lagrangian and E.o.M. depend
only on second derivatives of scalar field(s), p-forms.

In D = 4 ‘covariantized’ galileons, dimensional reductions of
Lovelock gravity and Horndeski theory are almost the same.

2010: Horndeski-coupled Higgs field, (g"” + £G*)0,0, ¢,
provides nice inflation.

...Let us further investigate inflationary cosmology in Horndeski
gravity!



Horndeski Yang—Mills

The key object is the dual of a Riemann tensor,

Rabv6 = 1 aﬁ“”e”‘;p"Rm,pg, where el®P1¥] is the Levi-Civita tensor.
It is divergent free and thus can be used to provide safe coupling of
the field strength to gravity:

Leaups ~ ROVELF2, ~ R F0F

Both Riemann and field tensors satisfy the Bianchi identities which
annihilate higher order derivatives in the equations of motion.
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where the modified Planck mass is Mp; = 1/v/87w G, and the
appropriate length scale of the theory is | = 1/(eMp)



Equations of Motion
Stress-energy tensor:

2 Ly/— 1
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/— o
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Notice that by virtue of Bianchi identities the term which is
third-order in field tensor, FFF, arises instead of third-order
derivatives. The field equation:

2
D, <F”U +5 R’”’“’FW> —0.



FLRW Cosmology

Unlike Maxwell field, the Yang—Mills SU(2) configuration is
compatible with FLRW metrics,

ds? = —N?dt? + 2% [dx® + Z3(x)(d6? + sin? 0dy?)] |

where X4 (x) = {sin x, x, sinh x}.

The most general cosmological ansatz preserving the isotropy and
homogeneity of the metrics can be written in terms of a single
function f(t):

A=f(t)Tydx + [F(t)Zk Tp + () — 1) T,] do+
[f(t)zk T, — (X, —1) Tg] sinfdyp.

The group generators, T,, are the Pauli matrices, 74/(2i),
contracted with spherical unit vectors, né‘x 0,0)"



Effective Lagrangian

Let us introduce ‘electric’, £ = f/Na, and ‘magnetic’,
H = (k — f2)/a®, components of the YM field tensor. The pure

YM Lagrangian then read as:

1 3
Lyw = — Fi, F* = (€2 = H?).

The standard Einstein-Hilbert term (in the gauge N = 1) is:

P+k 3
a b

QH:3{ — + =
a

The coupling term looks like a ‘safe’ combination of above:

3u? [&% 4 k a
LcouplF: _% |: 32 52— 3H2:| .




Equations of Motion

In the inflationary cosmology, the usual notations are: ¢ = f/a,
H = 4/a, and assume k = 0. The energy density and pressure read

as:

3/ - -
pym:,(¢2+2H¢¢+H2¢2+w4), Py :%7
pe= 35 [H2(302 + 3H202 4 2u) + 2HU ) (3H2 + 202) |

pe = % [3UP(BH? + 402) + 2H(TH? + 80%) + H20?(5H+

+202) + Ah(H20 + Hp + 03) + 2H(W? + dHp) + 3H2w2)} .

Mention that the energy density corresponding to coupling term,
pc, is not positive-defined. The gauge field equation takes the

following form:

(1-p2H?) (1/} + Hqﬁ) +2 [1 — uP(H + H2)] (H¢ +HR 1/}3) _



De Sitter Space

Mention that the Riemann tensor in de Sitter space read as

Raﬁ,uy = _R)aﬁ,uz/ = Hz(gaugﬂl/ - gal/gﬁu) :

Since F2 = —F2, the full field Lagrangian is proportional to the
conventional F? term:

1
Lcoupl + LYI\/I = _Z(l - M2H2)F;I/Fauy'

And the equation of motion for the gauge field also acquires the

same factor:
(1— p?H?)D,FP” =0.

De Sitter space with H = H. = ! is a special case for Horndeski
model. However, the energy density and pressure are not vanishing!



Exact Solutions

With the ansatz H = H, for the metrics, the gauge field equation
is identically satisfied. One has to solve only the Friedmann
equation for 1):

; 1
Ve = o <¢3 - H20 0\ JU8 + (3/2)0tH2 - Hg> |

With any additional matter, p,,, in a state of a perfect fluid:

e = ‘2:146 <¢3 +HZp £ Wﬁ + 294 H2 /3 — HE + ngm/3) :

And the second Friedmann equation then holds if

pm + 3Hc(pm + pm) = 0.



Properties of Exact Solution

dominating gauge field dominating matter
. 3 H, .
py ~ =24 o~ et MRS
Vi = oty | U- = oexp (—He t/4) |t o F /Gt
. 20m
Condensate solution: pg ~ pp,, & ~ =6m.
Solution Eigenvalues
W= \/ He 1292 21542  2/15y2
R =) He * ~ He He
Y =1gexp(—Hct/4) —2H,, —HC, 52’C
Y = the —Hc, —2H., —
2
=1 F /0t | 3 —2He, 5 ( H2 ¢2)i,/i2 (3pm)/*
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FIG. 1: The solutions for the gauge field, ¥. A non-minimal
coupling scale, H., divides exponentially decaying solutions
and oscillations.

FIG. 3: The solutions for the gauge field, v, with initial state
¥, > H. demonstrate a continuous exponentially dec:
mode.
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Radiation-dominated stage, H1—=1/2
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FIG. 2: The solution for the metrics, Ht represnets the in-
flationary stage with Hubble parameter value H = H., and
radiation-dominated universe, H¢ = 1/2.
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FIG. 4: The decaying mode of gauge field corresponds to
de Sitter metrics with Hubble parameter value H = H.; the
oscillating gauge field gives rise to the radiation-dominated
universe, Ht = 1/2.



Gauge Inflation

Horndeski theory is expected to be valid in the range ¥; ~ 1,
@Z}e ~ He.
For the inflating mode, 1) ~ 1h;e(=Ht/4) one finds:

Ne—folds = Hc t~4ln 77bi/7/19 .

With H ~ 107°..1075 (from Planck) one obtains
Ne_folas = 50..60.

l.e. gauge inflation could play a significant role during the observed
inflation stage.



Gauge Inflation with Matter

The duration of inflation is approximately

(e)
Pm d
At ~ / ﬂ
p(l) Pm

Then with e.o.s. for matter in the background H = H, one has:

(e)
1 Pm dpm
Ne_tolas = H At =~ —= .
e—folds c 3/p£7,1) Om & Pm

For the matter with equation of state p,, = wp, therefore:

4

Ne —tolds = In(p%) /) ~ C3(1+w) In(He).

3(1+w)

With dust or radiation, w = 0,1/3, one finds Ne_go1qs = — In Hc .
Too weak for inflation. Another inflaton?



Slow-roll Inflation

Let us consider a system with dominating inflaton field, a
slow-rolling scalar field:
22
Lm = % — V().
By assumption, p, 3> 3H2 ~ 3H?, while normally for the slow-roll
model one has p,, = 3H?. Therefore the stronger slow-roll
conditions should be imposed on scalar field:

¢ < 3Hc ¢, V" < 9H?,
@2 12
o<V, = 7<<18H§

3HZ <V, 3H2 < V.



Ghost-modified Inflation
Two attractors:
e Normal inflation (vanishing gauge field)

e Ghost-modified inflation (ghost condensate of the gauge field)




Regularization of Chaotic Inflation
During slow-roll, one has dp, ~ dV = V'dp,
P+ Pm = p? V’2/9H§, so that:

wi
Ne—folds ~ 3Hc2/ Vf .

e

With power-like potential, V = g¢" the slow-roll conditions imply
gn(n —1)¢" 2 < 9H? < 3g".

1 /3H2\"
— | — , n>2,
nn—2)\ g

H? 2
3Hc In £ , n=2.
4g  3H2

Ne—folds ~

Compare this to the value derived in common slow-roll inflation:

2
i

Ne—folds ~ Z
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Hilltop Inflation

V(p) ~1—(p/a)P +.... For example, a Higgs mechanism in
GUT models.

52

1
Ly = —E(D“CD)TDMCD — T(‘W’ —a?).

° H=H;

q14 H=H,
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FIG. 9: The gauge, v, and Higgs, h, fields evolution during FIG. 10: The Hubble parameter evolution during the com-

the compound inflation scenario. pound inflation scenario indicates two inflation stages with
H = H,. and H = H,, i.e. driven by gauge and Higgs fields
in turn.



