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Lovelock Gravity

GR equations of motion in vacua should satisfy:

(a) E ij = E jim (b) E ij = E ij(glk ; ∂mglk ; ∂m∂nglk), (c) ∇iE
ij = 0.

If also (d): equations linear in second derivatives of gab then
E ij = G ij + Λg ij regardless of spacetime dimension, D.
Without (d) depends on D, (Lovelock, 1971):

E i
j =

[(D+1)/2]−1∑
p=1

apδ
ih1..h2p
jk1..k2p

R j1j2
h1h2
· . . . · R j2p−1j2p

h2p−1h2p
+ aδji .

The Lagrangian read as

L =

[(D+1)/2]−1∑
p=1

apδ
h1..h2p
k1..k2p

R j1j2
h1h2
· . . . · R j2p−1j2p

h2p−1h2p
+ a.



Horndeski theory (in D = 4)
(Horndeski, 1974) The most general scalar-tensor interaction such
that equations of motion depend only on
(glk ; ∂mcglk ; ∂m∂nglk ;φ, ∂mφ, ∂m∂nφ).

(Horndeski, 1976) The gauge field-tensor interaction such that (a)
equations of motion depend only on
(gab; ∂mgab; ∂m∂ngab;Ai , ∂mAi , ∂m∂nAi ); b ‘charge’ conserves; (c)
flat space limit is Maxwell theory:

L = LEH + LMaxwell + R̃FF



Revival of Interest

1990s: late-time cosmic accelerated expansion. Motivation for
modifications of gravity: large at long range, negligible at solar
system range.

2000s: DGP model, massive gravity e.t.c. Galilean symmetry,
π(x)→ π(x) + bµx

µ + c , is essential.
Galileon models in flat space: both Lagrangian and E.o.M. depend
only on second derivatives of scalar field(s), p-forms.
In D = 4 ‘covariantized’ galileons, dimensional reductions of
Lovelock gravity and Horndeski theory are almost the same.

2010: Horndeski-coupled Higgs field, (gµν + ξGµν)∂µϕ∂νϕ,
provides nice inflation.

...Let us further investigate inflationary cosmology in Horndeski
gravity!



Horndeski Yang–Mills

The key object is the dual of a Riemann tensor,
R̃αβγδ = 1

4ε
αβµνεγδρσRµνρσ, where ε[αβµν] is the Levi-Civita tensor.

It is divergent-free and thus can be used to provide safe coupling of
the field strength to gravity:

Lcoupl ∼ R̃αβµνF a
αβF

a
µν ∼ Rαβµν F̃

aαβF̃ aµν .

Both Riemann and field tensors satisfy the Bianchi identities which
annihilate higher order derivatives in the equations of motion.

S =

∫ (
M2

Pl

2
R − 1

4
F a
µνF

aµν − µ2 l2

8
Rαβµν F̃

aαβF̃ aµν

)√
−gd4x ,

where the modified Planck mass is MPl = 1/
√

8πG , and the
appropriate length scale of the theory is l ≡ 1/(eMPl)



Equations of Motion
Stress-energy tensor:

T ρσ ≡ 2√
−g

∂(L
√
−g)

∂gρσ
= F aραF aσ

α −
1

4
gρσF a

µνF
aµν

− µ2

8

[
−gρσRαβµν F̃ aαβF̃ aµν + 2Rρβµν F̃

aσβF̃ aµν + 4∇β∇µ
(
F̃ aρβF̃ aµσ

)]
,

where

∇β∇µ
(
F̃ aρβF̃ aµσ

)
= (DµF̃

ρβ)a(DβF̃
µσ)a + [Fβµ, F̃

ρβ]aF̃ aµσ

+ RραβµF̃
aαβF̃ aµσ + RαµF̃

aραF̃ aµσ .

Notice that by virtue of Bianchi identities the term which is
third-order in field tensor, F F̃ F̃ , arises instead of third-order
derivatives. The field equation:

Dρ

(
F ρσ +

µ2

2
R̃ρσµνFµν

)
= 0 .



FLRW Cosmology

Unlike Maxwell field, the Yang–Mills SU(2) configuration is
compatible with FLRW metrics,

ds2 = −N2dt2 + a2
[
dχ2 + Σ2

k(χ)(dθ2 + sin2 θdϕ2)
]
,

where Σk(χ) = {sinχ, χ, sinhχ}.
The most general cosmological ansatz preserving the isotropy and
homogeneity of the metrics can be written in terms of a single
function f (t):

A =f (t)Tχdχ+
[
f (t)ΣkTθ + (Σ′k − 1)Tϕ

]
dθ+[

f (t)ΣkTϕ − (Σ′k − 1)Tθ
]

sin θdϕ .

The group generators, Ta, are the Pauli matrices, τk/(2i),
contracted with spherical unit vectors, nk(χ,θ,ϕ).



Effective Lagrangian

Let us introduce ‘electric’, E = ḟ /Na, and ‘magnetic’,
H = (k − f 2)/a2, components of the YM field tensor. The pure
YM Lagrangian then read as:

LYM = −1

4
F a
µνF

aµν =
3

2
(E2 −H2) .

The standard Einstein-Hilbert term (in the gauge N = 1) is:

LEH = 3

[
ȧ2 + k

a2
+

ä

a

]
,

The coupling term looks like a ‘safe’ combination of above:

Lcoupl
√
−g = −3µ2

2

[
ȧ2 + k

a2
E2 − ä

a
H2

]
.



Equations of Motion
In the inflationary cosmology, the usual notations are: ψ ≡ f /a,
H ≡ ȧ/a, and assume k = 0. The energy density and pressure read
as:

ρym =
3

2

(
ψ̇2 + 2Hψψ̇ + H2ψ2 + ψ4

)
, pym =

ρym
3
,

ρc = −3µ2

2

[
H2(3ψ̇2 + 3H2ψ2 + 2ψ4) + 2Hψψ̇(3H2 + 2ψ2)

]
,

pc =
µ2

2

[
3ψ̇2(3H2 + 4ψ2) + 2Hψψ̇(7H2 + 8ψ2) + H2ψ2(5H2+

+2ψ2) + 4ψ̈(H2ψ + Hψ̇ + ψ3) + 2Ḣ(ψ̇2 + 4Hψψ̇ + 3H2ψ2)
]
.

Mention that the energy density corresponding to coupling term,
ρc , is not positive-defined. The gauge field equation takes the
following form:

(1−µ2H2)
(
ψ̇ + Hψ

)
+̇2
[
1− µ2(Ḣ + H2)

] (
Hψ̇ + H2ψ + ψ3

)
= 0 .



De Sitter Space

Mention that the Riemann tensor in de Sitter space read as

Rαβµν = −R̃αβµν = H2(gαµgβν − gανgβµ) .

Since F̃ 2 = −F 2, the full field Lagrangian is proportional to the
conventional F 2 term:

Lcoupl + LYM = −1

4
(1− µ2H2)F a

µνF
aµν .

And the equation of motion for the gauge field also acquires the
same factor:

(1− µ2H2)DρF
ρσ = 0 .

De Sitter space with H = Hc ≡ µ−1 is a special case for Horndeski
model. However, the energy density and pressure are not vanishing!



Exact Solutions

With the ansatz H = Hc for the metrics, the gauge field equation
is identically satisfied. One has to solve only the Friedmann
equation for ψ̇:

ψ̇± = − 1

2Hc

(
ψ3 + H2

cψ ±
√
ψ6 + (3/2)ψ4H2

c − H4
c

)
.

With any additional matter, ρm, in a state of a perfect fluid:

ψ̇± = − 1

2Hc

(
ψ3 + H2

cψ ±
√
ψ6 + 2ψ4H2

c /3− H4
c + H2

c ρm/3

)
.

And the second Friedmann equation then holds if

˙ρm + 3Hc(ρm + pm) = 0 .



Properties of Exact Solution

dominating gauge field dominating matter

ψ̇+ ' −2ψ3

Hc
ψ̇− ' −Hcψ

4 ψ̇± ' ∓
√

ρm
3

ψ+ '
√

Hc
4(t−t0) ψ− ' ψ0 exp (−Hc t/4) ψ± ' ψ0 ∓

√
ρm
3 t

Condensate solution: ρg ' ρm, ψ4
c '

2ρm
3 .

Solution Eigenvalues

ψ =
√

Hc
4(t−t0)

12ψ2

Hc
, 2
√
15ψ2

Hc
, −2

√
15ψ2

Hc

ψ = ψ0 exp (−Hc t/4) −2Hc , −Hc
4 , −

5Hc
4

ψ = ψc −Hc , −2Hc , −2Hc

ψ = ψ0 ∓
√

ρm
3 t 3ψ2

Hc
− 2Hc , − 3

2Hc
(H2

c + ψ2)±
√
±2ψ
Hc

(3ρm)1/4

.



Gauge inflation



Gauge Inflation

Horndeski theory is expected to be valid in the range ψi ∼ 1,
ψe ∼ Hc .

For the inflating mode, ψ ' ψie
(−Hc t/4), one finds:

Ne−folds ' Hc t ' 4 lnψi/ψe .

With H ∼ 10−6..10−5 (from Planck) one obtains
Ne−folds = 50..60.

I.e. gauge inflation could play a significant role during the observed
inflation stage.



Gauge Inflation with Matter

The duration of inflation is approximately

∆t ≈
∫ ρ

(e)
m

ρ
(i)
m

dρm
ρ̇m

.

Then with e.o.s. for matter in the background H = Hc one has:

Ne−folds ' Hc∆t ≈ −1

3

∫ ρ
(e)
m

ρ
(i)
m

dρm
ρm + pm

.

For the matter with equation of state pm = wρm therefore:

Ne−folds =
1

3(1 + w)
ln(ρ

(i)
m /ρ

(e)
m ) ≈ − 4

3(1 + w)
ln(Hc) .

With dust or radiation, w = 0, 1/3, one finds Ne−folds ≈ − lnHc .
Too weak for inflation. Another inflaton?



Slow-roll Inflation

Let us consider a system with dominating inflaton field, a
slow-rolling scalar field:

Lm =
ϕ̇2

2
− V (ϕ) .

By assumption, ρm � 3H2
c ' 3H2, while normally for the slow-roll

model one has ρm = 3H2. Therefore the stronger slow-roll
conditions should be imposed on scalar field:

ϕ̈� 3Hc ϕ̇ ,

ϕ̇2

2
� V ,

3H2
c � V ,

⇒


V ′′ � 9H2

c ,

V ′2

V
� 18H2

c

3H2
c � V .



Ghost-modified Inflation
Two attractors:

• Normal inflation (vanishing gauge field)

• Ghost-modified inflation (ghost condensate of the gauge field)



Regularization of Chaotic Inflation
During slow-roll, one has dρm ' dV = V ′dϕ,
ρm + pm = ϕ̇2 ' V ′2/9H2

c , so that:

Ne−folds ≈ 3H2
c

∫ ϕi

ϕe

dϕ

V ′
.

With power-like potential, V = gϕn the slow-roll conditions imply
gn(n − 1)ϕn−2 � 9H2

c � 3gϕn .

Ne−folds ≈


1

n(n − 2)

(
3H2

c

g

) 2
n

, n > 2 ,

3H2
c

4g
ln

gϕ2
i

3H2
c

, n = 2 .

Compare this to the value derived in common slow-roll inflation:

Ne−folds ≈
ϕ2
i

2n
.



Planck2015 Data



Hilltop Inflation
V (ϕ) ∼ 1− (ϕ/a)p + . . .. For example, a Higgs mechanism in
GUT models.

LH = −1

2
(DµΦ)†DµΦ− β2

4
(Φ†Φ− α2) .


