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1 Photons are neutral particle, do not interact with each other. Photons
should arrive independently of one another from a source (an ideal laser
or a single frequency).

2 Non-classical correlations e.g. bunching (spatial attraction) and
antibunching (spatial repulsion).

3 Second order correlation ( Intensity-intensity correlation).

g2(τ) =
〈I(t)I(t+ τ)〉
〈I(t)〉2

For, light from ideal coherent laser g2(τ) = 1, for bunched light
g2(τ) ≤ g2(τ = 0), and for anti-bunched light g2(τ) ≥ g2(τ = 0) = 0.

4 To study statistics in few photon level, one need strong light-matter
interaction
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Efficient strong coupling between matter and photon field in 1D open space:
Highly confined propagating microwave photon modes in a 1D open
superconducting transmission line and a large dipole moment of an
artificial atom such as a superconducting qubit,
Line defects in photonic crystals coupled to quantum dots and surface
plasmons of a metallic nanowire coupled to quantum dots or
nanocrystals.

Figure: Transmon qubits acting as
artificial atoms (in Green) coupled to a 1D
superconducting transmission line (in
Blue). Figure: Line defects in photonic

crystal coupled to quantum dots
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Open system description

Scattering of probe photons by three level emitter (3LE)⇒ Study of one
and two photon transport incident on a single three-level emitter(atom),
when the photons are restricted to a one-dimensional system.
Exact theoretical approach, based upon real-space equations of motion
and the Bethe ansatz. (Ref. Shen and Fan. PRL 98, 153003 (2007))

Nilanjan Bondyopadhaya (JINR) statistical properties of photons, 3LE in 1D June 18, 2015 5 / 22



Model Hamiltonian

The full Hamiltonian describing the scattering of photons from a driven 3LE
embedded in a 1D photonic waveguide:

H = Hwg +H3LE +Hc

1 Hamiltonian for Free probe photons in wave-guide: Hwg
2 Hamiltonian for a driven 3LE: H3LE
3 Hamiltonian describing the interaction between probe photons and 3LE:
Hc
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We consider a linear energy-momentum dispersion (Ek = vgk) for the
free probe photons in waveguide→ Time evolution ≡ Space evolution.
Divide the positive and negative momentum photons as right-moving
modes and left-moving modes. aR(x) [aL(x)] is the annihilation operator
of a right-(left-) moving photon at position x.
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Wire Hamiltonian

Hamiltonian for Free probe photons in waveguide (Linear dispersion Ek = vgk)

Hwg = −ivg
∫
dx[a†R(x)∂xaR(x)− a†L(x)∂xaL(x)],

where vg is the group velocity of the photons.
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Hamiltonian for driven 3LE

The Hamiltonian of a driven 3LE embedded in a 1D open waveguide:

H3LE = (E2 − iγ2/2)|2〉〈2|+ (E2 −∆− iγ3/2)|3〉〈3|+ (Ωc/2)(|3〉〈2|+ |2〉〈3|),
where spontaneous emission loss: −iγ2/2 and −iγ3/2 to the energy of the
respective states |2〉 and |3〉.

The excited state |2〉 of the emitter is connected to the state |3〉 by a classical
laser beam (Control beam) with Rabi frequency Ωc(Proportional to the
amplitude of control beam and dipole moment of 3LE),
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1 Transitions |1〉 − |2〉 and |2〉 − |3〉 would couple to different polarizations of
light by selection rule.

2 A probe beam in the waveguide is sent near resonant to the transition
|1〉 − |2〉.

3 We also consider that there is no direct transition between the states |1〉
and |3〉 by dipole selection rule.
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Light-matter interaction Hamiltonian

Within Rotating-wave approximation (RWA)
the Hamiltonian for the 3LE side-coupled to the propagating light fields
locally at x = 0:

Hc = V |2〉〈1|(aR(0) + aL(0)) + h.c.,

where V is coupling strength between emitter and probe photons.
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Change of basis

Introduce a new basis, even-odd basis of probe photons, defined by

ae(x) = (aR(x) + aL(−x))/
√

2, ao(x) = (aR(x)− aL(−x))/
√

2

In even-odd mode, photons at x < 0 represent an event before scattering, and
photons at x > 0 after scattering.

In the even-odd basis the Hamiltonian can be decoupled as H = He +Ho,
where

He = −ivg
∫
dx a†e(x)∂xae(x) +H3LE

+ V̄
(
a†e(0)|1〉〈2|+ |2〉〈1|ae(0)

)
, and

Ho = −ivg
∫
dx a†o(x)∂xao(x),

where V̄ =
√

2V .
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Single photon state

|k〉 =

∫
dx{A1[gk(x)a†e(x)|0, 1〉+ ek|0, 2〉+ fk|0, 3〉]

+ B1hk(x)a†o(x)|0, 1〉},

where the constants A1 = B1 = 1/
√

2 for a right-moving photon with the
incoming state |k〉in = (1/

√
2π)

∫
dxeikxa†R(x)|0, 1〉.

Here gk(x) and hk(x) are the amplitude of a single photon in the even
and odd field modes when the emitter in the ground state.
For an incident photon coming from the left,
gk(x < 0) = hk(x < 0) = eikx/

√
2π.

The amplitude of the excited states |2〉 and |3〉 are respectively given by
ek and fk.
The basis state |0, i〉 denotes zero photon in the waveguide and the
emitter in the ith state.
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Solution of stationary Schrödinger equation

Stationary Schrödinger equations, H|k〉 = Ek|k〉 with Ek = vgk gives

−ivg∂xgk(x)− Ekgk(x) + V̄ ekδ(x) = 0⇒ gk(0+) = gk(0−)− i V̄
vg
ek,

(E2 − iγ2/2− Ek)ek + V̄ gk(x)δ(x) +
Ωc

2
fk = 0,

(E2 −∆− iγ3/2− Ek)fk +
Ωc

2
ek = 0,

−ivg∂xhk(x)− Ekhk(x) = 0.

Regularization of amplitudes across the emitter position,
gk(0) = [gk(0−) + gk(0+)]/2 and the initial boundary conditions to solve the
above differential equations of the amplitudes.
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Single photon state

gk(x) = hk(x)
[
θ(−x) + tkθ(x)

]
, hk(x) = eikx/

√
2π ,

tk = (χ− iΓ/2)/(χ+ iΓ/2) (Single photon transmission amplitude),

ek = V̄ /(
√

2π(χ+ iΓ/2)), fk = 0.5Ωcek/(Ek − E2 + ∆ + iγ3/2)

Here θ(x) is the step function, Γ = V̄ 2/vg = 2V 2/vg and

χ = Ek − E2 + iγ2/2−
Ω2

c

4(Ek − E2 + ∆ + iγ3/2)
.

Now onwards we set vg = 1.

For an incident photon from the left,
Single-photon transmission amplitude of right moving photon :
t̃k = (1 + tk)/2 = χ/(χ+ iΓ/2)

Single photon reflection amplitude left moving photon:
r̃k = (tk − 1)/2 = −0.5iΓ/(χ+ iΓ/2)
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Two-photon state

Two-photon Initial state

|k1, k2〉in =

∫
dx1dx2φk(x1, x2)

1
√

2
a
†
R

(x1)a
†
R

(x2)|0, 1〉,

where φk(x1, x2) = (eik1x1+ik2x2 + eik1x2+ik2x1 )/(2
√

2π) with k = (k1, k2).

Two-photon Scattering state:

|k1, k2〉 =

∫
dx1dx2

[
A2
{
g(x1, x2)

1
√

2
a
†
e(x1)a

†
e(x2)|0, 1〉 + (e(x1)a

†
e(x1)|0, 2〉 + f(x1)a

†
e(x1)|0, 3〉)δ(x2)

}
+B2

{
j(x1; x2)a

†
e(x1)a

†
o(x2)|0, 1〉 + (v(x1)a

†
o(x1)|0, 2〉 + w(x1)a

†
o(x1)|0, 3〉)δ(x2)

}
+C2h(x1, x2)

1
√

2
a
†
o(x1)a

†
o(x2)|0, 1〉

]
,

g(x1, x2) =
1
√

2!

[∑
P

gkP1
(x1)gkP2

(x2) +
∑
PQ

B
(2)
kP1

,kP2
(xQ1

, xQ2
)θ(xQ2

)
]
,

j(x1; x2) =
∑
P

gkP1
(x1)hkP2

(x2), h(x1, x2) =
1
√

2!

∑
P

hkP1
(x1)hkP2

(x2),

Γk(x− y) =
(
d−εke

i(s−t)|x−y|
+ d+ςke

i(s+t)|x−y|)
, d± = (

1

2β
±

ε

2Ωc
),

s = −E2 + ∆/2 + i(γ̃2 + γ3)/4, t =
√
ε2 + 4Ω2

c/4

B
(2)
kP1

,kP2
(xQ1

, xQ2
) = −iV̄ β (1− tkP1

)ΓkP2
(xQ12

)hkP1
(xQ1

)hkP2
(xQ1

)θ(xQ12
)

← Two-photon bound state

Here P = (P1, P2) and Q = (Q1, Q2) are permutation of (1, 2), and xQ12
= xQ1

− xQ2
.
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Electromagnetically Induced Transparency

Transmission coefficient for right moving photon: Tk = |t̃k|2, when
g(x1 > 0, x2 < 0).
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Figure: Tk vs detuning (Ek − E2); Parameters: ∆/Γ = γ2/Γ = 1/4, γ3/Γ = 1/40

Appearance of EIT at two-photon resonance, Ek − E2 = −∆ at weak
control beam (Ωc < Γ).
Destructive quantum interference between the two paths that lead to a
transition to |2 >⇒ Cancellation of the population of the state |2 > ("dark
state").
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2nd order correlation (Intensity-Intensity correlation)

Study of photon statistics by measuring second-order spatial coherence
of the scattered photons

g2(x2 − x1) =
〈ψ|a†m(x1)a†m(x2)am(x2)am(x1)|ψ〉

〈ψ|a†m(x1)am(x1)|ψ〉〈ψ|a†m(x2)am(x2)|ψ〉
,

where m = R(L) for the transmitted (reflected) photons for an incident
probe beam from the left.
|ψ〉 is a N -photon scattering Fock state with incident momenta k1, k2..kN .

A single emitter becomes saturated by a single photon as one emitter can
absorb only one photon at a time→ a strong photon-photon nonlinearity
is created by an emitter for two incident photons.
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Keeping higher order contributions in the numerator and denominator: 2nd
order correlation for two photon state

g2(x2 − x1) =

1

|(tk1
± 1)(tk2

± 1)|2

(
|
∑
P

(tkP1
± 1)(tkP2

± 1)h̃kP1
(x1)h̃kP2

(x2)

+2i
∑
PQ

V β (tkP1
− 1)ΞkP2

(xQ12) h̃kP1
(xQ1)h̃kP2

(xQ1)θ(xQ12)|2
 .

+(−) sign for the transmitted (reflected) probe beam.

h̃k(x) = eikxθ(x)/
√

2, Ξk(x1 − x2) =
∑
j=±

djεj(k)ei(s+jΩc/4β)|x1−x2|.

ε±(k) = V/(Ek + s± Ωc/4β), s = −(E2 −∆/2) + i(γ2 + γ3 + Γ)/4

β = Ωc/
√
ε2 + 4Ω2

c , d± = (1/(2β)± ε/(2Ωc)), ε = −2∆ + i(γ2 + Γ− γ3).

We use P = (P1, P2) and Q = (Q1, Q2) for permutation of (1, 2) and xQ12 = xQ1 − xQ2 .
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Two photon resonance:
Ek1 = Ek2 = E2 −∆.
First Row: g2 vs Ωc:
two-photon resonance
δ = (Ek − (E2 −∆)) = 0
and γ3/Γ = 1/40

Second Row: g2 vs δ :
Ωc/Γ = 3/10 and
γ3/Γ = 1/8.
The other parameters
are ∆ = 0, γ2/Γ = 0.31.

g2 shows antibunching of the transmitted probe photons⇒ Two probe
photons cannot transmit through the emitter simultaneously.
This happens for a Rabi frequency when a complete dark state is not yet
formed.
Further increase Ωc a dark state is formed⇒ g2(x2 − x1) = 1.
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Conclusion

1 We calculate the exact one photon and two-photon wave functions for this
model.

2 Appearance of EIT at two-photon resonance, Ek − E2 = −∆ when a
weak control beam is switched on.

3 Second-order coherence of the scattered probe photons from Λ or
ladder-type 3LE can be tuned by changing Rabi frequency of the control
beam. It can be measured experimentally using a Hanbury Brown and
Twiss measurement setup .

4 Generalization :To derive multiphoton scattering states and second-order
coherence of the scattered probe photons in case of multiple interacting
multilevel emitters.

Nilanjan Bondyopadhaya (JINR) statistical properties of photons, 3LE in 1D June 18, 2015 21 / 22



THANK YOU !
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