

Inha University, Republic of Korea

Nucleon Properties in Finite Nuclei

Ulugbek Yakhshiev

9th APCTP-BLTP JINR Workshop "Modern Problems of Nuclear and Particle Physics" June 27 - July 4, 2015, Almaty, Kazakhstan

Content

- Topological models and soliton
- Medium modifications
- Nucleon's structure changes in nuclear matter
- Nuclear matter
- Consistency (difference) with (from) other soliton approaches
- Nucleon in finite nuclei and few and many body systems
- Summary and Outlook

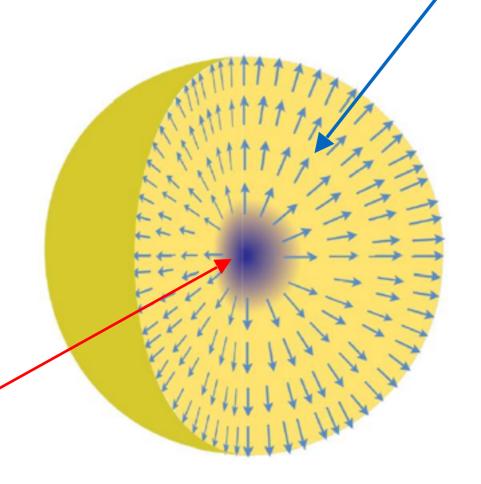
Topological models and soliton

Why topological models?

- At fundamental level we may have
 - fermions -> bosons are made from fermions
 - bosons -> fermions are nontrivial topological structures

Structure

- What is a nucleon and, in particular, its core?
- The structure treatment depends on the energy scale
- At the limit of large number colours the core still has the mesonic content



Shell is made

meson cloud

from the

Core.. Made from what?

Topological models and soliton

Shrinks

Swells

Stabilisation

- Soliton has the finite size and the finite energy
- One needs at least two terms in the effective (mesonic) Lagrangian

Prototype: Skyrme model

[T.H.R. Skyrme, Pros.Roy.Soc.Lond. A260 (1961)]

Nonlinear chiral effective meson (pionic) theory

$$\mathcal{L} = \frac{F_{\pi}^2}{16} \operatorname{Tr} \left(\partial_{\mu} U \partial^{\mu} U^{\dagger} \right) - \frac{1}{16e^2} \operatorname{Tr} \left[U^{\dagger} \partial_{\mu} U, U^{\dagger} \partial_{\nu} U \right]^2$$
Shrinks Swells

Hedgehog solution (nontrivial mapping)

$$U = \exp\left\{\frac{i\overline{\tau} \overline{\pi}}{2F_{\pi}}\right\} = \exp\left\{i\overline{\tau} \overline{n}F(r)\right\}$$

Topological models and soliton

The free space Lagrangian in use

[G.S.Adkins et al. Nucl.Phys. B228 (1983)]

$$\mathcal{L} = \frac{F_{\pi}^2}{16} \operatorname{Tr} \left(\partial_{\mu} U \partial^{\mu} U^{\dagger} \right) - \frac{1}{16e^2} \operatorname{Tr} \left[U^{\dagger} \partial_{\mu} U, U^{\dagger} \partial_{\nu} U \right]^2 + \frac{F_{\pi}^2 m_{\pi}^2}{16} \operatorname{Tr} \left(U + U^{\dagger} - 2 \right)$$

- Nontrivial structure:
 topologically stable
 solitons with the
 corresponding conserved
 topological number
 (baryon number) A
- Nucleon is quantised state of the classical solitonskyrmion

$$U = \exp\{i\overline{\tau} \,\overline{\pi} / 2F_{\pi}\} = \exp\{i\overline{\tau} \,\overline{n}F(r)\}$$

$$B^{\mu} = \frac{1}{24\pi^{2}} \varepsilon^{\mu\nu\alpha\beta} Tr(L_{\nu}L_{\alpha}L_{\beta}) \qquad L_{\alpha} = U^{+}\partial_{\alpha}U$$

$$A = \int d^{3}rB^{0}$$

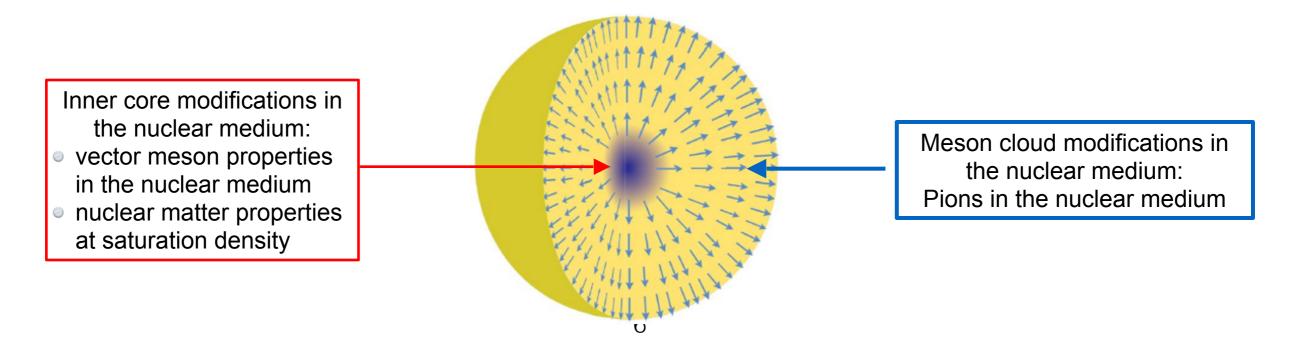
$$\begin{split} H &= M_{cl} + \frac{\overline{S}^2}{2I} = M_{cl} + \frac{\overline{T}^2}{2I}, \\ &|S &= T, s, t> = (-1)^{t+T} \sqrt{2T + 1} D_{-t,s}^{S=T}(A) \end{split}$$

What happens in the nuclear medium?

- The medium effects
 - Deformations (swelling or shrinking, multipole deformations) of nucleons
 - Possible characteristic changes: effective mass, charge distributions, form factors
 - NN interactions may change
 - etc.
- One should be able to describe all those phenomena

Soliton in the nuclear medium (phenomenological way)

- Outer shell modifications (informations from pionic atoms)
- Inner core modifications, in particular, at large densities (nuclear matter properties)



"Outer shell" modifications

- In free space three types of pions can be treated separately: isospin breakin
- In nuclear matter: three types of polarization operators
- Optic potential approach: parameters from the pionnucleon scattering, including isospin dependents

$$(\partial^{\mu}\partial_{\mu} + m_{\pi}^2)\vec{\pi}^{(\pm,0)} = 0$$

$$(\partial^{\mu}\partial_{\mu} + m_{\pi}^2 + \hat{\Pi}^{(\pm,0)})\vec{\pi}^{(\pm,0)} = 0$$

$$\hat{\Pi}^0 = 2\omega U_{\text{opt}} = \chi_s(\rho, b_0, c_0) + \vec{\nabla} \cdot \chi_p(\rho, b_0, c_0) \vec{\nabla}$$

	$\pi ext{-atom}$	$T_{\pi} = 50 \text{ MeV}$
$b_0 [m_{\pi}^{-1}]$] - 0.03	- 0.04
$b_1 [m_{\pi}^{-1}]$] - 0.09	- 0.09
$c_0 [m_{\pi}^{-3}]$] 0.23	0.25
$c_1 [m_{\pi}^{-3}]$] 0.15	0.16
g'	0.47	0.47

"Outer shell" modifications [U.Meissner et al., EPJ A36 (2008)]

$$\mathcal{L}_{2}^{*} = \frac{F_{\pi}^{2}}{16} \alpha_{\tau} \operatorname{Tr} \left(\partial_{0} U \partial_{0} U^{\dagger} \right) - \frac{F_{\pi}^{2}}{16} \alpha_{s} \operatorname{Tr} \left(\partial_{i} U \partial_{i} U^{\dagger} \right)$$

$$\mathcal{L}_m^* = -\frac{F_\pi^2 m_\pi^2}{16} \alpha_m \operatorname{Tr} \left(2 - U - U^+\right)$$

- Due to the nonlocality of optic potential the kinetic term is also modified
- Due to energy and momentum dependence of the optic potential parameters following parts of the kinetic term is modified in different form:
 - Temporal part
 - Space part

$$\hat{\Pi}^0 = 2\omega U_{\text{opt}} = \chi_s(\rho, b_0, c_0) + \vec{\nabla} \cdot \chi_p(\rho, b_0, c_0) \vec{\nabla}$$

	$\pi\text{-atom}$	$T_{\pi} = 50 \text{ MeV}$
$b_0 [m_{\pi}^{-1}]$	- 0.03	- 0.04
$b_1 [m_{\pi}^{-1}]$	- 0.09	- 0.09
$c_0 \left[m_{\pi}^{-3} \right]$	0.23	0.25
$c_1 \left[m_{\pi}^{-3} \right]$	0.15	0.16
g'	0.47	0.47

"Inner core" modifications

[UY & H.Ch. Kim, PRC83 (2011); UY, JKPS62 (2013); UY, PRC88 (2013)]

$$\mathcal{L}_{4}^{*} = -\frac{1}{16e^{2}\zeta_{\tau}} \operatorname{Tr} \left[U^{\dagger} \partial_{0} U, U^{\dagger} \partial_{i} U \right]^{2} + \frac{1}{32e^{2}\zeta_{s}} \operatorname{Tr} \left[U^{\dagger} \partial_{i} U, U^{\dagger} \partial_{j} U \right]^{2}$$

- May be related to
 - Vector meson properties in nuclear matter
 - Nuclear matter properties

$$\zeta_{\tau,s} = \zeta_{\tau,s}(\rho, \delta\rho, \text{parameters})$$

Final Lagrangian

[UY, JKPS62 (2013); UY, PRC88 (2013)]

Separated into two parts

$$\mathcal{L}^* = \mathcal{L}^*_{\mathrm{sym}} + \mathcal{L}^*_{\mathrm{asym}}$$

Isoscalar part

$$\mathcal{L}_{\mathrm{sym}}^* = \mathcal{L}_2^* + \mathcal{L}_4^* + \mathcal{L}_m^*$$

Isovector part

$$\mathcal{L}_{\mathrm{asym}}^* = \mathcal{L}_{\delta m}^* + \mathcal{L}_{\delta \rho}^*$$

- Nuclear matter stabilisation
- Asymmetric matter properties

$$\mathcal{L}_{2}^{*} = \frac{F_{\pi}^{2}}{16} \alpha_{\tau} \operatorname{Tr} \left(\partial_{0} U \partial_{0} U^{\dagger} \right) - \frac{F_{\pi}^{2}}{16} \alpha_{s} \operatorname{Tr} \left(\partial_{i} U \partial_{i} U^{\dagger} \right)$$

$$\frac{1}{16e^{2}\zeta_{\tau}} \operatorname{Tr} \left[U^{\dagger} \partial_{0} U, U^{\dagger} \partial_{i} U \right]^{2} + \frac{1}{32e^{2}\zeta_{s}} \operatorname{Tr} \left[U^{\dagger} \partial_{i} U, U^{\dagger} \partial_{j} U \right]^{2}$$

$$\mathcal{L}_m^* = -\frac{F_\pi^2 m_\pi^2}{16} \, \alpha_m \text{Tr} \, \left(2 - U - U^+ \right)$$

$$\mathcal{L}_{\delta m}^{*} = -\frac{F_{\pi}^{2}}{32} \sum_{a=1}^{2} (m_{\pi^{\pm}}^{2} - m_{\pi^{0}}^{2}) \operatorname{Tr} (\tau_{a} U) \operatorname{Tr} (\tau_{a} U^{\dagger})$$

$$\left(\mathcal{L}_{\delta\rho}^{*} \right) = -\frac{F_{\pi}^{2}}{16} m_{\pi} \alpha_{e} \, \varepsilon_{ab3} \text{Tr} \left(\tau_{a} U \right) \text{Tr} \left(\tau_{b} \partial_{0} U^{\dagger} \right)$$

Reparametrization

[UY, PRC88 (2013)]

- Five density dependent parameters
- Rearrangment (technical simplification)

$$1 + C_1 \frac{\rho}{\rho_0} = f_1 \left(\frac{\rho}{\rho_0}\right) \equiv \sqrt{\frac{\alpha_p^0}{\gamma_s}}$$

$$1 + C_2 \frac{\rho}{\rho_0} = f_2 \left(\frac{\rho}{\rho_0}\right) \equiv \frac{\alpha_s^{00}}{(\alpha_p^0)^2 \gamma_s}$$

$$1 + C_3 \frac{\rho}{\rho_0} = f_3 \left(\frac{\rho}{\rho_0}\right) \equiv \frac{(\alpha_p^0 \gamma_s)^{3/2}}{\alpha_s^{02}}$$

Shell modifications
$$F_{\pi,\tau} \to F_{\pi,\tau}^*, \quad e_{\tau} \to e_{\tau}^*, \quad m_{\pi} \to m_{\pi}^*, \quad F_{\pi,s} \to F_{\pi,s}^*, \quad e_s \to e_s^*$$

$$1 + C_2 \frac{\rho}{\rho_0} = f_2 \left(\frac{\rho}{\rho_0}\right) = \frac{\alpha_s^{00}}{(\alpha_p^0)^2 \gamma_s} \qquad \frac{\alpha_e}{\gamma_s} = f_4 \left(\frac{\rho}{\rho_0}\right) \frac{\rho_n - \rho_p}{\rho_0} = \frac{C_4 \frac{\rho}{\rho_0}}{1 + C_5 \frac{\rho}{\rho_0}} \frac{\rho_n - \rho_p}{\rho_0}$$

Structure: Energy momentum tensor

- It allows to address the questions like:
 - How are the total angular momentum and angular momentum of the nucleon shared among its constituents?
 - How are the strong forces experienced by its constituents distributed inside the nucleon?
- EMT form factors studied in lattice QCD, ChPT and in different models (chiral quark soliton model, Skyrme model, etc.)
- We made further step studying EMT form factors in nuclear matter

Structure: Pressure distribution inside the nucleon in free space and in symmetric matter [H.C.Kim, P. Schweitzer, UY, Phys.Lett. B718 (2012)]

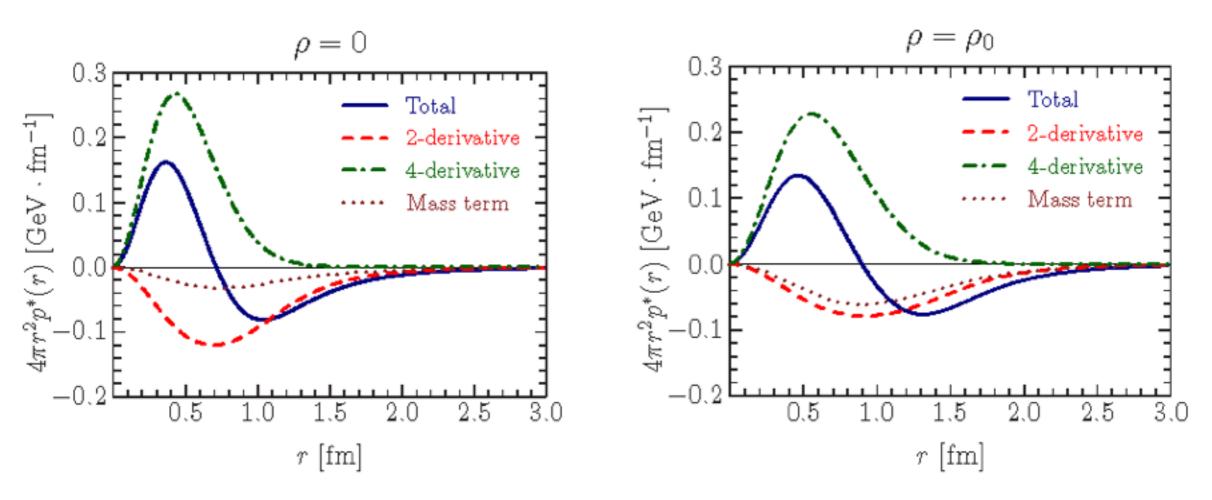


FIG. 3: (Color online) The decomposition of the pressure densities $4\pi r^2 p^*(r)$ as functions of r, in free space ($\rho = 0$) and at $\rho = \rho_0$, in the left and right panels, respectively. The solid curves denote the total pressure densities, the dashed ones represent the contributions of the 2-derivative (kinetic) term, the long-dashed ones are those of the 4-derivative (stabilizing) term, and the dotted ones stand for those of the pion mass term.

Stability and applicability [H.C.Kim, P. Schweitzer, UY, Phys.Lett. B718 (2012)]

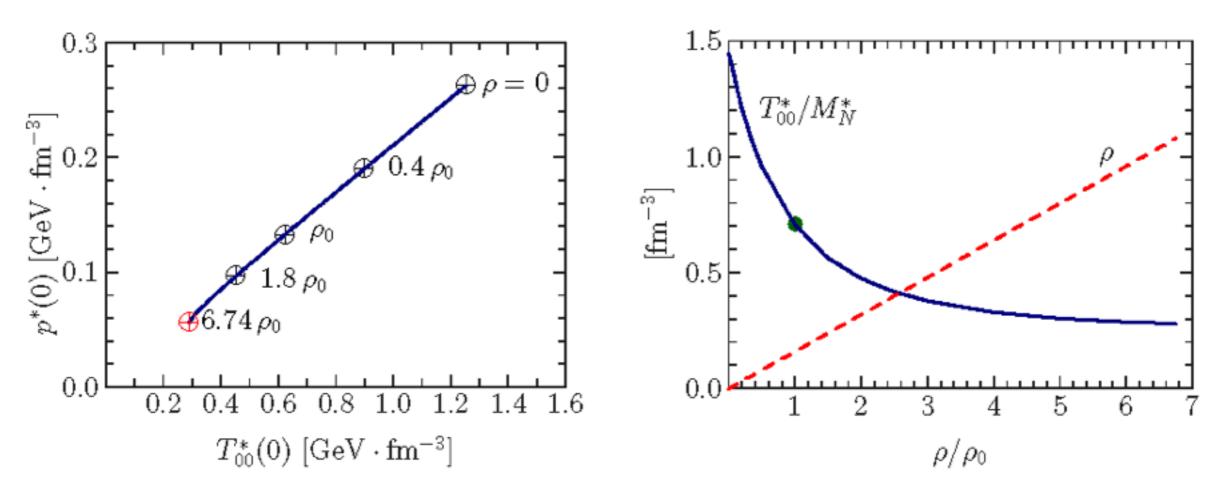


FIG. 5: (Color online) In the left panel, the correlated change of $p^{\star}(0)$ and $T_{00}^{\star}(0)$ drawn with ρ varied. In the right panel, the $T_{00}^{\star}/M_N^{\star}$ and ρ depicted as a function of ρ/ρ_0 . The maximal density is given as about 6.74 ρ_0 , above which the Skyrmion does not exist anymore. The filled circle on the solid curve represents the value of $T_{00}^{\star}/M_N^{\star}$ at normal nuclear matter density.

Nucleon in nuclear matter

[UY, PRC88 (2013)]

Isovector mass

$$m_{N,s}^* = M_S^* + \frac{3}{8\Lambda^*} + \frac{\Lambda^*}{2} \left(a^{*2} + \frac{\Lambda_{\text{env}}^{*2}}{\Lambda^{*2}} \right)$$

Isovector mass

$$\Delta m_{np}^* = a^* + \frac{\Lambda_{\text{env}}^*}{\Lambda^*}$$

Mass of the nucleon

$$m_{n,p}^* = m_{N,s}^* - \Delta m_{np}^* T_3$$

Nuclear matter

The binding-energy-formula terms in the framework of present model

$$\varepsilon(A,Z) = -a_V + a_S \frac{(N-Z)^2}{A^2} + \mathbb{W}$$

We are ready to reproduce

- Volume term
- Infinite and asymmetric nuclear matter
 Asymmetry term
 - - Isospin asymmetric environment
 - Surface and Coulomb terms
 - Nucleons in a finite volume
 - Finite nuclei properties
 - Local density approximation

Nuclear matter

The volume term and Symmetry energy

 At infinite nuclear matter approximation the binding energy per nucleon takes the form

$$\varepsilon(\lambda, \delta) = \varepsilon_V(\lambda) + \varepsilon_S \delta^2 + O(\delta^4) \equiv \varepsilon_V(\lambda) + \varepsilon_A(\lambda, \delta)$$

- \circ λ is normalised nuclear matter density
- \circ δ is asymmetry parameter
- ϵ_S is symmetry energy
- In our model
 - Symmetric matter
 - Asymmetric matter

$$\varepsilon_V(\lambda) = m_{N,s}^*(\lambda,0) - m_N^{\text{free}}$$

$$\varepsilon_{A}(\lambda,\delta) = \varepsilon(\lambda,\delta) - \varepsilon_{V}(\lambda)$$

$$= m_{N_{S}}^{*}(\lambda,\delta) - m_{N_{S}}^{*}(\lambda,0) + m_{N_{V}}^{*}(\lambda,\delta)\delta$$

Nuclear matter

Nuclear matter properties

Symmetric matter properties (pressure, compressibility and third derivative)

$$p = \rho_0 \lambda^2 \frac{\partial \varepsilon_V(\lambda)}{\partial \lambda} \bigg|_{\lambda=1}, \quad K_0 = 9 \rho^2 \frac{\partial^2 \varepsilon_V(\lambda)}{\partial \rho^2} \bigg|_{\rho=\rho_0} \qquad Q = 27 \lambda^3 \frac{\partial^3 \varepsilon_V(\lambda)}{\partial \lambda^3} \bigg|_{\lambda=1}$$

Symmetry energy properties (coefficient, slop and curvature)

$$\varepsilon_s(\lambda) = \varepsilon_s(1) + \frac{L_s}{3}(\lambda - 1) + \frac{K_s}{18}(\lambda - 1)^2 + \mathbb{W}$$

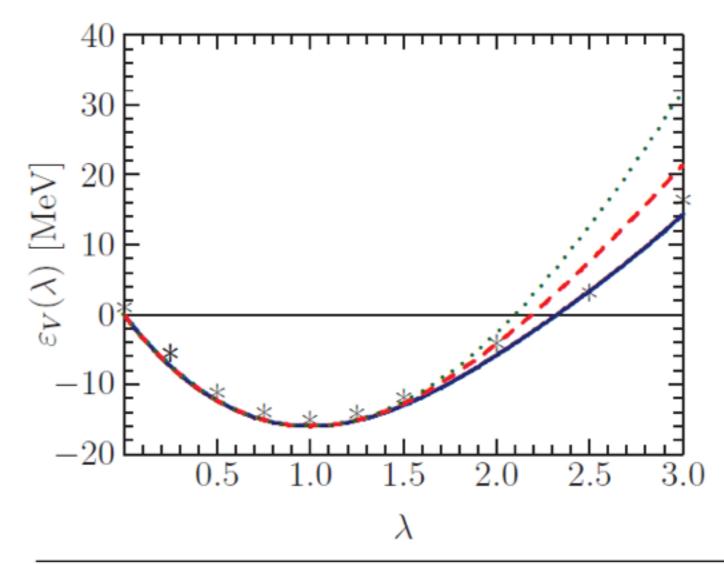
Symmetric matter

Volume energy

[UY, PRC88 (2013)]

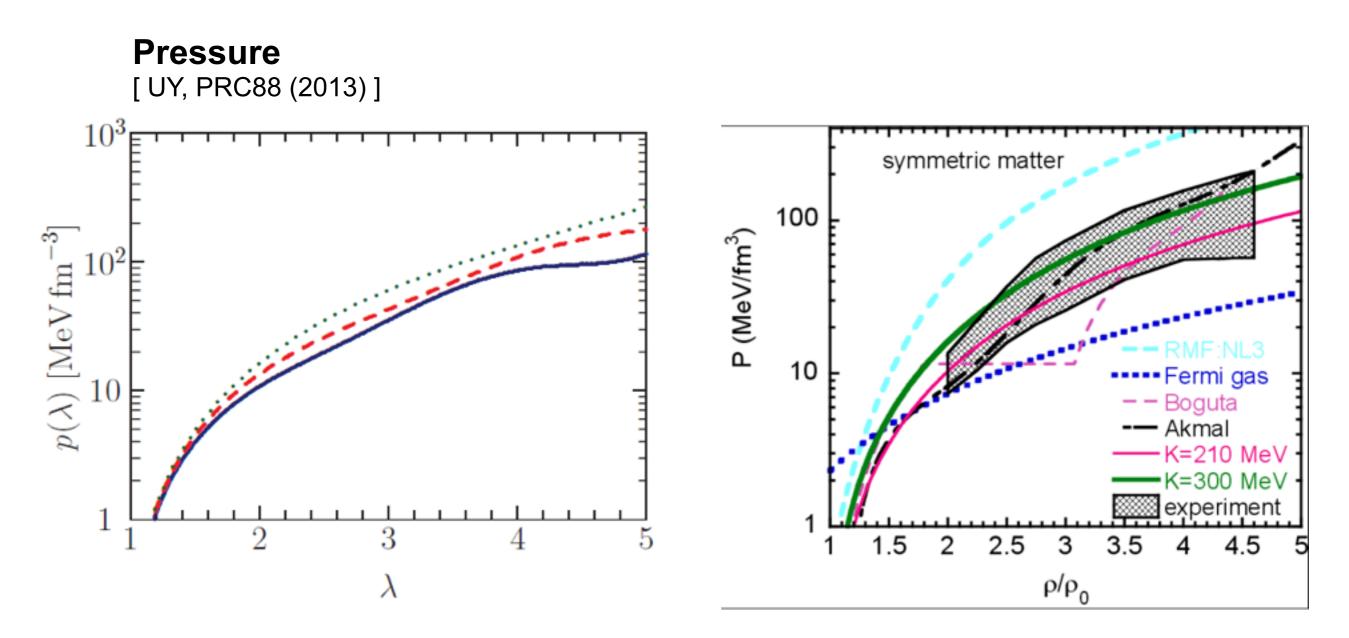
- Set I solid
- Set II dashed
- Set III dotted

For comparison: Akmal-Pandharipande-Ravenhall (APR) predictions
[PRC 58, 1804 (1998)] are given by stars.
(From Arigonna 2 body interactions + 3 body interactions)



Set	C_1	C_2	C_3	$\varepsilon_V(\rho_0)$ (MeV)	K_0 (MeV)	Q (MeV)
I	-0.279	0.737	1.782	-16	240	-410
II	-0.273	0.643	1.858	-16	250	-279
III	-0.277	0.486	2.124	-16	260	-178

Symmetric matter



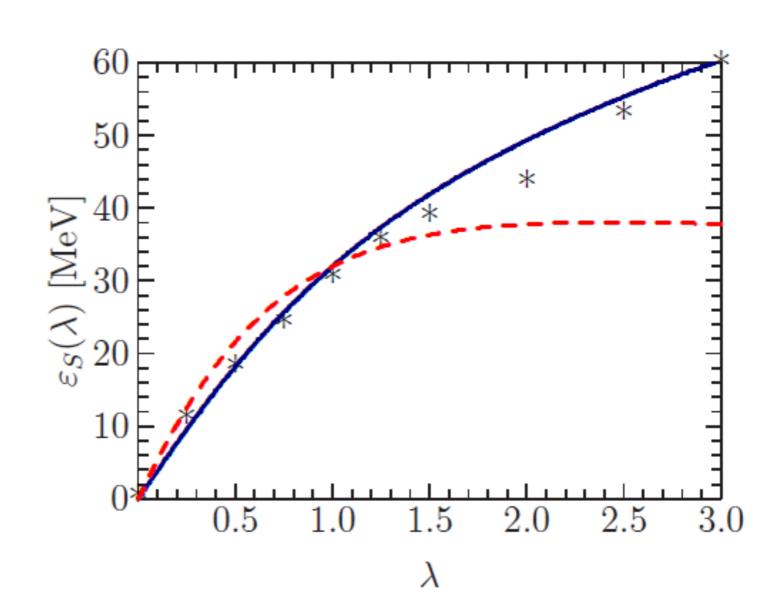
For comparison: Right figure from Danielewicz- Lacey-Lynch, Science 298, 1592 (2002). (Deduced from experimental flow data and simulations studies)

Asymmetric matter

Symmetry energy

- Solid $L_s = 70 \,\mathrm{MeV}$
- Dashed $L_s = 40 \,\mathrm{MeV}$

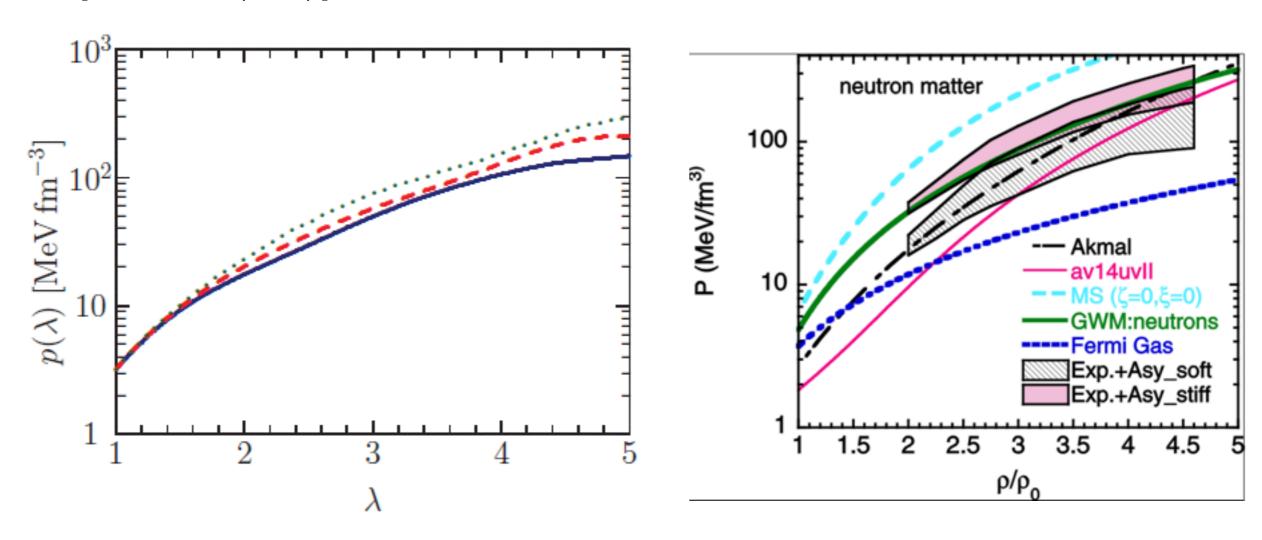
For comparison: Akmal-Pandharipande-Ravenhall (APR) predictions
[PRC 58, 1804 (1998)] are given by stars.
(From arigonna 2 body interactions + 3 body interactions)



Asymmetric matter

Pressure in neutron matter

[UY, PRC88 (2013)]



For comparison: Right figure from

Danielewicz-Lacey-Lynch, Science 298, 1592 (2002).

(Deduced from experimental flow data and simulations studies)

Asymmetric matter

Low density behaviour of symmetry energy

For comparison:

Trippa-Colo-Vigezzi [PRC 77, 061304 (2008)];

From analysis of GDR (208Pb).

Consequently one can predict in this model:

$$K_{\tau} = K_s - 6L_s$$

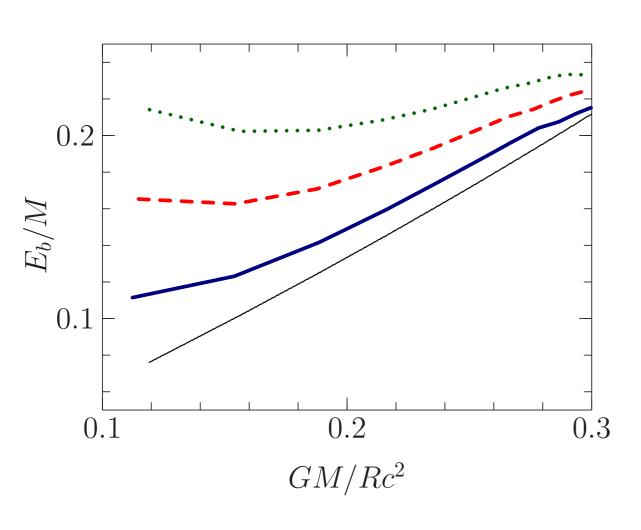
$$K_{0,2} = K_{\tau} - \frac{Q}{K_0} L_s$$

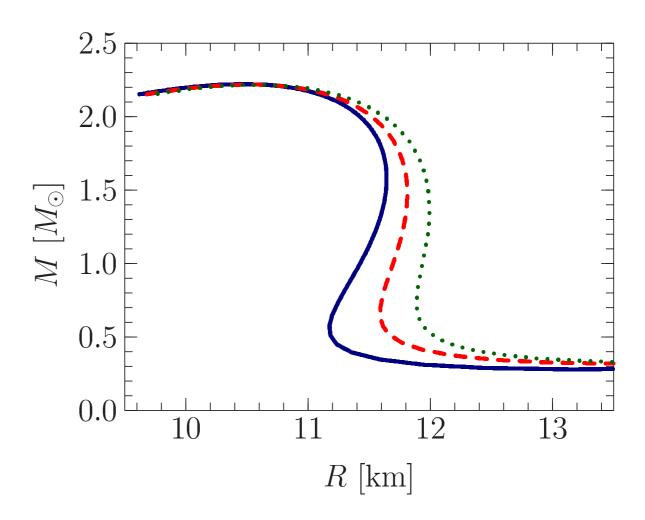
$$23.3 < \varepsilon_s (\rho = 0.1 \text{fm}^{-3}) < 24.9 \text{ MeV}$$

$\varepsilon_S(ho_0)$	L_S	K_S	$K_{ au}$	$K_{0,2}$	$\varepsilon_S(0.1 { m fm}^{-3})$
[MeV]	$[\mathrm{MeV}]$	[MeV]	$[\mathrm{MeV}]$	[MeV]	[MeV]
32	40	-181	-301	-257	25.15
32	50	-160	-310	-254	24.15
32	60	-126	-306	-239	23.22
32	70	-80	-290	-211	22.37
32	80	-21	-261	-172	21.57
32	90	50	-220	-119	20.82
32	100	134	-166	-55	20.13
_					

Neutron stars

Neutron star properties [UY, arXiv:1506.06481[nucl-th]]





Neutron stars

Neutron star properties [UY, arXiv:1506.06481[nucl-th]]

TABLE III: Properties of the neutron stars from the different sets of parameters (see Tables I and II for the values of parameters): n_c is central number density, ρ_c is central energy-mass density, R is radius of the neutron star, M_{max} is possible maximal mass, A is number of baryons in the star, E_b is binding energy of the star. In the left panel we represent the neutron star properties corresponding to the maximal mass M_{max} and in right panel approximately 1.4 solar mass neutron star properties. The last two lines are results from the Ref. [21].

Set	n_c	$ ho_c$	R	$M_{ m max}$	A	E_b	n_c	$ ho_c$	R	M	A	E_b
	$[\mathrm{fm}^{-3}]$	$[10^{15}\mathrm{gr/cm}^3]$	[km]	$[M_{\odot}]$	$[10^{57}]$	$[10^{53}\mathrm{erg}]$	$[\mathrm{fm}^{-3}]$	$[10^{15}\mathrm{gr/cm}^3]$	[km]	$[M_{\odot}]$	$[10^{57}]$	$[10^{53}\mathrm{erg}]$
III-a	1.046	2.445	10.498	2.226	3.227	8.721	0.479	0.861	11.587	1.402	1.898	3.503
III-b	1.045	2.444	10.547	2.223	3.216	8.557	0.471	0.861	11.772	1.402	1.895	3.453
III-c	1.037	2.424	10.616	2.221	3.200	8.397	0.460	0.832	11.953	1.402	1.887	3.339
III-d	1.047	2.452	10.494	2.221	3.213	8.598	0.481	0.867	11.619	1.402	1.893	3.422
III-e	1.044	2.440	10.554	2.218	3.203	8.495	0.473	0.858	11.809	1.403	1.890	3.384
III-f	1.040	2.433	10.609	2.216	3.189	8.311	0.464	0.842	11.992	1.403	1.887	3.334
SLy230a [21]	1.15	2.69	10.25	2.10	2.99	7.07	0.508	0.925	11.8	1.4	1.85	2.60
SLy230b [21]	1.21	2.85	9.99	2.05	2.91	6.79	0.538	0.985	11.7	1.4	1.85	2.61

One can find density functionals from the reparametrization scheme

[UY, PRC88 (2013)]

Five density dependent parameters

Rearrangment (technical simplification)

$$1 + C_1 \frac{\rho}{\rho_0} = f_1 \left(\frac{\rho}{\rho_0}\right) \equiv \sqrt{\frac{\alpha_p^0}{\gamma_s}}$$

$$1 + C_2 \frac{\rho}{\rho_0} = f_2 \left(\frac{\rho}{\rho_0}\right) \equiv \frac{\alpha_s^{00}}{(\alpha_p^0)^2 \gamma_s}$$

$$1 + C_3 \frac{\rho}{\rho_0} = f_3 \left(\frac{\rho}{\rho_0}\right) \equiv \frac{(\alpha_p^0 \gamma_s)^{3/2}}{\alpha_s^{02}}$$

Shell modifications Core modifications
$$F_{\pi,\tau} \to F_{\pi,\tau}^*, \quad e_{\tau} \to e_{\tau}^*, \quad m_{\pi} \to m_{\pi}^*, \\ F_{\pi,s} \to F_{\pi,s}^*, \quad e_{s} \to e_{s}^*$$

$$1 + C_2 \frac{\rho}{\rho_0} = f_2 \left(\frac{\rho}{\rho_0}\right) \equiv \frac{\alpha_s^{00}}{(\alpha_p^0)^2 \gamma_s} \qquad \frac{\alpha_e}{\gamma_s} = f_4 \left(\frac{\rho}{\rho_0}\right) \frac{\rho_n - \rho_p}{\rho_0} = \frac{C_4 \frac{\rho}{\rho_0}}{1 + C_5 \frac{\rho}{\rho_0}} \frac{\rho_n - \rho_p}{\rho_0}$$

$$1 + C_2 \frac{\rho}{\rho_0} = f_2 \left(\frac{\rho}{\rho_0}\right) \equiv \frac{(\alpha_p^0 \gamma_s)^{3/2}}{1 + C_5 \frac{\rho}{\rho_0}} = \frac{C_4 \frac{\rho}{\rho_0}}{1 + C_5 \frac{\rho}{\rho_0}} \frac{\rho_n - \rho_p}{\rho_0}$$

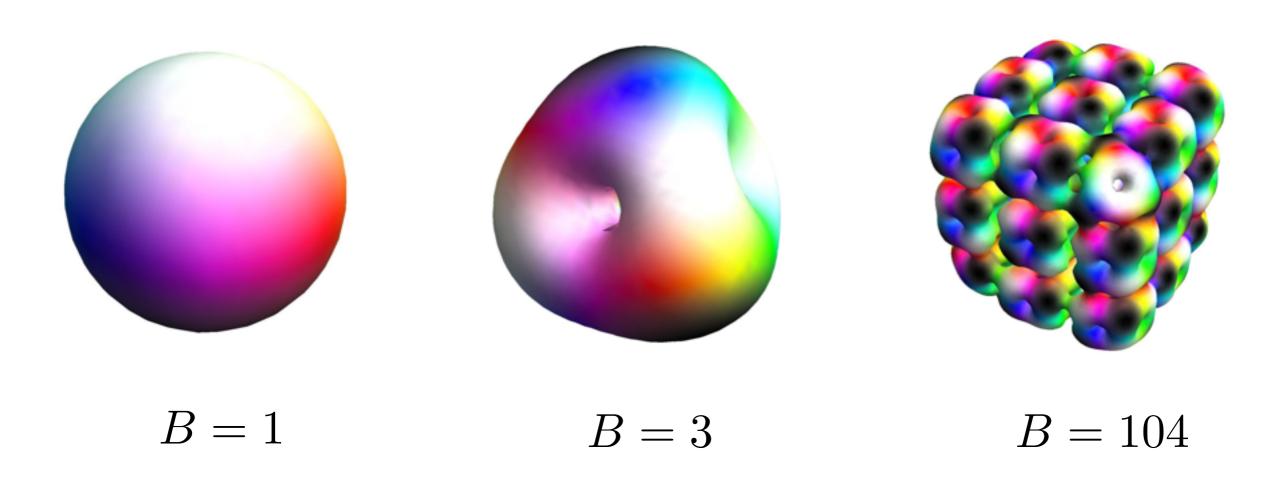
Low energy constants in nuclear at normal nuclear matter density ρ_0

	Present model	ChPT [1]	QCD sum rules [2]		
$F_{\pi,t}^*$ / F_{π}	0.37	0.74	0.79		
$F_{\pi,s}^*$ / F_{π}	0.72	< 0	0.78		

^[1] U. Meissner, J. Oller, A. Wirzba, Annals Phys. 297 (2002) 27.

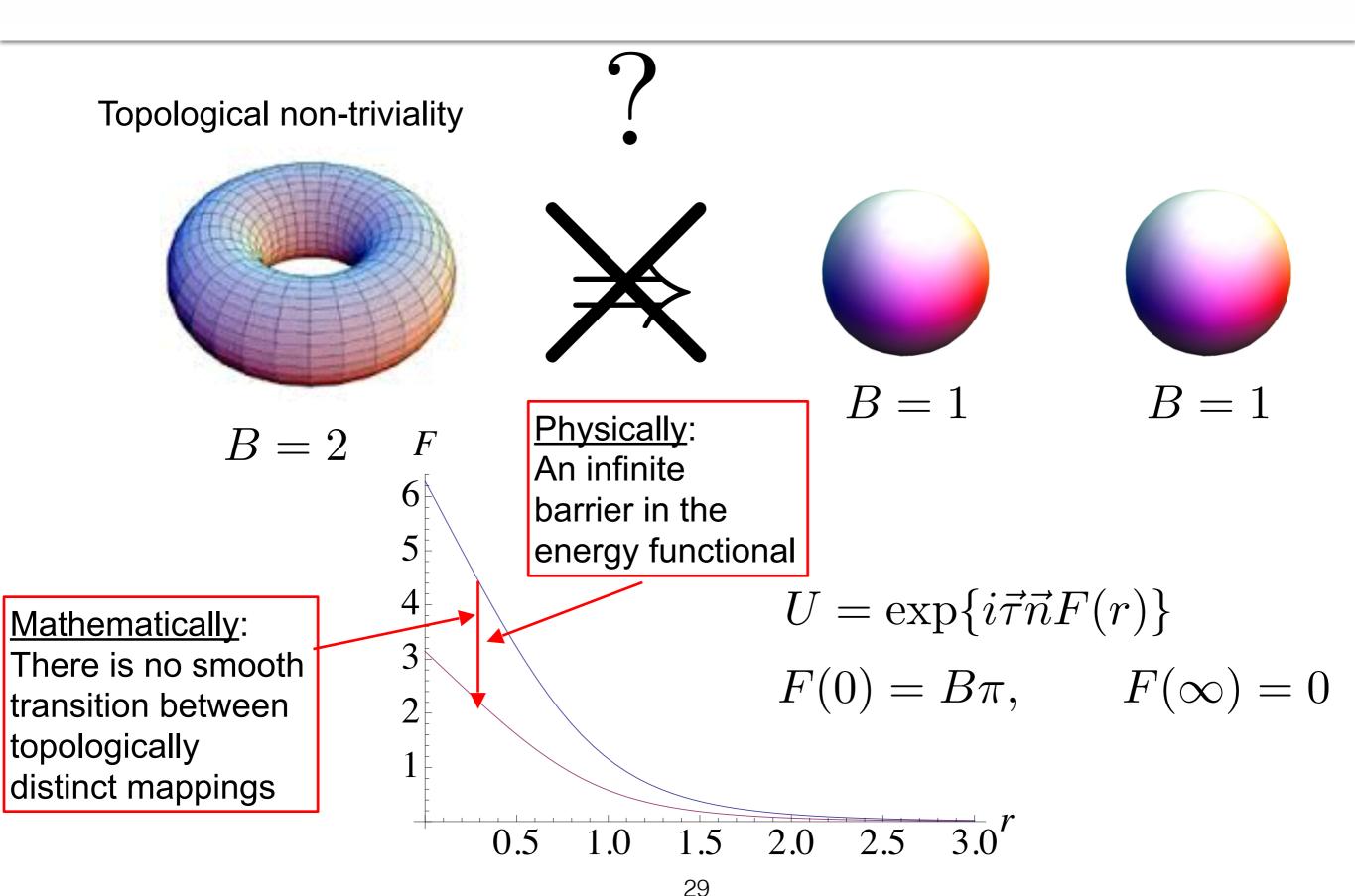
^[2] H. Kim, M. Oka, NPA720 (2003) 368.

Surface of constant baryon density skyrmions [Feist, D.T.J. et al. Phys.Rev. D87 (2013)]

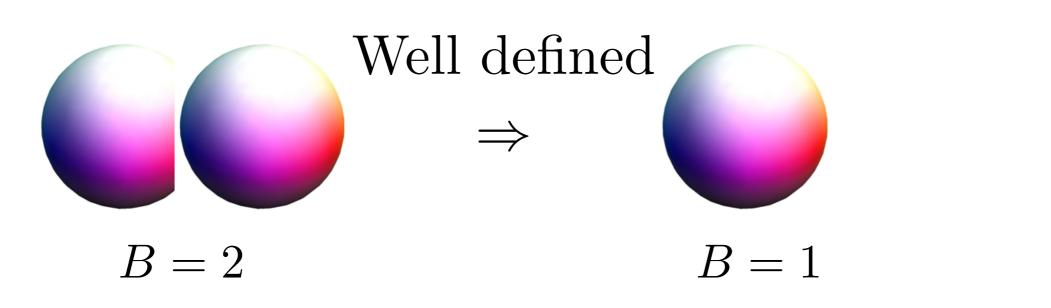


$$\mathcal{L} = \frac{F_{\pi}^{2}}{16} \operatorname{Tr} \left(\partial_{\mu} U \partial^{\mu} U^{\dagger} \right) - \frac{1}{16e^{2}} \operatorname{Tr} \left[U^{\dagger} \partial_{\mu} U, U^{\dagger} \partial_{\nu} U \right]^{2}$$

Changes from a nucleus to a nucleus ("calibration")



Physically consistent picture (ansatz product)



Overlapping at small distances

One can reproduce SS potential and project it into NN potential.

$$U_{\text{system}} = U(\vec{r}_1)U(\vec{r}_2)$$

$$U = \exp\{i\vec{\tau}\vec{n}F(r)\}$$

$$F(0) = \pi, \qquad F(\infty) = 0$$

Well separated at large distances

B=1

Other approaches

- Classical crystalline structures
 - Cubic structure
 [M. Kutschera et al. Phys. Rev. Lett. 53 (1984)]
 [I. R. Klebanov, Nucl. Phys. B 262 (1985)]
 - Phase structure analysis using FCC crystal [H.-J. Lee et al. Nucl. Phys. A 723 (2003)]
- Skyrmions in hypersphere
 - System properties from the single skyrmion in hypersphere
 [N. S. Manton and P. J. Ruback, Phys. Lett. B 181 (1986)]

31

Finite nuclei

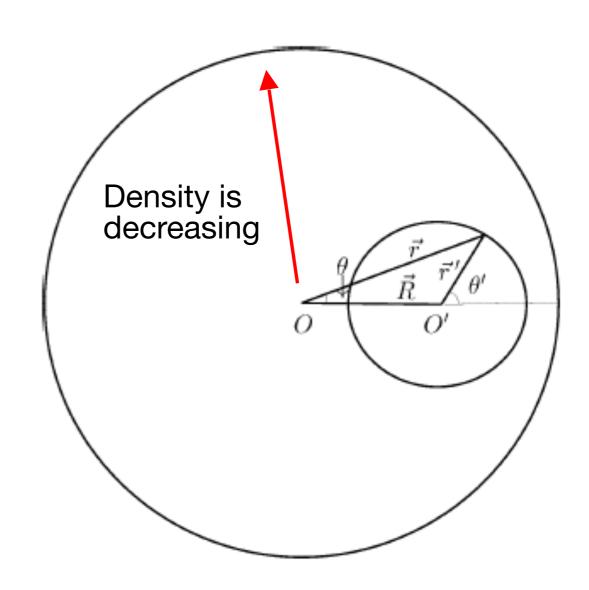
Nucleon in a nucleus (local density approximation)

The problem is coupled partial differential equations

$$f(F_{\tilde{r}\tilde{r}}, F_{\theta\theta}, F_{\tilde{r}}, F_{\theta}, \Theta_{\theta}, F, \Theta) = 0,$$

$$g(\Theta_{\theta\theta}, \Theta_{\theta}, F_{\tilde{r}}, F_{\theta}, \Theta, F) = 0,$$

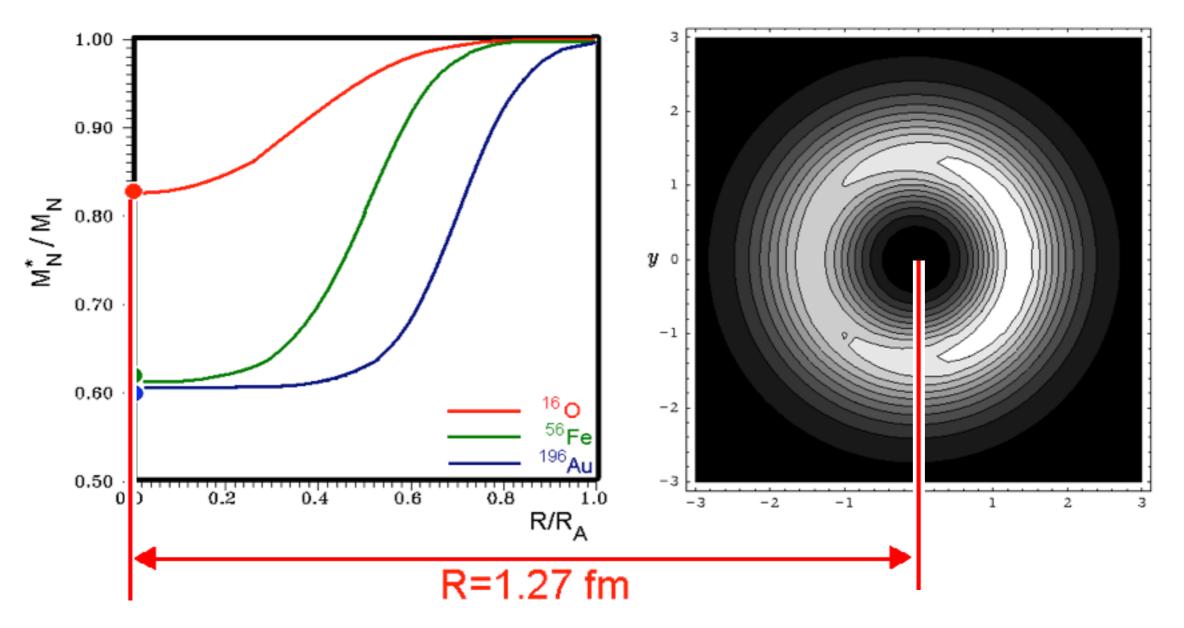
One can formulate the minimization method



Finite nuclei

Nucleon may deform (core modification is not taken into account) [UY, et al., NPA200 (2002)]

The single baryon density distribution in finite nuclei. Ex: Skyrmion located at distance 1.25 fm from the centre of oxygen



Summary and Outlook

- Within the applicability range, the model describes at same footing
 - the single hadrons properties
 - in separate state
 - in the community of their partners (EM and EMT form factors)
 - as well as the properties of that whole community
 - infinite nuclear matter properties (volume and symmetry energy properties)
 - matter under extreme conditions (neutron stars)
 - few and many nucleon systems (mirror nuclei, rare isotopes, halo nuclei,...)
 - nucleon knock-out reactions
 - Effective NN interactions

Summary and Outlook

Applicability and extensions of the approach

- Nucleon tomography
 - [H.Ch. Kim, UY, PLB726 (2013)]
 - [J.H.Jung, UY, H.Ch.Kim, Jour. Phys. G41 (2014)]
 - [J.H.Jung, UY, H.Ch.Kim, P. Schweitzer. PRD89 (2014)]
- Nuclear matter [UY, UY, JKPS62 (2013); UY, PRC88 (2013)]
- Neutron stars [UY, arXiv:1506.06481[nucl-th]]
- Vector mesons in nuclear matter
 - [J.H.Jung, UY, H.Ch.Kim, PLB 723 (2013)]

Thank you very much for your attention!