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Resonance tunneling of a quantum particle through double barriers

The system of two complex Scarf potentials with V1 = 2, V2 = 1, separated by the
distance d = 7/2.

V (z)=VScarf (z−d/2)+VScarf (z+d/2), VScarf (z)=
V1

cosh2 z
+ı

V2 sinh z
cosh2 z

.

The solid line shows the real part and the dotted line shows the imaginary part
(left-hand panel). The coefficients of transmission TL = |T→|2 (solid line), reflection
RL = |R→|2 (dotted line), and absorption AL (dash-dotted line) versus the wave
number k =

√
2E for the systems of two purely real and complex potentials.
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Resonance tunneling of a quantum particle through double barriers

Wave functions of the scattering problem for the first resonance value of energy
2Emax T

1 , corresponding to the full transparency, i.e., the maximal transmission
coefficient, for Φ→ (left-hand panels) and Φ← (central panels); the functions of
resonance metastable states with the energies 2E r

1 (right-hand panels).
The upper panels refer to the system of two real Scarf potentials with V1 = 2,
V2 = 0, the lower panels refer to the system of two complex Scarf potentials with
V1 = 2, V2 = 1. Red and green lines show the real and imaginary parts.
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Model of transmission of a diatomic molecule through a barrier

We consider a 2D model of two identical particles with mass m, coupled by pair
interaction Ṽ (|x2 − x1|) and interacting with barrier potentials Ṽb(x1) and Ṽb(x2).
The Schrödinger equation for the wave function Ψ(x1, x2) in the s-wave
approximation has the form:(

− ~2

2m
∂2

∂x2
1
− ~2

2m
∂2

∂x2
2

+ Ṽ (|x2 − x1|) + Ṽb(x1) + Ṽb(x2)− Ẽ
)

Ψ(x1, x2) = 0,

where Ẽ is the total energy of the system and ~ is the Plank constant.

Gaussian-type barrier Vb(xi ) = D̂ exp
(
− x2

i
2σ

)
, at D̂ = 236.51Å−2 = (m/~2)D,

D = 1280K, σ = 5.23 · 10−2Å2, the two-particle interaction potential,
V (r) = D̂{exp[−2(r − x̂eq)ρ̂]− 2 exp[−(r − x̂eq)ρ̂]}, r = |x2 − x1|, x̂eq = 2.47Å,
ρ̂ = 2.968Å−1 and the corresponding 2D potential in the (x , y) plane.
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The total probability of penetration with the
transition from the first channels with the
energies E1 = −1044.8, E2 = −646.1, E3 =
−342.7, E4 = −134.7, E5 = −22.1 (in K) to
all five open channels.

Temperature-dependent activation energy: the partial
Ea

i (T ) (solid lines) and the total Ea(T ) (dashed
line) activation energy and its lower (dotted line)
and upper (short-dashed line) estimates produced by
the corresponding upper and lower estimates of the
thermal rate constant k(T ).

Êa(T ) = − 1
√
βk̂(T )

d
√
βk̂(T )

dβ
, β = 1/T .

A.A. Gusev, et al. JINR NEWS N1 p. 22 (2014).
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Model of channelling for ions with similar or opposite charge

The (z, x)-dependence of the potential 2U(x , y , z) equal to a sum of the 3D Coulomb
potential and the potential of a 2D oscillator with the frequency ω=

√
γ. Left panels -

similar charges q=+6, γ=1, right panels - opposite charges q=−1, γ=1. The bold
curves are the lines of zero curvature K (U(x , z))=0 of the potential energy section
surface.

The repulsive nonspherical barrier provides the total reflection in the open channels
with the numbers Nsp

o ≤io≤No ≡ No(ε), where Nsp
o ∼[max(1,Uo=3(q/

√
γ)2/3/2)] is the

number of the open channel io=Nsp
o with the collision energy ε = 2E≈2Uo(q/

√
γ) in

the saddle points of the nonspherical barrier with the altitude 2U0=6.24 for
q/
√
γ = q̂=6, Nsp

o = 3.

Due to the axial symmetry, the zero-curvature lines K (U(x, z)) = 0 correspond to transitions from
the regular motion in classical mechanics, K (U(x, z)) > 0, to the chaotic one, K (U(x, z)) < 0.
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Results: the effects of resonance transmission and total reflection of oppositely
charged ions in the transverse oscillator potential
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Fig. 1 Profiles |Ψ(−)

Em→| of the total wave functions of the continuous spectrum in the
zx plane with Z = 1, m = 0, γ = 0.1 and the energies E = 0.05885 a.u. (a) and
E = 0.11692 a.u. (b), demonstrating resonance transmission and total reflection,
respectively.

Profiles of the wave function (18) for Z = 1, m = 0, γ = 0.1 and jmax = 10 are
shown in Fig. 1 at two fixed values of energy E, corresponding to resonance
transmission |T̂|2 = sin2(δe − δo) = 1 and total reflection |R̂|2 = cos2(δe − δo) = 1.
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Fig. 2. Transmission |T̂|2 and reflection |R̂|2 coefficients, even δe and odd δo phase
shifts versus the energy E (a) and (Ẽ2 − 2E)−1/2 (b) for γ = 0.1 and the final state
with σ = −1, Z = 1, m = 0. The arrow marks the first Landau threshold E1 = γ/2.

Transmission and reflection coefficients are explicitly shown in Fig. 2 together with
even δe and odd δo phase shifts versus the energy E (Fig. 2a) and (Ẽ2 − 2E)−1/2

(Fig.2b), where Ẽ2 = εth
m2(γ) is second threshold shift. The quasi-stationary states

imbedded in the continuum correspond to the short-range phase shifts
δo(e) = no(e)π + π/2 at (Ẽ2 − 2E)−1/2 = no(e)+Δno(e) . Nonmonotonic behavior of

|T̂| and |R̂| is seen to include the cases of resonance transmission and total reflection,
related to the existence of these quasistationary states.

●  ●  ●  ●  

(a) (b)
Profiles |Ψ(−)

Em→| of the total wave functions of the continuous spectrum in the (z, x)
plane with q = −1, m = 0, γ = 0.1 and the energies E = 0.05885 a.u. (a) and
E = 0.11692 a.u. (b), demonstrating the resonance transmission and the total
reflection, respectively.
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Results: the transmission and reflection matrices at q = +6
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 at 2E = 6.552(osc.u.)
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These are manifestations of partial transmission and practically total reflection in the inelastic
scattering of identical ions in a crystal channel
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Model of axial channelling of oppositely or similarly charged ions

The upper estimate of the enhancement coefficient K (E) is the ratio of squared
absolute values of the wave functions in the pair impact point r = 0 of the channelled
ions with/without the transverse harmonic oscillator field. It is shown versus the
energy E (osc. u.) in the c.m.s.a:

K (E) =
|C (2E) |2

|C0 (2E) |2 =

No∑
i=1

|Ci (2E) |2

|C0 (2E) |2 ,

where Ci (2E) = Ψ1i (r = 0) is the numerical solution at γ 6= 0; C0 (2E) = Ψ11(r = 0)
is the Coulomb function (for γ = 0).
In the figures γ = 1 and 1 ≤ No ≤ 10 is the number of open channels.
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aO. Chuluunbaatar, A.A.Gusev, V.L.Derbov, P. M. Krassovitskiy, and S. I. Vinitsky,
Channeling Problem for Charged Particles Produced by Confining Environment, Physics of
Atomic Nuclei, 2009, Vol. 72, No. 5, pp. 768–778.
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The effective mass correction
W11, its derivative W ’

11, and the
inverse effective mass µ−1

io io
(r) =

(1 + Wio io (r)) (left); the effective
potentials Ueff ≡ Ueff

11 (q, r) for
q=-24,-12,-6,-1,0,1,6,12,24 at γ =
1 and m= 0 for the first even state
io = 1 (right).

The resonance mechanism of ion channelling is explained in effective approximation

− 1
r 2

d
dr

r 2

µio io (r)

d
dr
χeff

io io (r) +
µ′io io (r)

µ2
io io

(r)
χeff

io io (r) + [Ueff
io io (q, r)− 2µE ]χeff

io io (r ,E , q, γ) = 0. (1)

For the charge values q = 1, 6, 12, 24 the effective potential Ueff
11 at the top of the

barrier and the potential 2U0 of the repulsive nonspherical barrier at the saddle
points are roughly equal to the relative energy ε = 2E = 2no + 1 = 2io − 1 of the
open channels with the numbers io = Nsp

o = 1, 3, 5, 8:

Ueff
11 (q=1, r≈2.95)=1.27≈2U0−1=1.89−1=0.89≈1,

Ueff
11 (q=6, r≈2.90)=4.72≈2U0−1=6.24−1=5.24≈5,

Ueff
11 (q=12, r≈2.85)=8.90≈2U0−1=9.90−1=8.90≈9,

Ueff
11 (q=24, r≈2.80)=17.4≈2U0−1=15.7−1=14.7≈15.

S.I. Vinitsky (BLTP, JINR) 10 / 27



Tunnelling of a system of A identical particles through repulsive barriers

The Schrödinger equation (SE) for penetration of A identical quantum particles
coupled by pair potentials V pair (xij ) through repulsive barriers V (xi ) (oscillator units)

− A∑
i=1

∂2

∂x2
i

+
A∑

j=2

j−1∑
i=1

1
A

(xij )
2 +

A∑
j=2

j−1∑
i=1

Upair (xij ) +
A∑

i=1

V (xi )− E

Ψ(x1, ..., xA; E) = 0.

where Upair (xij ) = V pair (xij )− (xij )
2/A, i.e., if V pair (xij ) = (xij )

2/A, then Upair (xij ) = 0.

The problem is to find the SE solutions totally
symmetric (or antisymmetric) with respect to the
permutations of A particles, i.e. the permutations
of the coordinates xi ↔ xj at i , j = 1, ...,A, or the
symmetry operations of the permutation group
Sn.

Barrier potential in the configuration space A = 2
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Symmetrized coordinates for a system of A identical particles



ξ0

ξ1

ξ2
...

ξA−2

ξA−1


= C



x1

x2

x3
...

xA−1

xA


,



x1

x2

x3
...

xA−1

xA


= C



ξ0

ξ1

ξ2
...

ξA−2

ξA−1


,

where ξ0 is center-of-mass variable and ξ1, ..., ξA−1 are relative variables,

C =
1√
A



1 1 1 1 · · · 1 1
1 a1 a0 a0 · · · a0 a0

1 a0 a1 a0 · · · a0 a0

1 a0 a0 a1 · · · a0 a0
...

...
...

...
. . .

...
...

1 a0 a0 a0 · · · a1 a0

1 a0 a0 a0 · · · a0 a1


,

a0 = 1/(1−
√

A) < 0,
a1 = a0 +

√
A > 0.

C is an orthogonal and
symmetric matrix, C2 = I.

A.A. Gusev, S.I. Vinitsky, O. Chuluunbaatar, et al, Phys. Atom. Nucl. 77, 389 (2014).
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For A = 2 the SCs are similar to Jacobi coordinates
For A = 4 the SCs are similar to the coordinates introduced in [P. Kramer, M.
Moshinsky, Nucl. Phys. 82, 241 (1966)]
The SCs are approved in [P. Kramer, T. Kramer, arXiv:1410.4768v2 (2014);
Phys. Scr. 90 (2015) 074014 (15pp)]

The SE in the symmetrized coordinates[
− ∂2

∂ξ2
0

+
A−1∑
i=1

[
− ∂2

∂ξ2
i

+ (ξi )
2
]

+ U(ξ0, ξ1, ..., ξA−1)− E

]
Ψ(ξ0, ξ1, ..., ξA−1; E) = 0,

U(ξ0, ξ1, ..., ξA−1) =
A∑

j=2

j−1∑
i=1

Upair (xij (ξ1, ..., ξA−1)) +
A∑

i=1

V (xi (ξ0, ξ1, ..., ξA−1)),

is invariant under the permutations ξi ↔ ξj at i , j = 1, ...,A− 1 (in contrast to the
Jacobi coordinates). The invariance of the SE under the permutation xi ↔ xj at
i , j = 1, ...,A is preserved.
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The symmetrized coordinate representation
The expansion of the required solution in the symmetrized coordinates

Ψio (ξ0, ξ1, ..., ξA−1) =

jmax∑
j=1

Φ
S(A)
j (ξ1, ..., ξA−1)χjio (ξ0),

Here χi (ξ0) are unknown functions of the center-of-mass variable

χjio (ξ0) =

∫
dξ1...dξA−1Φ

S(A)
j (ξ1, ..., ξA−1)Ψio (ξ0, ξ1, ..., ξA−1),

Φ
S(A)
j (ξ1, ..., ξA−1) are the orthonormalized basis eigenfunctions of (A− 1)-dimensional

oscillator, symmetric or antisymmetric with respect to the permutations of
coordinates xi ↔ xj .[

A−1∑
i=1

[
− ∂2

∂ξ2
i

+ (ξi )
2
]
− εS(A)

j

]
Φ
S(A)
j (ξ1, ..., ξA−1) = 0, ε

S(A)
j = 2

A−1∑
k=1

ik + A− 1,

where the indices ik , k = 1, ...,A− 1 take integer values ik = 0, 1, 2, 3, .... They are
sought for in the form of linear combinations of the conventional (A− 1)-dimensional
oscillator eigenfunctions.
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Φ
S(A)

[k,m]
(ξ1, ξ2) = Ckm(ρ2)3m/2 exp(−ρ2/2)Y S(A)

m (3m(ϕ + π/12))L3m
k (ρ2),

(k = 0, 1, ...; Y S
m(ϕ) = cos(ϕ), m = 0, 1, ...; Y A

m(ϕ) = sin(ϕ),
m = 1, 2, ...; εS(A)

k,m = 2(2k + 3m + 1).)

Profiles of the first eight
oscillator symmetric
(upper panels) and
antisymmetric (lower
panels) eigenfunctions
Φ[i1,i2](ξ1, ξ2) at A = 3 in
the coordinate frame
(ξ1, ξ2).
The black lines show the
nodes of eigenfunctions.
The red line corresponds
to the pair collision
x2 = x3, and the blue
lines correspond to pair
collisions x1 = x2 and
x1 = x3 in the projection
(x1, x2, x3)→ (ξ1, ξ2).
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1 2 3

4 5 6

Profiles of the first six
oscillator symmetric
eigenfunctions
ΦS

[i1,i2,i3](ξ1, ξ2, ξ3) at
A = 4 in the coordinate
frame (ξ1, ξ2, ξ3).

1 2 3

4 5 6

Profiles of the first six
oscillator antisymmetric
eigenfunctions
ΦA

[i1,i2,i3](ξ1, ξ2, ξ3) at
A = 4 in the coordinate
frame (ξ1, ξ2, ξ3).
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Close-coupled equations in the symmetrized coordinates

[
−

d2

dξ2
0

+ ε
S(A)
i − E

]
χiio (ξ0) +

jmax∑
j=1

(V S(A)
ij (ξ0))χjio (ξ0) = 0,

V S(A)
ij (ξ0) =

∫
dξ1...dξA−1Φ

S(A)
i (ξ1, ..., ξA−1)

(
A∑

k=1

V (xk (ξ0, ..., ξA−1))

)
Φ
S(A)
j (ξ1, ..., ξA−1),

Scattering problem (real eigenvalues E)

χ
v
ξ0→±∞

=


{

X(+)(ξ0)Tv , ξ0>0,
X(+)(ξ0)+X(−)(ξ0)Rv , ξ0<0,

v=→,{
X(−)(ξ0)+X(+)(ξ0)Rv , ξ0>0,
X(−)(ξ0)Tv , ξ0<0,

v=←,

where Rv and Tv are the reflection and transmission
No × No matrices, No is the number of open channels,
v denotes the initial direction of the particle motion,
The open channels: io = 1, ...,No:

X (±)
iio

(ξ0) =
exp
(
±ı
(

pio ξ0
))

√
pio

δjio

The closed channels: ic = No + 1, . . . ,N: χi ic (ξ0)→ 0

Metastable states (complex
eigenvalues E = <E + ı=E ,
=E < 0)
The Siegert boundary conditions

dχ(ξ0)

dξ0

∣∣∣∣
ξ0=ξt

0

= R(ξt
0)χ(ξt

0),

t = min,max .

Rio io (ξmax
0 ) = ıpio ,

Rio io (ξmin
0 ) = −Rio io (ξmax

0 ),

pio =
√

E − εS(A)
io

,
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The repulsive barrier potential is chosen to be Gaussian V (xi ) = α√
2πσ

exp(− x2
i
σ2 ). The

effective potentials are calculated in the analytical form using Maple.

The diagonal V S(A)
jj (solid lines) and nondiagonal V S(A)

j1 , (dashed lines) effective
potential matrix elements between the symmetric (upper panel) and antisymmetric
(lower panel) states of A = 2, 3, 4, 5 identical particles for σ = 1/10.
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Quantum transparency effect

The total probabilities |T |211 of the transmission through the repulsive Gaussian

potential barriers V (xi ) = α√
2πσ

exp(− x2
i
σ2 ) with σ = 0.1 and α = 2, 5, 10, 20 for

A = 2, 3, 4, 5 particles, coupled by the oscillator potential and initially being in the
symmetric ground state, vs the energy E (in oscillator units).
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Quantum transparency effect

The probability densities
|χi (ξ0)|2 of the coefficient
functions of symmetric
states for transmission of
A = 3 and A = 4
particles.

A = 3

1

2

3

A = 4

1

2

3
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Classification of the metastable states

The classification problem for metastable states is solved in Cartesian coordinates xi ,
i = 1, ...,A (oscillator units)

− A∑
i=1

∂2

∂x2
i

+
A∑

j=2

j−1∑
i=1

1
A

(xij )
2 +

A∑
i=1

V (xi )− E

Ψ(x1, ..., xA; E) = 0.

The narrow barriers V (xi ) are approximated
by impenetrable walls at xi = 0.

As a truncated oscillator basis we use the odd
harmonic oscillator functions centered at the
crossing point of the walls.

A.A. Gusev, S.I. Vinitsky, O. Chuluunbaatar,
et al, Physica Scripta 89, 054011 (2014); Theor.
and Math. Phys. (2015).
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A = 3, σ = 1/10, α = 20

l ES
l |T |211 m EM

m = <EM
m + ı=EM

m ED21
l

1 8.175 285 0.775 1 8.175 093−ı5.136(–3) 8.19
8.305 870 0.737 2 8.306 073−ı5.019(–3)

2 11.110 524 0.495 3 11.110 270−ı5.606(–3) 11.09
11.228 868 0.476 4 11.229 133−ı5.464(–3)

3 12.598 045 0.013 5 12.598 126−ı6.417(–3) 12.51
6 12.599 124−ı6.282(–3)

4 13.929 322 0.331 7 13.929 045−ı4.508(–3) 13.86
14.003 487 0.328 8 14.003 774−ı4.636(–3)

l EA
l |T |211 m EM

m = <EM
m + ı=EM

m ED21
l

1 11.551 377 1.000 1 11.551 314−ı1.849(–3) 11.52
11.610 247 1.000 2 11.610 310−ı2.010(–3)

2 14.458 786 0.553 3 14.458 718−ı2.917(–3) 14.42
14.564 450 0.480 4 14.564 528−ı2.664(–3)

3 16.176 258 0.855 5 16.176 045−ı4.070(–3) 16.11
16.253 931 0.824 6 16.254 153−ı4.152(–3)

. 1 21 3 425637
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Quantum transmittance induced by metastable states

. 1 21 3 425637 Fig. 1. The transmission coefficient |T |211 vs the collision energy E
(osc. u.) of the symmetric (S) and antisymmetric (A) states for
tunnelling of the composite system of three identical particles (A=3)
on a line with the pair oscillator interactions through the narrow
repulsive Gaussian barrier V (xi ) = α/(2πσ2)1/2 exp(−x2

i /σ
2), α = 20,

σ = 0.1.

Fig. 2. The transmission coefficients |T |2ii in the open channels
(i=1,2,3) in the vicinity of the first double peak of the pair
metastable states with the energies E1 = 8.17509− i0.00514,
E2 = 8.30607− i0.00502 (osc. u.)

g g g g

u u u u
ES

1 = 8.186, ES
2 = 11.09, EA

1 = 11.52, ES
3 = 12.51

Fig. 3. The first g-u doublets of the
symmetric and antisymmetric
metastable states with the energies
ES

i=1,2,3 and EA
i=1 (in osc. u.),

corresponding to the first four peaks of
the transmission coefficient (Fig. 1) for
the resonance transmission of a
composite system of three identical
particles through the repulsive
Gaussian barrier.
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A = 4, σ = 1/10, α = 20

l ES
l |T |211 m EM

m = <EM
m + ı=EM

m ED31
l ED22

l
1 10.120 978 0.321 1 10.119 120−ı4.040(–3) 10.03

2 10.122 850−ı4.041(–3)
2 11.896 080 0.349 3 11.896 080−ı 6.3(–5) 11.76
3 12.713 101 0.538 4 12.710 127−ı4.504(–3) 12.59

5 12.719 859−ı4.452(–3)
4 14.858 432 0.017 6 14.857 342−ı4.330(–3) 14.71

7 14.859 351−ı4.341(–3)
5 15.187 817 0.476 8 15.184 665−ı3.866(–3) 15.04

9 15.190 962−ı3.911(–3)
6 15.404 657 0.160 10 15.404 657−ı 1.4(–5) 15.21
7 15.863 290 0.389 11 15.863 290−ı 5.3(–5) 15.64

l EA
l |T |211 m EM = <EM + ı=EM ED31

l ED22
l

1 19.224 295 0.177 1 19.224 206−ı4.016(–4) 19.03
2 19.224 384−ı4.016(–4)

2 20.028 510 0.970 3 20.028 510−ı 3.3(–7) 19.77
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The solution techniques for the problems presented above
The solution of problems discussed above were obtained using the
symbolic-numerical algorithms (SNA), implemented in the problem-oriented complex
of programs, available via the Computer Physics Communication Library:

• ODPEVP: A program for computing the eigenvalues, eigenfunctions, and their first
derivatives with respect to the parameter of the parametric self-adjoined
Sturm-Liouville problema

•POTHMF: A program for computing the potential curves and matrix elements of
the coupled adiabatic radial equations for a hydrogen-like atom in a homogeneous
magnetic fieldb

• KANTBP & KANTBP 2.0: A program for computing energy levels, reaction matrix
and radial wave functions in the coupled-channel hyperspherical adiabatic approachc

• KANTBP 3.0: The new version of a program for computing the energy levels,
reflection and transmission matrices, and the corresponding wave functions in the
coupled-channel adiabatic approach d

aO. Chuluunbaatar, A.A. Gusev, S.I. Vinitsky and A.G. Abrashkevich, CPC 181, 1358-1375
(2009).

bO. Chuluunbaatar, A.A. Gusev, V.P. Gerdt, V.A. Rostovtsev, S.I. Vinitsky, A.G.
Abrashkevich, M.S. Kaschiev and V.V. Serov, CPC 178, 301-330 (2008).

cO. Chuluunbaatar, A.A. Gusev, A.G. Abrashkevich, A. Amaya-Tapia, M.S. Kaschiev, S.Y.
Larsen and S.I. Vinitsky, CPC 177, 649-675 (2007);
O. Chuluunbaatar, A.A. Gusev, S.I. Vinitsky and A.G. Abrashkevich, CPC 179, 685-693 (2008).

dA.A. Gusev, O. Chuluunbaatar, S.I. Vinitsky and A.G. Abrashkevich, CPC 185, pp.
3341–3343 (2014).
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Resume

The analysis of quantum transparency effect in the model of a quantum diffusion
of diatomic molecules of beryllium on the copper surface was carried out. The
quantum transparency of barriers leads to increasing the thermal rate constants
of the quantum tunneling and decreasing the activation energy of the composed
molecular system at low temperature below the classical energy barrier.
The study of the resonance photoionization and laser-stimulated recombination
of a hydrogen atom in a uniform magnetic field was performed. The effects of
resonance transmission and total reflection of oppositely charged particles in a
uniform magnetic field were predicted.
For the model of axial channeling of similarly charged particles in the effective
confining oscillator potential of a crystal the study was carried out. The
simulations revealed a non-monotonic dependence of the nuclear reaction rate
enhancement coefficient upon the collision energy due to the newly discovered
effect of total reflection of channeled ions.
The analysis of resonance tunneling of a cluster consisting of several identical
particles coupled by pair oscillator interactions through repulsive potential
barriers was carried out. The quantum transparency effect is a manifestation of
metastable states of the cluster arising due to its interaction with barriers.
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Thank you for your attention!
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