9th APCTP-BLTP JINR Joint Workshop at Kazakhstan Photon induced multi-kaon production

Huiyoung RYU

Kyungbook National University

In collaboration with Youngseok OH, Hyun-Chul KIM, Athushi HOSAKA, Kanzo NAKAYAMA, Halmut HABERZETTL

Almaty, June 27 - July 4, 2015

Contents

- ♦ PART I: $\gamma p \to K^+ K^+ K^0 \Omega^-$
 - Motivation
 - Formalism
 - Numerical result
 - Discussion
 - Future work/ Summary
- ♦ PART 2: $\gamma p \rightarrow K \bar{K} p$
 - Introduction
 - Formalism
 - Numerical result
 - Summary

PART I

$\gamma p \to K^+ K^+ K^0 \Omega^-$

Timeline					
1962	quark model				
1964	Ω^- observed				
2006	the spin of $\ \Omega^-$ measured				
2012	photoproduction of very strange baryon at CLASI2				

Timeline					
1962	quark model				
1964	Ω^- observed				
2006	the spin of $\ \Omega^-$ measured				
2012	photoproduction of				
	at CLASI2				

Timeline						
1962 quark model	2 quark model					
1964 Ω^- observed						
 2006 the spin of Ω⁻measure 2012 photoproduction of very strange baryon at CLAS12 	ured					

Barnes et al, PRL 12, 204 (1964)

 $K^- p \rightarrow K^0 K^+ \Omega^-$

Timeline		Photoproduction of the Very Strangest Baryons on a Proton		
		Target in CLAS12		
1962	quark model	A. Afanasev, W.J. Briscoe, H. Haberzettl, I.I. Strakovsky [*] , and R.L. Workman The George Washington University, Washington, DC 20052, USA		
1964	Ω^- observed	M.J. Amaryan, G. Gavalian, and M.C. Kunkel Old Dominion University, Norfolk, VA 23529, USA		
		Ya.I. Azimov Petersburg Nuclear Physics Institute, Gatchina, Russia 188300 N. Baltzell		
2006	the spin of Ω^- measured	Argonne National Laboratory, Argonne, IL 60439, USA • • • • • • • • • • • • • • • • • • •		
2012	photoproduction of very strange baryon	(The Very Strange Collaboration)		
	at CLASI2	** - Contact person, * - Spokesperson (Dated: May 4, 2012)		

	Timeline				
1962	quark model	$\Omega^{-} \qquad \qquad I(J^{P}) = 0(\frac{3}{2}^{+})$			
1964	Ω^- observed	$J = \frac{1}{2}$ established Mass $(m_{\Omega^{-}}$ Mean C $(\tau_{\Omega^{-}}$ Magn	d. $m = 1672.45 \pm 0.29$ $m = -m_{\overline{\Omega}+}) / m_{\Omega^-} = 0$ life $\tau = (0.821 \pm 0.025)$ $\tau = 2.461 \text{ cm}$ $-\tau_{\overline{\Omega}+}) / \tau_{\Omega^-} = 0$ netic moment $\mu = -2$	MeV $(-1 \pm 8) \times 10^{-5}$ $(11) \times 10^{-10}$ s $.00 \pm 0.05$ $.02 \pm 0.05 \mu_N$	
2006	the spin of Ω^- measured	O(2250)	(J) ^P	M(MeV)	Γ(MeV)
		S2(2230) E(1530)	(3/2)+	1530	9.1
		Ξ(1690)	$(1/2?)^{?}$	1690	<30
2012	photoproduction of	Ξ(1820)	(-3/2?)-	1823	24
2012	very strange baryon	Ξ(1950)	(?)?	1950	60
	at CLASI2	Ξ(2030)	(>=5/2)?	2025	20

Production of the Strangest Baryons on the Proton with CLAS12 (PR12-12-008)

□ effective Lagrangian method

$$\begin{split} \mathcal{L}_{QCD} &= -\frac{1}{2} \mathrm{tr}[G_{\mu\nu}G^{\mu\nu}] + \bar{q}i\gamma^{\mu}D_{\mu}q \quad -\bar{q}\mathbf{m}q \\ G_{\mu\nu} &= \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} - ig[A_{\mu}, A_{\nu}] , \quad D_{\mu} = \partial_{\mu} - igA_{\mu}, \quad A_{\mu} = \sum_{a} T^{a}A_{\mu}^{a} \\ \end{split}$$
$$\begin{aligned} \mathcal{L}_{QCD} \\ \text{quark and gluon degree} \\ \text{of freedom} \end{aligned}$$
$$\begin{aligned} \mathbf{L}_{eff} \\ \text{hadronic degree of} \\ \text{freedom} \end{aligned}$$
$$\begin{aligned} \exp[iZ] &= \int \mathcal{D}q \ \mathcal{D}\bar{q} \ \mathcal{D}A \exp\left[i\int dx^{4} \ \mathcal{L}_{QCD}\right] = \int \mathcal{D}U \exp\left[i\int dx^{4} \ \mathcal{L}_{eff}\right] \\ \mathcal{L}_{eff} &= \mathcal{L}_{eff}(\underbrace{U, \partial_{\mu}U, V_{\mu} \cdots}_{Hadrons}) , \quad U = \exp\left[\frac{i\sqrt{2}\Phi}{f}\right] \end{split}$$

$$d\Phi_N(k_1, k_2; p_1, \cdots, p_N) = \delta^4(k_1 + k_2 - \sum_i^N p_i) \left\{ \prod_{i=1}^N \frac{d^3 p_i}{(2\pi)^3 E_{K_i}(p_i)} \right\}$$

$$+\underbrace{F_{C}t_{c}F_{B}t_{b}J_{1}^{\mu}\Delta_{1}F_{A} + F_{C}t_{c}J_{2}^{\mu}\Delta_{2}F_{B}t_{b}F_{A} + J_{3}^{\mu}\Delta_{3}F_{C}t_{c}F_{B}t_{b}F_{A}}_{\text{meson currents}}$$

$$+\underbrace{F_{C}t_{c}F_{B}t_{b}M_{A}^{\mu} + F_{C}t_{c}M_{B}^{\mu}t_{b}F_{A} + M_{C}^{\mu}t_{c}F_{B}t_{b}F_{A}}_{\text{meson currents}},$$

t

interaction currents

 Ω^{-}

_ ر

p

interaction currents

$$\mathcal{M} = \begin{cases} \overline{u}(p_N) M^{\boldsymbol{\nu}} \epsilon_{\boldsymbol{\nu}}^{\gamma} u(k_2) & \text{for the spin of the final baryon } = 1/2, \\ \overline{u}_{\mu_1 \mu_2 \cdots \mu_n} (p_N) M^{\mu_1 \mu_2 \cdots \mu_n \boldsymbol{\nu}} \epsilon_{\boldsymbol{\nu}}^{\gamma} u(k_2) & \text{for the spin of the final baryon } = 3/2, \ 5/2, \ 7/2 \cdots (2n+1)/2 \end{cases}$$

$$M^{\mu} = \underbrace{F_C t_c F_B t_b F_A t_a \Gamma^{\mu}_a + F_C t_c F_B t_b \Gamma^{\mu}_b t_b F_A + F_C t_c \Gamma^{\mu}_c t_c F_B t_b F_A + \Gamma^{\mu}_d t_d F_C t_c F_B t_b F_A}_{\bullet}$$

interaction currents

Ω^{-}

$$\mathcal{M} = \begin{cases} \overline{u}(p_N) M^{\boldsymbol{\nu}} \epsilon_{\boldsymbol{\nu}}^{\gamma} u(k_2) & \text{for the spin of the final baryon } = 1/2, \\ \overline{u}_{\mu_1 \mu_2 \cdots \mu_n} (p_N) M^{\mu_1 \mu_2 \cdots \mu_n \boldsymbol{\nu}} \epsilon_{\boldsymbol{\nu}}^{\gamma} u(k_2) & \text{for the spin of the final baryon } = 3/2, \ 5/2, \ 7/2 \cdots (2n+1)/2 \end{cases}$$

$$M^{\mu} = F_C t_c F_B t_b F_A t_a \Gamma^{\mu}_a + F_C t_c F_B t_b \Gamma^{\mu}_b t_b F_A + F_C t_c \Gamma^{\mu}_c t_c F_B t_b F_A + \Gamma^{\mu}_d t_d F_C t_c F_B t_b F_A$$

baryon currents

$$+\underbrace{F_C t_c F_B t_b J_1^{\mu} \Delta_1 F_A + F_C t_c J_2^{\mu} \Delta_2 F_B t_b F_A + J_3^{\mu} \Delta_3 F_C t_c F_B t_b F_A}_{\text{meson currents}}$$

$$+\underbrace{F_C t_c F_B t_b M_A^{\mu}}_A + F_C t_c M_B^{\mu} t_b F_A + M_C^{\mu} t_c F_B t_b F_A ,$$

interaction currents

 $I_{B1}^{\mu} = F_{C}t_{c}F_{B}t_{b}F_{A}t_{a}\Gamma_{a}^{\mu}$ $\Rightarrow F_{\Xi}t_{\Xi}F_{\Lambda}t_{\Lambda}F_{p}t_{p}\Gamma_{p}^{\mu}.$

$$egin{aligned} F_{\Xi} &= g_{\Xi} p_{3\lambda} f_{\Xi}(p_3^2; p_4^2, q_2^2) \ t_{\Xi} &= rac{q_2 + m_{\Xi}}{q^2 - m_{\Xi}^2} \ F_{\Lambda} &= g_{\Lambda} \gamma_5 p_2 f_{\Lambda}(p_2^2; q_2^2, q_1^2) \ t_{\Lambda} &= rac{q_2 + m_{\Xi}}{q_1^2 - m_{\Lambda}^2} \ F_p &= g_p \gamma_5 p_1 f_p(p_1^2; q_1^2, q_3^2) \end{aligned}$$

$$t_p = rac{{g}_3 + m_p}{q_3^2 - m_p^2}$$
 $\Gamma_p^\mu = \left[I + rac{\kappa_p}{2m_p} {k_1}
ight] \gamma^\mu.$

\Box form factors

$$F(q^2; p_1^2, p_2^2) = f_M(q^2) f_B(p_1^2) f_B(p_2^2)$$

$$f_B(p^2) = \left(\frac{n\Lambda_B^4}{n\Lambda_B^4 + (p^2 - m_B^2)^2}\right)^n$$
$$f_M(q^2) = \frac{\Lambda_K^2 - m_K^2}{\Lambda_K^2 - q^2}$$
$$f_{K^*}(q^2) = \exp\left(\frac{q^2 - m_{K^*}^2}{\Lambda_{K^*}^2}\right)$$

□ parameters in the present work

Nucleon: m_N (MeV)	938.3 1.79. –1.91	PDG
(1219)	,	
$m_{\Xi} (MeV)$ $\kappa_{\Xi^{0}\gamma}, \kappa_{\Xi^{-}\gamma}$	1318.0 -1.25, 0.35	PDG
$\Xi^* [= \Xi(1530)]:$ $m_{\Xi^*}(\Gamma_{\Xi^*})$ (MeV)	1533.0 (9.5)	PDG
$\Lambda(1116):$ $m_{\Lambda} (MeV)$ $g_{N\Lambda K}$ $g_{\Xi\Lambda K}$ $g_{\Xi^*\Lambda K}$ $g_{N\Lambda K^*}(\kappa_{N\Lambda K^*})$ $g_{\Xi\Lambda K^*}(\kappa_{\Xi\Lambda K^*})$ $\kappa_{\Lambda\gamma}$	1115.7 -13.24 3.52 5.58 -6.11 (2.43) 6.11 (0.65) -0.613	PDG $SU(3) + (f/d = 0.575 \text{ and } g_{NN\pi} = 13.26)$ $SU(3) + (f/d = 0.575 \text{ and } g_{NN\pi} = 13.26)$ $SU(3) + (f_{N\Delta\pi} = 2.23)$ Ref. [15] (version NSC97f) Ref. [15] (version NSC97f) PDG
$\Lambda(1405):$ $m_{\Lambda}(\Gamma_{\Lambda}) \text{ (MeV)}$ $g_{N\Lambda K}$ $g_{\Xi\Lambda K}$ $\kappa_{\Lambda Y}$	1406.0 (50.0) ±0.91 ±0.91 0.25	PDG SU(3) (flavor-singlet assumptions) SU(3) (flavor-singlet assumptions) Skyrme model [16], unitarized ChPT [17]

□ parameters in the present work

m_{Σ} (MeV)	1103.0	22.0
	1195.0	PDG
$g_{N\Sigma K}$	3.58	$SU(3) + (f/d = 0.575 \text{ and } g_{NN\pi} = 13.26)$
$g_{\Xi\Sigma K}$	-13.26	$SU(3) + (f/d = 0.575 \text{ and } g_{NN\pi} = 13.26)$
8 =* XK	3.22	$SU(3) + (f_{N\Delta\pi} = 2.23)$
$g_{N\Sigma K^*}(\kappa_{N\Sigma K^*})$	-3.52(-1.14)	Ref. [15] (version NSC97f)
$g_{\pi\Sigma K^*}(\kappa_{\pi\Sigma K^*})$	-3.52(4.22)	Ref. [15] (version NSC97f)
$\kappa_{\Sigma^+\gamma}, \kappa_{\Sigma^0\gamma}, \kappa_{\Sigma^-\gamma}$	1.46, 0.65, -0.16	PDG
Λ(1520):		
$m_{\Lambda}(\Gamma_{\Lambda})$ (MeV)	1519.5 (15.6)	PDG
8 _{NAK}	-10.90	PDG, SU(3) (flavor-octet assumption)
8 EAK	3.27	PDG, SU(3) (flavor-octet assumption)
$\kappa_{\Lambda\gamma}$	0.0	assumption
Σ(1385):		
$m_{\Sigma}(\Gamma_{\Sigma})$ (MeV)	1384.0 (37.0)	PDG
$g_{N\Sigma K}$	-3.22	$SU(3) + (f_{N\Delta\pi} = 2.23)$
$g_{\Xi\Sigma K}$	-3.22	$SU(3) + (f_{N\Delta\pi} = 2.23)$
$f_{\Xi^*\Sigma K}$	-2.83	$SU(3) + (f_{\Delta\Delta\pi} = 0.8 \text{ from quark model})$
$g_{N\Sigma K^*}^{(1)}, g_{N\Sigma K^*}^{(2)}$	-5.47, 0.0	$SU(3) + (f_{N \Delta \rho} = 5.5)$
$g_{\Xi\Sigma K^*}^{(1)}, g_{\Xi\Sigma K^*}^{(2)}$	-5.47,0.0	$SU(3) + (f_{N\Delta\rho} = 5.5)$
$\kappa_{\Sigma^+\gamma}, \kappa_{\Sigma^0\gamma}, \kappa_{\Sigma^-\gamma}$	2.11, 0.32, -1.47	quark model [18]
$q_{\Omega \equiv K}$	7.5	SU(3) & γ quark model

21/44

 $\gamma \ p \to K^+ K^+ \Xi^-$

22/44

 $\gamma \ p \to K^+ K^+ K^0 \Omega^-$

 $\gamma \ p \to K^+ K^+ K^0 \Omega^-$

Discussion

Why so small ?

Discussion

Why so small ?

3160
$$\qquad \gamma \ p \rightarrow K^+ K^+ K^0 \Omega^-$$

2309 $\qquad \gamma \ p \rightarrow K^+ K^+ \Xi^-$
1609 $\qquad \gamma \ p \rightarrow K^+ \Lambda(1116)$

1320

Ξ

Future work $\gamma p \to K^+ K^+ K^0 \Omega^-$ # of diagrams K⁰ 30 Ω^{-} p $\Lambda(1116)$ $\Lambda(1405)$ 5x30=150 $\Lambda(1520)$ $\Sigma(1193)$ $\Sigma(1385)$ 150 N $\Xi, \Xi^* \cdots (N)$

Future work

Summary

- In the present work, we show the total cross section of Omega production with ground baryon states.
- The result with only ground state baryon gives us very small cross section.
- The previous hyperon production study tell us that we need to consider massive resonances with higher spin
- From this, we would like to suggest the minimum or range cross section to investigate properties of VERY strange baryons.

PART 2

$\gamma p \to K^+ K^- p$

¢(1020) DECAY MODES

$$\mathcal{M}(\gamma p \to K\bar{K}p) = \mathcal{M}(\gamma p \to \phi p \to K\bar{K}p)$$
$$+ \mathcal{M}(\gamma p \to \Lambda^* p \to K\bar{K}p) + \text{background}$$

$$\square \mathcal{M}(\gamma p \to \phi p \to K\bar{K}p) = \mathcal{M}(\phi p \to K\bar{K}p) \frac{1}{q_{\phi}^2 - (m_{\phi} - i\Gamma_{\phi}/2)^2} \mathcal{M}(\gamma p \to \phi p)$$

$$\mathcal{M}(\gamma p \to K\Lambda^* \to K\bar{K}p) = \mathcal{M}(\Lambda^* p \to K\bar{K}p) \frac{1}{\not{q}_{\Lambda} - (m_{\Lambda} - i\Gamma_{\Lambda}/2)} \mathcal{M}(\gamma p \to \Lambda^* p)$$

🗆 Vertex functions

(p')p $p(p)$	$J^{oldsymbol{ u}}_{\gamma KK}=e(q+q')^{oldsymbol{ u}}$
$(q')_{K^{}} \overset{\phi(q_{\phi})}{=} $	$J^{oldsymbol{ u}}_{\gamma KK}=e(q+q')^{oldsymbol{ u}}$
(q)K $(p')\Lambda$ $p(p)$	$\Gamma^{\mu u}_{\phi Kp\Lambda^*} = -g_{\phi KK} rac{g_{Kp\Lambda^*}}{m_K} \gamma_5 g^{\mu u} = e(q+q')^{oldsymbol{ u}}$
<i>p</i> (<i>p</i>)	$t_p=rac{p\!\!\!/}{p^2-m_p^2}$
<i>K</i> (<i>q</i>)	$\Delta_K = rac{1}{q^2 - m_K^2} = e(q+q')^{oldsymbol{ u}}$
$\phi(q_{\phi})$	$\Delta_{\phi}^{\mu\nu} = \frac{1}{q_{\phi}^2 - m_{\phi}^2} \left(-g^{\mu\nu} + \frac{q_{\phi}^{\mu}q_{\phi}^{\nu}}{m_{\phi}^2} \right)$

□ parameters in the present work

	Nucleon	m_p	3.25
		κ_p	1.79
		$g_{KN\Lambda}$	3.18
ba	ckaround	κ_{Λ}	-0.613
		Λ_{Λ}	$0.745~{ m GeV}$
		$g_{\phi NN}$	0.25
	phi	$\kappa_{\phi KK}$	0.2
r	esonance	n	1
		$\Lambda_{oldsymbol{\phi}}$	$0.7 { m GeV}$
		$g_{KN\Lambda *}$	10.5
	L(1520)	κ_{Λ^*}	0
r	esonance	n	1
		Λ_{Λ^*}	$0.65~{ m GeV}$

 $\Box \quad \gamma p \to \phi p$

 $\Box \quad \gamma p \to K^+ \Lambda \nearrow \gamma p \to K^+ \Lambda^* (1520)$

Míbe et al, PRL 95, 182001 (2005)

FIG. 1. (a) Missing mass distribution for the $p(\gamma, K^+K^-)X$ reaction in *KK* mode. (b) Missing mass distribution for the $p(\gamma, K^{\pm}p)X$ reaction in *Kp* mode. (c) and (d) are the K^+K^- invariant mass distributions after the cut on the missing mass for *KK* and *Kp* modes, respectively. The hatched histograms are the simulated background.

Summary

- From the known 2-body scattering process, we can directly calculate 3-body process.
- We show not only the invariant mass distribution but also the interference between phi and L(1520) resonances.
- This work will be good chance to understand the mechanism of K Kbar N production with upcoming LEPS data.
- Considering the previous experimental data and other possibility of intermediate states, we are improving our result.

 $\gamma p \to K^+ K^+ K^0 \Omega^-$

	n	Λ_B	Λ_K	Λ_{K^*}
$\overline{\Lambda(1116)}$	1	0.75	0.75	0.75
$\Xi^{-}(1321)$	2	1.25	1.25	1.25
$\Omega^{-}(1672)$	2	1.25	1.25	1.25

Numerical result (without the coupled channel)

Future work

 $T \simeq V + VGV$ (present work)

T = V + VGT

$$T = \frac{1}{1 - VG}V$$

$$T = \begin{bmatrix} T_{\gamma p \to \gamma p} & T_{\gamma p \to \phi p} & T_{\gamma p \to K^{+}\Lambda^{*}} \\ T_{\phi p \to \gamma p} & T_{\phi p \to \phi p} & T_{\phi p \to K^{+}\Lambda^{*}} \\ T_{K^{+}\Lambda^{*} \to \gamma p} & T_{K^{+}\Lambda^{*} \to \phi p} & T_{K^{+}\Lambda^{*} \to K^{+}\Lambda^{*}} \end{bmatrix}$$
$$V = \begin{bmatrix} V_{\gamma p \to \gamma p} & V_{\gamma p \to \phi p} & V_{\gamma p \to K^{+}\Lambda^{*}} \\ V_{\phi p \to \gamma p} & V_{\phi p \to \phi p} & V_{\phi p \to K^{+}\Lambda^{*}} \\ V_{K^{+}\Lambda^{*} \to \gamma p} & V_{K^{+}\Lambda^{*} \to \phi p} & V_{K^{+}\Lambda^{*} \to K^{+}\Lambda^{*}} \end{bmatrix}$$
$$G = \begin{bmatrix} G_{\gamma p \to \gamma p} & 0 & 0 \\ 0 & G_{\phi p \to \phi p} & 0 \\ 0 & 0 & G_{K^{+}\Lambda^{*} \to K^{+}\Lambda^{*}} \end{bmatrix}$$

Introduction

