9th APCTP-BLTP JINR Joint Workshop at Kazakhstan
 Photon induced multi-kaon production

Huiyoung RYU
Kyungbook National University

In collaboration with Youngseok OH, Hyun-Chul KIM, Athushi HOSAKA, Kanzo NAKAYAMA, Halmut HABERZETTL

Almaty, June 27 - July 4, 2015

Contents

\Rightarrow PART I: $\gamma p \rightarrow K^{+} K^{+} K^{0} \Omega^{-}$
D Motivation

- Formalism

Dumerical result
D Discussion
© Future work/ Summary
PART 2: $\quad \gamma p \rightarrow K \bar{K} p$
\square Introduction

- Formalism

D Numerical result
Dummary

PART I

$$
\gamma p \rightarrow K^{+} K^{+} K^{0} \Omega^{-}
$$

Motivation

Timeline

1962	quark model
1964	Ω^{-}observed
2006	the spin of Ω^{-}measured
2012	photoproduction of very strange baryon at CLASI2

Motivation

Motivation

Motivation

Timeline	
1962	quark model
1964	Ω^{-}observed
2006	the spin of Ω^{-}measured
2012	photoproduction of very strange baryon at CLASI2

Aubert et al, PRL.97, 112001 (2006)
First measurement of $\mathrm{J}\left(\Omega^{-}\right)$at SLAC
$\Xi_{\mathrm{c}}{ }^{0} \rightarrow \Omega^{-} \mathrm{K}^{+}, \Omega^{-} \rightarrow \Lambda \mathrm{K}^{-}$

Motivation

Timeline

1962	quark model
1964	Ω^{-}observed
2006	the spin of Ω^{-}measured
2012	photoproduction of very strange baryon at CLASI2

Photoproduction of the Very Strangest Baryons on a Proton Target in CLAS12
A. Afanasev, W.J. Briscoe, H. Haberzettl, I.I. Strakovsky*, and R.L. Workman The George Washington University, Washington, DC 20052, USA
M.J. Amaryan, G. Gavalian, and M.C. Kunkel Old Dominion University, Norfolk, VA 23529, USA

Ya.I. Azimov
Petersburg Nuclear Physics Institute, Gatchina, Russia 188300
N. Baltzell

Argonne National Laboratory, Argonne, IL 60439, USA
:
V. Shklyar

Giessen University, D-35392 Giessen, Germany
(The Very Strange Collaboration)
** - Contact person, * - Spokesperson

Motivation

Timeline	
1962	quark model
2064	Ω^{-}observed
the spin of Ω^{-}measured	
2012	photoproduction of very strange baryon at CLASI2

	$(\mathrm{J})^{\mathrm{P}}$	$\mathrm{M}(\mathrm{MeV})$	$\Gamma(\mathrm{MeV})$
$\Omega(2250)$	$?^{?}$	2250	
$\Xi(1530)$	$(3 / 2)^{+}$	1530	9.1
$\Xi(1690)$	$(1 / 2 ?)^{?}$	1690	<30
$\Xi(1820)$	$(-3 / 2 ?)^{-}$	1823	24
$\Xi(1950)$	$(?)^{?}$	1950	60
$\Xi(2030)$	$(>=5 / 2)^{?}$	2025	20

Motivation

Production of the Strangest Baryons on the Proton with CLAS12 (PR12-12-008)

Formalism

\square effective Lagrangian method

$$
\begin{aligned}
\mathcal{L}_{Q C D} & =-\frac{1}{2} \operatorname{tr}\left[G_{\mu \nu} G^{\mu \nu}\right]+\bar{q} i \gamma^{\mu} D_{\mu} q \quad-\bar{q} \mathbf{m} q \\
G_{\mu \nu} & =\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}-i g\left[A_{\mu}, A_{\nu}\right], \quad D_{\mu}=\partial_{\mu}-i g A_{\mu}, \quad A_{\mu}=\sum_{a} T^{a} A_{\mu}^{a}
\end{aligned}
$$

$$
\begin{gathered}
\exp [i Z]=\int \mathcal{D} q \mathcal{D} \bar{q} \mathcal{D} A \exp \left[i \int d x^{4} \mathcal{L}_{Q C D}\right]=\int \mathcal{D} U \exp \left[i \int d x^{4} \mathcal{L}_{e f f}\right] \\
\mathcal{L}_{\text {eff }}=\mathcal{L}_{\text {eff }}(\underbrace{U, \partial_{\mu} U, V_{\mu} \cdots}_{\text {Hadrons }}), \quad U=\exp \left[\frac{i \sqrt{2} \Phi}{f}\right]
\end{gathered}
$$

Formalism

\square cross section

$$
\begin{aligned}
& S_{f i}=\delta_{f i}-i(2 \pi)^{4} \delta^{4}\left(k_{1}+k_{2}-\sum_{i}^{N} p_{i}\right) T_{f i} \\
& T=\frac{\mathcal{M}}{\left(2 E_{\gamma}\left(k_{1}\right)\right)^{1 / 2}\left(2 E_{N}\left(k_{2}\right)\right)^{1 / 2}\left\{\prod_{i=1}^{N}\left(2 E_{i}\left(p_{i}\right)\right)^{1 / 2}\right\}}
\end{aligned}
$$

$$
\sigma=\int \frac{(2 \pi)^{4}}{4\left|k_{1} \cdot k_{2}\right|}|\mathcal{M}|^{2} d \Phi_{4}\left(k_{1}, k_{2} ; p_{1}, \cdots, p_{N}\right)
$$

$$
d \Phi_{N}\left(k_{1}, k_{2} ; p_{1}, \cdots, p_{N}\right)=\delta^{4}\left(k_{1}+k_{2}-\sum_{i}^{N} p_{i}\right)\left\{\prod_{i=1}^{N} \frac{d^{3} p_{i}}{(2 \pi)^{3} E_{K_{i}}\left(p_{i}\right)}\right\}
$$

Formalism

\square Invariant amplitude

$$
\gamma p \rightarrow K^{+} K^{+} K^{0} \Omega^{-}
$$

$\mathcal{M}= \begin{cases}\bar{u}\left(p_{N}\right) M^{\nu} \epsilon_{\boldsymbol{\nu}}^{\gamma} u\left(k_{2}\right) & \text { for the spin of the final baryon }=1 / 2, \\ \bar{u}_{\mu_{1} \mu_{2} \cdots \mu_{n}}\left(p_{N}\right) M^{\mu_{1} \mu_{2} \cdots \mu_{n} \nu} \epsilon_{\boldsymbol{\nu}}^{\gamma} u\left(k_{2}\right) & \text { for the spin of the final baryon }=3 / 2,5 / 2,7 / 2 \cdots(2 n+1) / 2\end{cases}$

$$
\begin{aligned}
M^{\mu}= & \underbrace{F_{C} t_{c} F_{B} t_{b} F_{A} t_{a} \Gamma_{a}^{\mu}+F_{C} t_{c} F_{B} t_{b} \Gamma_{b}^{\mu} t_{b} F_{A}+F_{C} t_{c} \Gamma_{c}^{\mu} t_{c} F_{B} t_{b} F_{A}+\Gamma_{d}^{\mu} t_{d} F_{C} t_{c} F_{B} t_{b} F_{A}}_{\text {baryon currents }} \\
& +\underbrace{F_{C} t_{c} F_{B} t_{b} J_{1}^{\mu} \Delta_{1} F_{A}+F_{C} t_{c} J_{2}^{\mu} \Delta_{2} F_{B} t_{b} F_{A}+J_{3}^{\mu} \Delta_{3} F_{C} t_{c} F_{B} t_{b} F_{A}}_{\text {meson currents }} \\
& +\underbrace{F_{C} t_{c} F_{B} t_{b} M_{A}^{\mu}+F_{C} t_{c} M_{B}^{\mu} t_{b} F_{A}+M_{C}^{\mu} t_{c} F_{B} t_{b} F_{A}}_{\text {interaction currents }},
\end{aligned}
$$

Formalism

\square Invariant amplitude

$$
\gamma p \rightarrow K^{+} K^{+} K^{0} \Omega^{-}
$$

$\mathcal{M}= \begin{cases}\bar{u}\left(p_{N}\right) M^{\nu} \epsilon_{\boldsymbol{\nu}}^{\gamma} u\left(k_{2}\right) & \text { for the spin of the final baryon }=1 / 2, \\ \bar{u}_{\mu_{1} \mu_{2} \cdots \mu_{n}}\left(p_{N}\right) M^{\mu_{1} \mu_{2} \cdots \mu_{n} \nu} \epsilon_{\boldsymbol{\nu}}^{\gamma} u\left(k_{2}\right) \quad \text { for the spin of the final baryon }=3 / 2,5 / 2,7 / 2 \cdots(2 n+1) / 2\end{cases}$

$$
\begin{aligned}
M^{\mu}= & \underbrace{F_{C} t_{c} F_{B} t_{b} F_{A} t_{a} \Gamma_{a}^{\mu}+F_{C} t_{c} F_{B} t_{b} \Gamma_{b}^{\mu} t_{b} F_{A}+F_{C} t_{c} \Gamma_{c}^{\mu} t_{c} F_{B} t_{b} F_{A}+\Gamma_{d}^{\mu} t_{d} F_{C} t_{c} F_{B} t_{b} F_{A}}_{\text {baryon currents }} \\
& +\underbrace{F_{C} t_{c} F_{B} t_{b} J_{1}^{\mu} \Delta_{1} F_{A}+F_{C} t_{c} J_{2}^{\mu} \Delta_{2} F_{B} t_{b} F_{A}+J_{3}^{\mu} \Delta_{3} F_{C} t_{c} F_{B} t_{b} F_{A}}_{\text {meson currents }} \\
& +\underbrace{F_{C} t_{c} F_{B} t_{b} M_{A}^{\mu}+F_{C} t_{c} M_{B}^{\mu} t_{b} F_{A}+M_{C}^{\mu} t_{c} F_{B} t_{b} F_{A}}_{\text {interaction currents }},
\end{aligned}
$$

Formalism

\square Invariant amplitude

$$
\gamma p \rightarrow K^{+} K^{+} K^{0} \Omega^{-}
$$

$\mathcal{M}= \begin{cases}\bar{u}\left(p_{N}\right) M^{\nu} \epsilon_{\boldsymbol{\nu}}^{\gamma} u\left(k_{2}\right) & \text { for the spin of the final baryon }=1 / 2, \\ \bar{u}_{\mu_{1} \mu_{2} \cdots \mu_{n}}\left(p_{N}\right) M^{\mu_{1} \mu_{2} \cdots \mu_{n} \nu} \epsilon_{\boldsymbol{\nu}}^{\gamma} u\left(k_{2}\right) & \text { for the spin of the final baryon }=3 / 2,5 / 2,7 / 2 \cdots(2 n+1) / 2\end{cases}$

$$
\begin{aligned}
M^{\mu}= & \underbrace{F_{C} t_{c} F_{B} t_{b} F_{A} t_{a} \Gamma_{a}^{\mu}+F_{C} t_{c} F_{B} t_{b} \Gamma_{b}^{\mu} t_{b} F_{A}+F_{C} t_{c} \Gamma_{c}^{\mu} t_{c} F_{B} t_{b} F_{A}+\Gamma_{d}^{\mu} t_{d} F_{C} t_{c} F_{B} t_{b} F_{A}}_{\text {baryon currents }} \\
& +\underbrace{F_{C} t_{c} F_{B} t_{b} J_{1}^{\mu} \Delta_{1} F_{A}+F_{C} t_{c} J_{2}^{\mu} \Delta_{2} F_{B} t_{b} F_{A}+J_{3}^{\mu} \Delta_{3} F_{C} t_{c} F_{B} t_{b} F_{A}}_{\text {meson currents }} \\
& +\underbrace{F_{C} t_{c} F_{B} t_{b} M_{A}^{\mu}+F_{C} t_{c} M_{B}^{\mu} t_{b} F_{A}+M_{C}^{\mu} t_{c} F_{B} t_{b} F_{A}}_{\text {interaction currents }},
\end{aligned}
$$

Formalism

\square Invariant amplitude

$$
\gamma p \rightarrow K^{+} K^{+} K^{0} \Omega^{-}
$$

$\mathcal{M}= \begin{cases}\bar{u}\left(p_{N}\right) M^{\nu} \epsilon_{\boldsymbol{\nu}}^{\gamma} u\left(k_{2}\right) & \text { for the spin of the final baryon }=1 / 2, \\ \bar{u}_{\mu_{1} \mu_{2} \cdots \mu_{n}}\left(p_{N}\right) M^{\mu_{1} \mu_{2} \cdots \mu_{n} \nu} \epsilon_{\boldsymbol{\nu}}^{\gamma} u\left(k_{2}\right) \quad \text { for the spin of the final baryon }=3 / 2,5 / 2,7 / 2 \cdots(2 n+1) / 2\end{cases}$

$$
\begin{aligned}
M^{\mu}= & \underbrace{F_{C} t_{c} F_{B} t_{b} F_{A} t_{a} \Gamma_{a}^{\mu}+F_{C} t_{c} F_{B} t_{b} \Gamma_{b}^{\mu} t_{b} F_{A}+F_{C} t_{c} \Gamma_{c}^{\mu} t_{c} F_{B} t_{b} F_{A}+\Gamma_{d}^{\mu} t_{d} F_{C} t_{c} F_{B} t_{b} F_{A}}_{\text {baryon currents }} \\
& +\underbrace{F_{C} t_{c} F_{B} t_{b} J_{1}^{\mu} \Delta_{1} F_{A}+F_{C} t_{c} J_{2}^{\mu} \Delta_{2} F_{B} t_{b} F_{A}+J_{3}^{\mu} \Delta_{3} F_{C} t_{c} F_{B} t_{b} F_{A}}_{\text {meson currents }} \\
& +\underbrace{F_{C} t_{c} F_{B} t_{b} M_{A}^{\mu}+F_{C} t_{c} M_{B}^{\mu} t_{b} F_{A}+M_{C}^{\mu} t_{c} F_{B} t_{b} F_{A}}_{\text {interaction currents }},
\end{aligned}
$$

Formalism

$$
\begin{aligned}
I_{B 1}^{\mu} & =F_{C} t_{c} F_{B} t_{b} F_{A} t_{a} \Gamma_{a}^{\mu} \\
& \Rightarrow F_{\Xi} t_{\Xi} F_{\Lambda} t_{\Lambda} F_{p} t_{p} \Gamma_{p}^{\mu}
\end{aligned}
$$

$$
\begin{aligned}
F_{\Xi} & =g_{\Xi} p_{3 \lambda} f_{\Xi}\left(p_{3}^{2} ; p_{4}^{2}, q_{2}^{2}\right) \\
t_{\Xi} & =\frac{\not q_{2}+m_{\Xi}}{q^{2}-m_{\Xi}^{2}} \\
F_{\Lambda} & =g_{\Lambda} \gamma_{5} \not_{2} f_{\Lambda}\left(p_{2}^{2} ; q_{2}^{2}, q_{1}^{2}\right) \\
t_{\Lambda} & =\frac{\not q_{2}+m_{\Xi}}{q_{1}^{2}-m_{\Lambda}^{2}} \\
F_{p} & =g_{p} \gamma_{5} \not p_{1} f_{p}\left(p_{1}^{2} ; q_{1}^{2}, q_{3}^{2}\right) \\
t_{p} & =\frac{\not q_{3}+m_{p}}{q_{3}^{2}-m_{p}^{2}} \\
\Gamma_{p}^{\mu} & =\left[I+\frac{\kappa_{p}}{2 m_{p}} \not k_{1}\right] \gamma^{\mu} .
\end{aligned}
$$

Formalism

\square form factors

$$
F\left(q^{2} ; p_{1}^{2}, p_{2}^{2}\right)=f_{M}\left(q^{2}\right) f_{B}\left(p_{1}^{2}\right) f_{B}\left(p_{2}^{2}\right)
$$

$$
f_{B}\left(p^{2}\right)=\left(\frac{n \Lambda_{B}^{4}}{n \Lambda_{B}^{4}+\left(p^{2}-m_{B}^{2}\right)^{2}}\right)^{n}
$$

$$
f_{M}\left(q^{2}\right)=\frac{\Lambda_{K}^{2}-m_{K}^{2}}{\Lambda_{K}^{2}-q^{2}}
$$

$$
f_{K^{*}}\left(q^{2}\right)=\exp \left(\frac{q^{2}-m_{K^{*}}^{2}}{\Lambda_{K^{*}}^{2}}\right)
$$

Formalism

\square parameters in the present work

Nucleon: $m_{N}(\mathrm{MeV})$	938.3	PDG
$\kappa_{p \gamma}, \kappa_{n \gamma}$	$1.79,-1.91$	
$\begin{aligned} & \Xi(1318): \\ & m_{\Xi}(\mathrm{MeV}) \end{aligned}$	1318.0	
$\kappa_{\bar{z}^{0} \gamma}, \kappa_{z^{-} \gamma}$	$-1.25,0.35$	PDG
$\begin{aligned} & \Xi^{*}[=\Xi(1530)]: \\ & m_{\Xi^{*}}\left(\Gamma_{\Xi^{*}}\right)(\mathrm{MeV}) \end{aligned}$	1533.0 (9.5)	PDG
$\begin{aligned} & \Lambda(1116): \\ & m_{\Lambda}(\mathrm{MeV}) \end{aligned}$	1115.7	PDG
$g_{N A K}$	-13.24	$\mathrm{SU}(3)+\left(f / d=0.575\right.$ and $\left.g_{N N \pi}=13.26\right)$
$g_{\text {EAK }}$	3.52	$\mathrm{SU}(3)+\left(f / d=0.575\right.$ and $\left.g_{N N \pi}=13.26\right)$
$g_{\mathbb{E}^{*} \Lambda K}$	5.58	$\mathrm{SU}(3)+\left(f_{N \Delta \pi}=2.23\right)$
$g_{N \Lambda K^{*}}\left(\kappa_{N \Lambda K^{*}}\right)$	-6.11 (2.43)	Ref. [15] (version NSC97f)
$g_{\text {EAK}}{ }^{*}\left(\kappa_{\Xi \Lambda K^{*}}\right)$	6.11 (0.65)	Ref. [15] (version NSC97f)
$\kappa_{\text {A } \gamma}$	-0.613	PDG
Λ (1405):		
$m_{\Lambda}\left(\Gamma_{\Lambda}\right)(\mathrm{MeV})$	1406.0 (50.0)	PDG
$g_{\text {NAK }}$	± 0.91	SU(3) (flavor-singlet assumptions)
$g_{\text {EAK }}$	± 0.91	SU(3) (flavor-singlet assumptions)
$\kappa_{\text {A } \gamma}$	0.25	Skyrme model [16], unitarized ChPT [17]

Formalism

\square parameters in the present work

Σ（1193）：		
$m_{\Sigma}(\mathrm{MeV})$	1193.0	PDG
$g_{N \Sigma K}$	3.58	$\mathrm{SU}(3)+\left(f / d=0.575\right.$ and $\left.g_{N N \pi}=13.26\right)$
$g_{\text {ĖK }}$	－13．26	$\mathrm{SU}(3)+\left(f / d=0.575\right.$ and $\left.g_{N N \pi}=13.26\right)$
$g_{\text {E＊}}{ }^{\text {® }}$ K	3.22	$\mathrm{SU}(3)+\left(f_{N \Delta \pi}=2.23\right)$
$g_{N \Sigma K^{*}}\left(\kappa_{N \Sigma K^{*}}\right)$	－3．52（－1．14）	Ref．［15］（version NSC97f）
$g_{\text {E®K }}\left(\kappa_{\text {EIK }}{ }^{*}\right)$	－3．52（4．22）	Ref．［15］（version NSC97f）
$\kappa_{\Sigma^{+} \gamma}, \kappa_{\Sigma^{0} \gamma}, \kappa_{\Sigma^{-} \gamma}$	$1.46,0.65,-0.16$	PDG
$\Lambda(1520)$ ：		
$m_{\Lambda}\left(\Gamma_{\Lambda}\right)(\mathrm{MeV})$	1519.5 （15．6）	PDG
$g_{\text {NAK }}$	－10．90	PDG，SU（3）（flavor－octet assumption）
$g_{\text {EムK }}$	3.27	PDG，SU（3）（flavor－octet assumption）
$\kappa_{\text {A } \gamma}$	0.0	assumption
$\Sigma(1385)$ ：		
$m_{\Sigma}\left(\Gamma_{\Sigma}\right)(\mathrm{MeV})$	1384.0 （37．0）	PDG
$g_{N \Sigma K}$	－3．22	$\mathrm{SU}(3)+\left(f_{N \Delta \pi}=2.23\right)$
$g_{\text {EEK }}$	－3．22	$\mathrm{SU}(3)+\left(f_{N \Delta \pi}=2.23\right)$
$f_{\text {シ＊}}$ 没	－2．83	$\mathrm{SU}(3)+\left(f_{\Delta \Delta \pi}=0.8\right.$ from quark model $)$
$g_{N \Sigma K^{*}}^{(1)}, g_{N \Sigma K^{*}}^{(2)}$	－5．47， 0.0	$\mathrm{SU}(3)+\left(f_{N \Delta \rho}=5.5\right)$
$g_{\Xi \Sigma K^{*}}^{(1)}, g_{\Xi \Sigma K^{*}}^{(2)}$	－5．47，0．0	$\mathrm{SU}(3)+\left(f_{N \Delta \rho}=5.5\right)$
$\kappa_{\Sigma^{+} \gamma}, \kappa_{\Sigma^{0} \gamma}, \kappa_{\Sigma^{-} \gamma}$	$2.11,0.32,-1.47$	quark model［18］
$g_{\Omega \Xi K}$	7.5	$\mathrm{SU}(3) \& \chi$ quark model

Numerical Result

Numerical Result

Numerical Result

Numerical Result

Numerical Result

Discussion

Why so small?

Revisited to $\gamma p \rightarrow K^{+} K^{+} \Xi^{-}$

Discussion

Why so small ?

1320	1116
1530	1405
1690	1520
1820	1600
1950	\vdots
2030	2100
	2110
	2350

Future work

$$
\gamma p \rightarrow K^{+} K^{+} K^{0} \Omega^{-}
$$

$\Xi, \Xi^{*} \cdots(N)$
$\Lambda(1116)$
$\Lambda(1405)$
$\Lambda(1520)$
$\Sigma(1193)$
$\Sigma(1385)$

\# of diagrams

30

$5 \times 30=150$

150 N

Future work

Summary

v In the present work, we show the total cross section of Omega production with ground baryon states.

V The result with only ground state baryon gives us very small cross section.
v The previous hyperon production study tell us that we need to consider massive resonances with higher spin
\checkmark From this, we would like to suggest the minimum or range cross section to investigate properties of VERY strange baryons.

PART 2

$$
\gamma p \rightarrow K^{+} K^{-} p
$$

Motivation

Formalism

$$
\begin{aligned}
& \mathcal{M}(\gamma p \rightarrow K \bar{K} p)=\mathcal{M}(\gamma p \rightarrow \phi p \rightarrow K \bar{K} p) \\
& \quad+\mathcal{M}\left(\gamma p \rightarrow \Lambda^{*} p \rightarrow K \bar{K} p\right)+\text { background }
\end{aligned}
$$

$\square \mathcal{M}(\gamma p \rightarrow \phi p \rightarrow K \bar{K} p)=\mathcal{M}(\phi p \rightarrow K \bar{K} p) \frac{1}{q_{\phi}^{2}-\left(m_{\phi}-i \Gamma_{\phi} / 2\right)^{2}} \mathcal{M}(\gamma p \rightarrow \phi p)$
■ $\mathcal{M}\left(\gamma p \rightarrow K \Lambda^{*} \rightarrow K \bar{K} p\right)=\mathcal{M}\left(\Lambda^{*} p \rightarrow K \bar{K} p\right) \frac{1}{\phi_{\Lambda}-\left(m_{\Lambda}-i \Gamma_{\Lambda} / 2\right)} \mathcal{M}\left(\gamma p \rightarrow \Lambda^{*} p\right)$

Formalism

\square Díagrams

$$
\mathcal{M}=\bar{u}\left(p^{\prime}\right) \mathcal{W} u(p)
$$

Formalism

\square vertex functions

$\left(p^{\prime}\right) p \sum_{\}}^{\gamma(k)} p(p)$	$\Gamma_{\gamma p p}^{\nu}=-e\left[I+\frac{\kappa_{p}}{2 m_{p}} k\right] \gamma^{\mu}$
$\left(q^{\prime}\right) K---\sum_{---K(q)}^{\gamma(k)}$	$J_{\gamma K K}^{\nu}=e\left(q+q^{\prime}\right)^{\nu}$
	$F_{K p \Lambda}^{\mu}=\Gamma_{K p \Lambda}^{\mu} \times f\left(q^{2} ; p^{2} p^{\prime 2}\right), \quad\left(\Gamma_{K p \Lambda}^{\mu}=\frac{g_{K p \Lambda}}{m_{K}} \gamma_{5} \phi\right.$ d $)$
	$F_{K p \Lambda^{*}}^{\mu}=\Gamma_{K p \Lambda^{*}}^{\mu} \times f\left(q^{2} ; p^{2} p^{\prime 2}\right), \quad\left(\Gamma_{K p \Lambda^{*}}^{\mu}=\frac{g_{K p \Lambda^{*}}}{m_{K}} \gamma_{5} q^{\mu}\right)$
	$\begin{aligned} & I_{\gamma K p \Lambda^{*}}^{\mu}=\Gamma_{K p \Lambda^{*}}^{\mu} C_{\Lambda^{*}}^{\nu}+\Gamma_{\gamma K p \Lambda^{*}}^{\mu \nu} f_{t}, \quad\left(\Gamma_{\gamma K p \Lambda^{*}}^{\mu \nu}=\right. \\ & \left.-e^{\mu} \frac{K_{k p \Lambda^{*}}}{m_{K}} \gamma_{5} g^{\mu \nu}\right)= \end{aligned}$

Formalism

	$J_{\gamma K K}^{\nu}=e\left(q+q^{\prime}\right)^{\nu}$
	$J_{\gamma K K}^{\nu}=e\left(q+q^{\prime}\right)^{\nu}$
	$\Gamma_{\phi K p \Lambda^{*}}^{\mu \nu}=-g_{\phi K K} \frac{g_{K p \Lambda^{*}}}{m_{K}} \gamma_{5} g^{\mu \nu}=e\left(q+q^{\prime}\right)^{\nu}$
$p(p)$	$t_{p}=\frac{\not p_{+m_{p}}}{p^{2}-m_{p}^{2}}$
$-K^{(q)}-$	$\Delta_{K}=\frac{1}{q^{2}-m_{K}^{2}}=e\left(q+q^{\prime}\right)^{\nu}$
$\phi\left(q_{\phi}\right)$	$\Delta_{\phi}^{\mu \nu}=\frac{1}{q_{\phi}^{2}-m_{\phi}^{2}}\left(-g^{\mu \nu}+\frac{q_{\phi}^{\mu} q_{\phi}^{\nu}}{m_{\phi}^{2}}\right)$

Formalism

\square parameters in the present work

Nucleon	m_{p}	3.25
	κ_{p}	1.79
background	$g_{K N \Lambda}$	3.18
	κ_{Λ}	-0.613
	Λ_{Λ}	0.745 GeV
	$g_{\phi N N}$	0.25
phi	$\kappa_{\phi K K}$	0.2
resonance	n	1
	Λ_{ϕ}	0.7 GeV
	$g_{K N \Lambda^{*}}$	10.5
L(1520)	$\kappa_{\Lambda^{*}}$	0
resonance	n	1
	$\Lambda_{\Lambda^{*}}$	0.65 GeV

Numerical Result

$\square \quad \gamma p \rightarrow \phi p$

Numerical Result

$\square \quad \gamma p \rightarrow K^{+} \Lambda / \gamma p \rightarrow K^{+} \Lambda^{*}(1520)$

Numerical Result

Numerical Result

Numerical Result

Mibe et $a l$, PRL 95, 182001 (2005)
${ }^{\text {WIF }}$ FIG. 1. (a) Missing mass distribution for the $p\left(\gamma, K^{+} K^{-}\right) X$ reaction in $K K$ mode. (b) Missing mass distribution for the ${ }^{1} p\left(\gamma, K^{ \pm} p\right) X$ reaction in $K p$ mode. (c) and (d) are the $K^{+} K^{-}$ invariant mass distributions after the cut on the missing mass for $K K$ and $K p$ modes, respectively. The hatched histograms are the simulated background.

Numerical Result

preliminary

Summary

V From the known 2-body scattering process, we can directly calculate 3-body process.

We show not only the invariant mass distribution but also the interference between phi and $\mathrm{L}(1520)$ resonances.

V This work will be good chance to understand the mechanism of K Kbar N production with upcoming LEPS data.

Considering the previous experimental data and other possibility of intermediate states, we are improving our result.

$\gamma p \rightarrow K^{+} K^{+} K^{0} \Omega^{-}$

	n	Λ_{B}	Λ_{K}	$\Lambda_{K^{*}}$
$\Lambda(1116)$	1	0.75	0.75	0.75
$\Xi^{-}(1321)$	2	1.25	1.25	1.25
$\Omega^{-}(1672)$	2	1.25	1.25	1.25

Numerical result (without the coupled channel)

Future work

$$
T \simeq V+V G V \quad \text { (present work) }
$$

$$
\begin{aligned}
& T=V+V G T \\
& T=\frac{1}{1-V G} V \\
& \begin{array}{l}
T=\left[\begin{array}{ccc}
T_{\gamma p \rightarrow \gamma p} & T_{\gamma p \rightarrow \phi p} & T_{\gamma p \rightarrow K^{+} \Lambda^{*}} \\
T_{\phi p \rightarrow \gamma p} & T_{\phi p \rightarrow \phi p} & T_{\phi p \rightarrow K^{+} \Lambda^{*}} \\
T_{K^{+} \Lambda^{*} \rightarrow \gamma p} & T_{K^{+} \Lambda^{*} \rightarrow \phi p} & T_{K^{+} \Lambda^{*} \rightarrow K^{+} \Lambda^{*}}
\end{array}\right] \\
V=\left[\begin{array}{ccc}
V_{\gamma p \rightarrow \gamma p} & V_{\gamma p \rightarrow \phi p} & V_{\gamma p \rightarrow K^{+}+\Lambda^{*}} \\
V_{\phi p \rightarrow \gamma p} & V_{\phi p \rightarrow \phi p} & V_{\phi p \rightarrow K^{+}+\Lambda^{*}} \\
V_{K+\Lambda^{*} \rightarrow \gamma p} & V_{K+\Lambda^{*} \rightarrow \phi p} & V_{K^{+} \Lambda^{*} \rightarrow K^{+} \Lambda^{*}}
\end{array}\right]
\end{array} \\
& G=\left[\begin{array}{ccc}
G_{\gamma p \rightarrow \gamma p} & 0 & 0 \\
0 & G_{\phi p \rightarrow \phi p} & 0 \\
0 & 0 & G_{K+\cdots}+\Lambda^{*} \rightarrow K^{+}+\Lambda^{*} \\
& & \cdots
\end{array}\right]
\end{aligned}
$$

Introduction

Estimation I

