

The NICA Complex at JINR: status and plans

NICA

Yuriy Potrebenikov JINR LHEP

NICA (Nuclotron dased Ion Colider fAcility) – the JINR flagship project in HEP

Main targets of "NICA Complex":

- study of hot and dense baryonic matter
- investigation of nucleon spin structure,

polarization phenomena

- development of accelerator facility for HEP@JINR providing

intensive beams of relativistic ions from p to Au with max energy up to $\sqrt{S_{NN}}$ = **11 GeV** and L=~**10**²⁷ cm⁻² c⁻¹ (Au⁷⁹⁺)

and polarized protons and deuterons with max energy up to **26 GeV and L=~10³²** cm⁻² c⁻¹ (p)

NICA accelerator opportunities

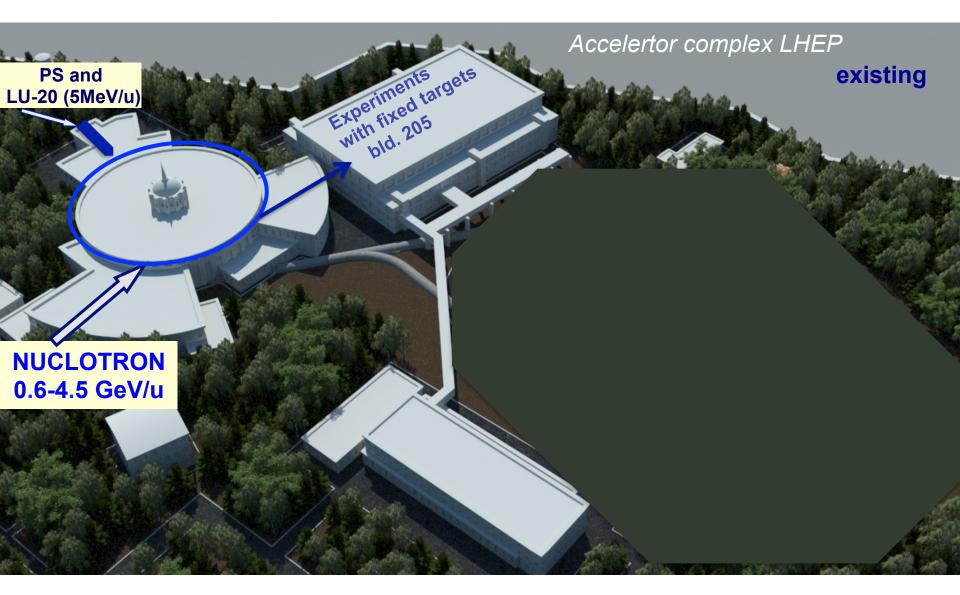
1: - Heavy ion colliding beams ¹⁹⁷Au⁷⁹⁺ x ¹⁹⁷Au⁷⁹⁺ at

 $\sqrt{s_{NN}} = 4 \div 11 \text{ GeV} (1 \div 4.5 \text{ GeV/u ion kinetic energy})$

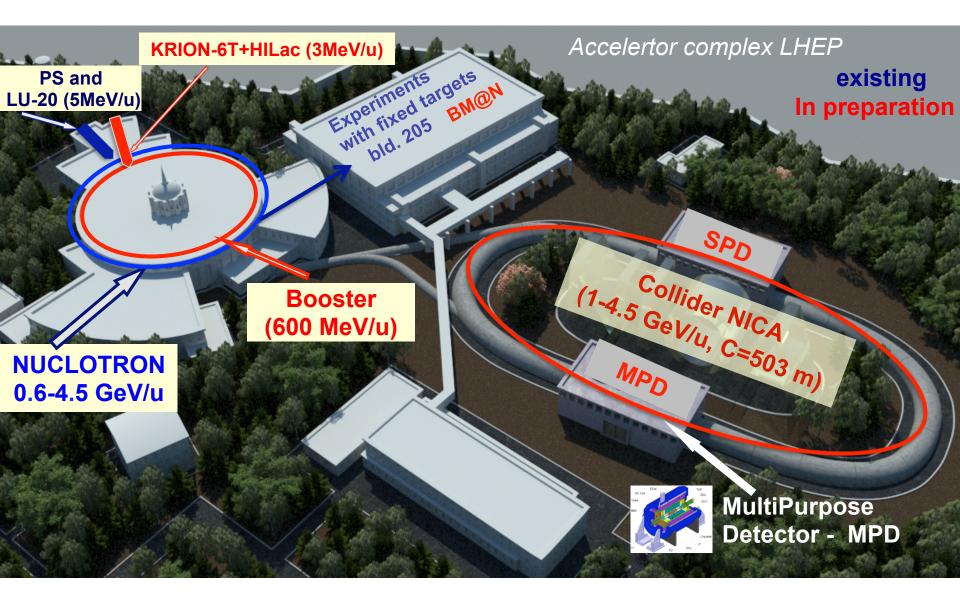
at $L_{average} = 1 \times 10^{27} \text{ cm}^{-2} \cdot \text{s}^{-1}$ (at $\sqrt{s_{NN}} = 9 \text{ GeV}$)

- Light-Heavy ion colliding beams of the same energy range and L

2: Polarized beams of protons and deuterons in collider mode:


p↑p↑ $\sqrt{s_{pp}}$ = 12 ÷ 27 GeV (5 ÷ 12.6 GeV kinetic energy) d↑d↑ $\sqrt{s_{NN}}$ = 4 ÷ 13.8 GeV (2 ÷ 5.9 GeV/u ion kinetic energy) $L_{average} \ge 1x10^{32} \text{ cm}^{-2} \cdot \text{s}^{-1}$ (at $\sqrt{s_{pp}}$ = 27 GeV)

3: The beams of light ions and polarized protons and deuterons for fixed target experiments:


Li \div Au = 1 \div 4.5 GeV /u ion kinetic energy p, p^ = 5 \div 12.6 GeV kinetic energy d, d^ = 2 \div 5.9 GeV/u ion kinetic energy

4: Ion beams for applied researches at kinetic energy from 0.5 GeV/u up to 12.6 GeV (p) and 4.5 GeV /u (Au)

The NICA Complex

The NICA Complex

Complex NICA - civil construction

The project of the CV was done by the Moscow design firm "Kometa" and has passed through the State Expertise in 2013

For the first time at JINR an international tendering has been organized

HEP

The preparatory works are going on ~60 000 m²!

Contract for Working Documentation signed in August'14. Ready – mid 2015

In January 2015 20 test piles (up to 15 m) has been pushed and additional drilling for soil analysis for special vibration tests has been done

29 June 2015

A Contract for Civil Construction

M	סי		Кон	цептуальн	ый графі	ик орга	низаци	ій рабо	T									S	TRA	BAG
	Notizen	Длит-сть	Anfang	Fertig stellen	20	2015			20)16			20)17			20			
				-	Q2 03 04 05 06	Q3	Q4	Q1	Q2 04 05 06	Q3 07 08 09	Q4	Q1	Q2 04 05 06	Q3 07 08 09	Q4	Q1 2 01 02 03	Q2 04 05 06	Q3 07 08 09	Q4	Q1 2 01 02 03
	Цоговор			Fr 20.03.15	• Договој	2														
	CMP	<u>1050 Tage</u>	Fr 20.03.15	<u>Do 28.03.19</u>								CN	IP							
	Тодготовительные Мероприятия	90 Tage	Fr 20.03.15	Do 23.07.15	тельные	Меропрі 💷 — 23. (иятия Jul '15													
	MPD	540 Tage	Fr 24.07.15	Do 17.08.17	24. Jul '15					MPD				888838 🛡 1	7. Aug '17	7				
	каньон полукольца W	630 Tage	Fr 04.09.15	Do 01.02.18		o'15 🛡				каньо	н полуко	льца W				. 01.	Feb '18			
	каньон полукольца Е	540 Tage	Fr 08.01.16	Do 01.02.18		08	. Jan '16	-			каньон г	юлуколь	ца Е			• 01.	Feb '18			
	SPD	750 Tage	Fr 13.05.16	Do 28.03.19				13. Mai '	16 🗣	**********					SPD					
	развилка	575 Tage	Fr 13.01.17	Do 28.03.19						13	. Jan '17					развилк	a			888888888888
-	стройготовность к монтажу	<u>420 Tage</u>	<u>Do 17.08.17</u>	<u>Do 28.03.19</u>									17. Aug	17 🖵		стройго	товност	ъкмонт	ажу	
	MPD			Do 17.08.17									17. Aug	MPD 17 ◆						
	каньон полукольца W(est)			Do 01.02.18											аньон по 01. Feb '1	о <mark>луколь</mark> ⊔ /8 ♦	a W(est)			
	каньон полукольца E(ast)			Do 01.02.18											аньон по 01. Feb '1	олуколы /8 ♠	a E(ast)			
	SPD			Do 28.03.19															28.	S Mrz '19
	развилка			Do 28.03.19															28.	разе Mrz '19

A contract for General construction works is under very final agreement – planned to sign in July

NICA – basic milestones

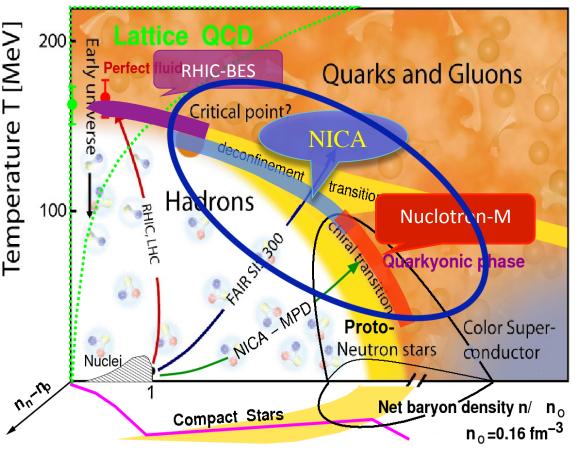
•	JINR 7-years plan (2010-2016) is approved	2009
•	NICA project is approved	2010
•	The 1-st stage of Nuclotron modernization	
	is completed	2010
	9 runs are fulfilled in 2010-2015	
•	The projects have been approved for:	
	✓ accelerator complex	2010 – 2019
	 MPD (Multi-Purpose Detector, start-up) 	2010 – 2019
	 experiment with fixed target BM@N (I stage) 	2012 – 2018
•	The project preparation for Spin Physics Detector (SP	D) is going on
	Last PAC on PP approved all existing project on up to 2020	the NICA complex

29 June 2015

Research in Relativistic Heavy Ions

is intensively developing fields in the last two decades

many discoveries have been made, interesting processes have been observed and precisely measured in the series of experiments at **RHIC** (BNL), **SPS** (CERN) and **SIS18** (GSI)


The researches are carried out at **LHC**, in preparation - at **SIS100** (FAIR)

However interesting phenomena as

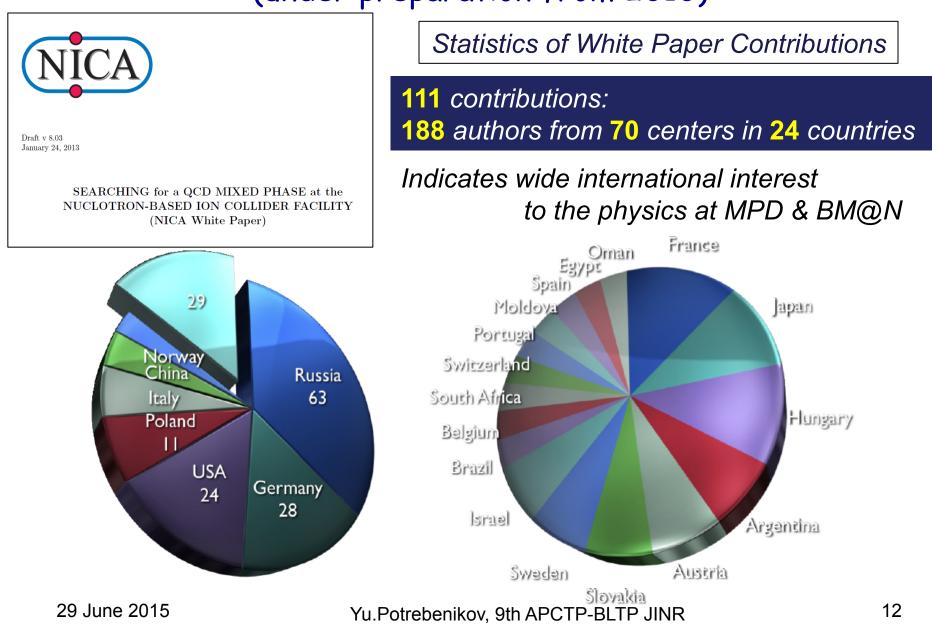
the mixed phase, the critical endpoint, max. of baryonic density etc. are not observed yet

In this view the energy scan in wide energy region is a high priority task

QCD phase diagram - prospects for NICA

Energy Range of NICA is unexplored region of the QCD phase diagram:

- Highest net baryon density
- Onset of deconfinement phase transition
- Strong discovery potential:


a) Critical End Point (CEP)

b) Chiral Symmetry Restoration

NICA experimental programme is complementary to the RHIC/BES, FAIR and CERN and can be started already at Nuclotron-M

So, the NICA facilities provide unique capabilities for studying a variety of phenomena in a large region of the phase diagram

NICA White Paper - International Effort (under preparation from 2010)

Research in Spin Physics

Physics tasks

- Nucleon spin structure studies using the Drell-Yan (DY) mechanism
- New nucleon PDFs and J/Ψ production mechanisms
- Direct photons
- Spin-dependent high-pT reactions
- Spin-dependent effects in elastic ppand ddscattering
- Spin-dependent reactions in heavy ion collisions.

Proposal (SPD):

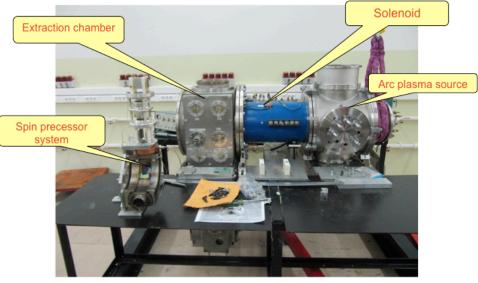
- to perform measurements of asymmetries of the DY pairs production in collisions of polarized protons and deuterons which provide an access to all collinear and Transverse Momentum Dependent Parton Distribution Functions of quarks and anti-quarks in nucleons; a set of these measurements will supply complete information for tests of the quark-parton model of nucleons at the twist-two level with minimal systematic errors.
- to perform measurements of asymmetries in production of J/Ψ simultaneously with DY using dedicated triggers.

Status of the accelerator complex

Particle sources

Source	KRION-6T	Laser source	Duoplasmatron	SPI ^{*)}
Particles	Au ³¹⁺	Light ions up to Mg ¹⁰⁺	H ⁺ , D ⁺ , He ²⁺	↑ Η⁺ <i>,</i> ↑D⁺
Particles per cycle	~ 2.5·10 ⁹	~ 10 ¹¹	H ⁺ , D ⁺ ~ 5·10 ¹² He ²⁺ ~ 10 ¹¹	5·10 ¹¹
Repetition, Hz	up to 10	0.5	1	0.2

Unique Electron String Ion Source KRION-6T:

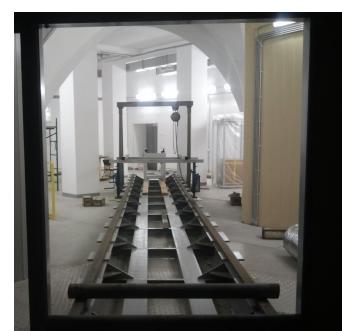

high intensity: Kr 28+, Xe 44+, Au 52+

Successfully tested in 2014 for light ions

High intensity polarized particle source: up to 10¹¹ particles/s

Assembly of the charge-exchange plasma ionizer

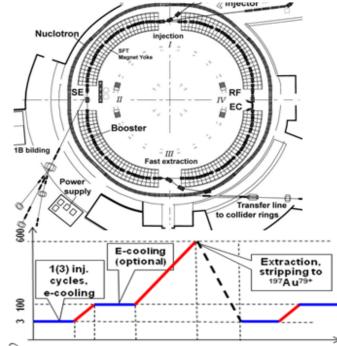
Successfully tested in 2012-2014 ready to use


29 June 2015

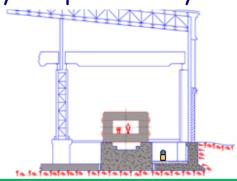
HILac: first in Russia high current (10 mA) heavy ion Linac, first Linac with transistor RF amplifier

NICA HILac: RFQ + 1H1 + 1H2										
GSI, Darmstadt, Heavy ion line			BT		RFQ					
10-20		Туре	Weight	Length	RF power	Exit energy				
	RFQ	4 - rod	2000 kg	3.16 m	120 kW	0.3 <u>MeV/</u> u				
	MEBT	Two QD + buncher	500 kg	1.4 m	3 kW (buncher)	0.3 <u>MeV/</u> u				
	IH1	DTL + QT	4000 kg	2.3 m	296 kW	2 <u>MeV</u> /u				
	IH2	DTL	3900 kg	2.1 m	278 kW	3.2 MeV/u				

Design and fabrication under the contract with "BEVATECH OHG" Germany, Offenbach/Main,


to be delivered at JINR in 2015

Booster and Nuclotron


Booster synchrotron, 211 m, with ultra high vacuum and electron cooling – inside the Synhrophasotron yoke

Quadruple SC magnet

29 June 2015

Dipole SC magnet

Nuclotron provides now performance of experiments on accelerated pro beams (up to Fe24+, A=56, *now Xe42+*, A=124) with energies up to 6 AGeV (4/M - 4/2)

RF system for booster

In May **2014 2 RF** stations were assembled and tuned in BINP (Novosibirsk) in coop. with JINR specialists.

In October **2014** the stations were delivered to Dubna, assembled and tested.

Project status: *all the works are performed*

in accordance with the plans.

The Booster RF station during commissioning at test bench at JINR

Commissioning is planed in **2017**

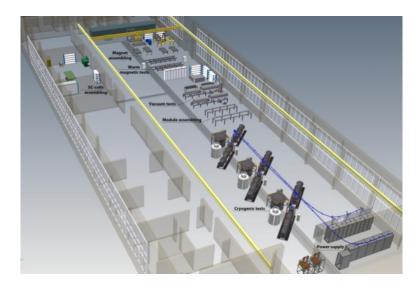
Electron cooling system for booster

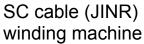
For PERFECTION

There are purchased 80% of materials
 ~ 70% of items are produced


 in workshop

 Commissioning is planed in 2017
 Project status: in schedule


Collider: 2 aperture SC magnet



Test on vacuum tightness of the tubes for cooling the yoke

SC magnet assembling and testing area (need to produce 450 magnets including magnet for SIS100)

HTSC current leads stand

He satellite refrigerator

Workshops for SC coil production

29 June 2015

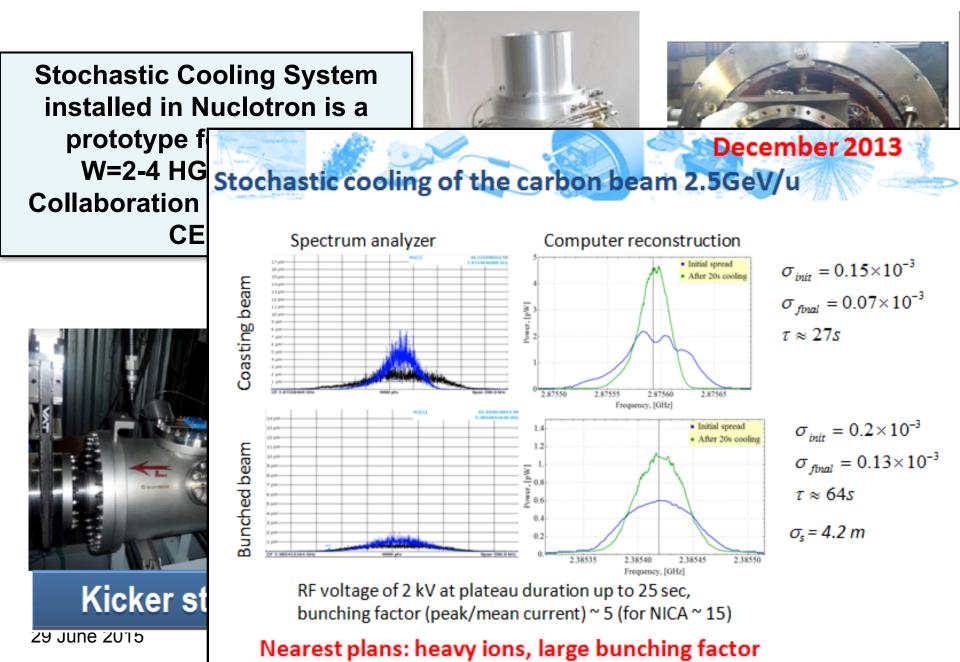
Magnet production plan

		2015			2016					2017				20	18		2019					20			
		Ι	II	III	IV	I	П	III	IV	I	П	III	IV	1	П	Ш	IV	I	П	III	IV	I	П	III	IV
Booster														 R	00	ct		. iı		20	14				
dipoles	40+3													_			di								
quadrupoles	48+6													_				-			າດ	les	2		
multipole correctors	40+4																90			Ч			,		
Collider																									
dipoles	80+5																								
quadrupoles	86+5																								
multipole correctors																									
nonstructurals																									
SIS-100																									
pre-series quadrupole	2																								
pre-series sextupole correctors	1																								
pre-series dipole correctors	2																								
pre-series multipole correctors	2																								
quadrupole	166																								
sextupole correctors	48																								
dipole correctors	83																								
multipole correctors	12																								

Stochastic Cooling System

Stochastic Cooling System installed in Nuclotron is a prototype for Collider: W=2-4 HGz, P=60 W Collaboration JINR-IKP FZJ-CERN

Slot-coupler RF structure (by IKP FZJ)

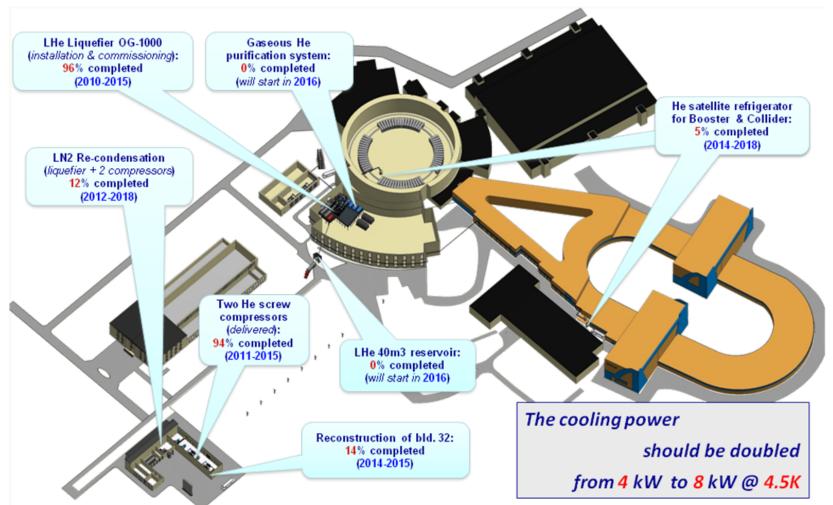


Pick-Up station

29 June 2015

JINR

Stochastic Cooling System



Collider Electron cooling

Maximum electron energy, MeV	2.5
Cooling section length, m	6.0
Electron beam current, A	0.5-1
Electron beam radius, cm	1
Magnetic field in cooling section, T	0.1-0.3

JINR cryogenic complex

Technical design project is in final stage. The goal is: the cooling power will be doubled up to 8 kW @ 4.5K with new plant; 2 new screw compressors are under design

NICA MPD and BM@N experiments

The MultiPurpose Detector (MPD)

The goal:

search for the mixed phase and phase transition of strongly interacting matter in processes:

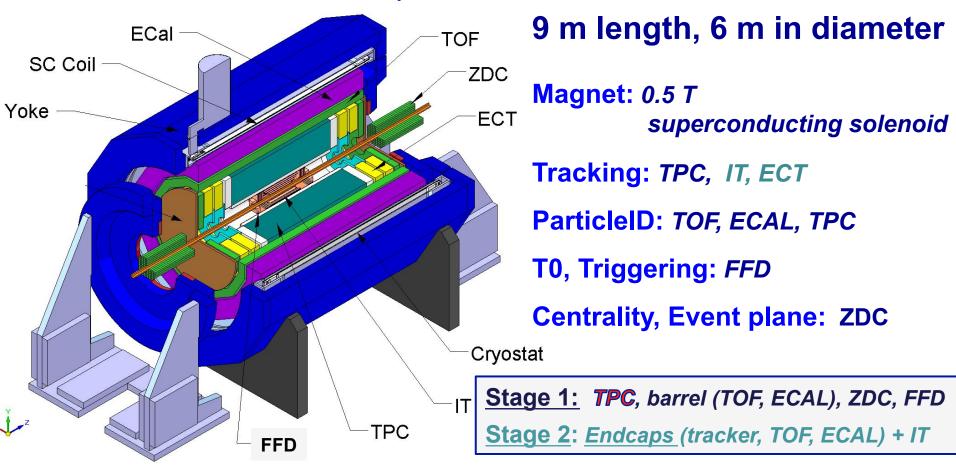
AA, pA and pp interactions

using variety of nuclei A (from p to Au)

scanning over energy range: $\sqrt{S_{NN}} = 4 - 11 \text{ GeV}$ with fine steps ~ 10 MeV/u in selected regions

at high Luminosity allowing the high statistic (*precision*) studies

29 June 2015


MPD observables

 \Box Hadron multiplicities (4 π particle yields :

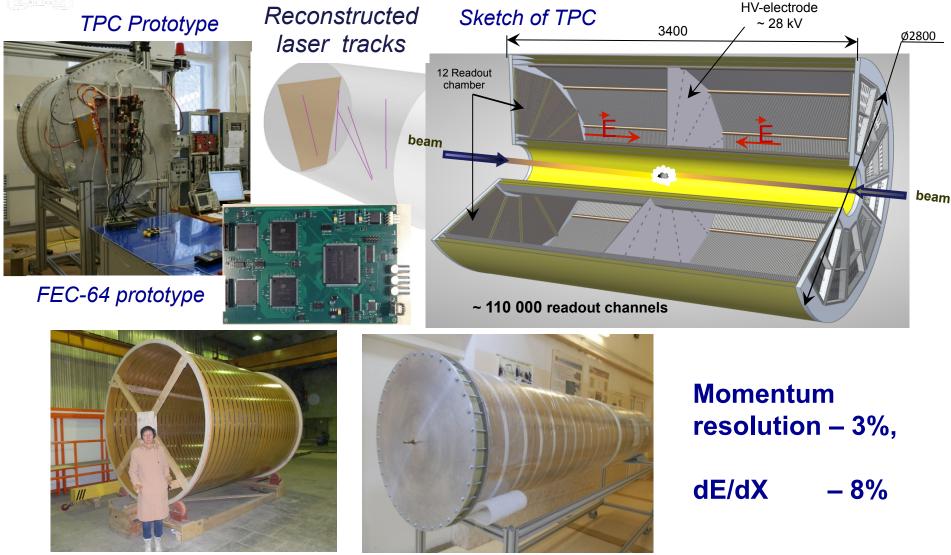
 $\pi, K, p, \Lambda, \Xi, \Omega$

- Event-by-event fluctuations
- **\Box** Femtoscopy involving π , K, p, Λ
- □ Collective flow for identified hadrons and resonances
- Electromagnetic probes: electrons, gammas, vector meson decays
- □ Hypernuclei & other exotic

MultiPurpose Detector (MPD)

MPD potential advantages:

□ Hermetic & homogenous acceptance (2π in azimuth), low material budget

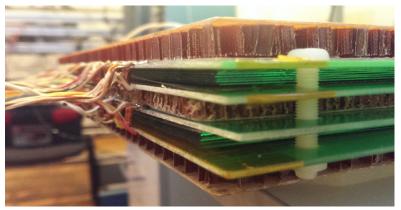

 \Box Good tracking performance and powerful PID (nuclei, hadrons, e, γ)

□ High event rate capability and reliable event separation

29 June 2015

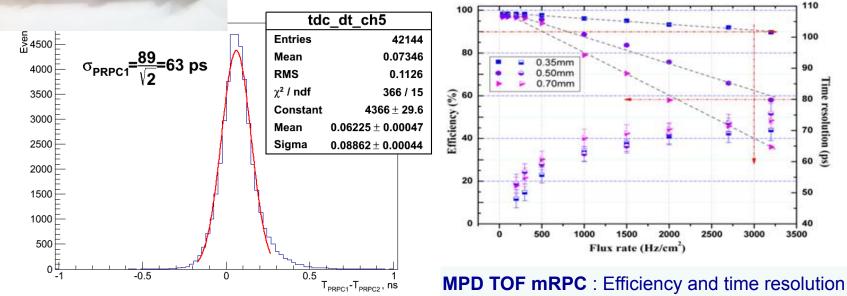
Time Projection Chamber

Detector production area is under construction


29 June 2015

TOF

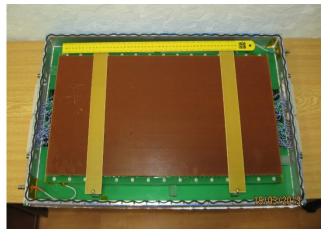
- TOF geometry & module based on multi-gap resistive plane design optimized
- Nuclotron test beam line upgraded
 mRPC performance: require



required efficiency, rate capability & time resolution are reached

Zhu Weipinga, Wang Yi, Feng Shengqin, Wang Jingbo, Huang Xinjie, Shi Li, V. Babkin, V. Golovatyuk, M. Rumiantcev, G. Eppley, T. Nussbaum, **NIM A 735, 277–282, 2014**

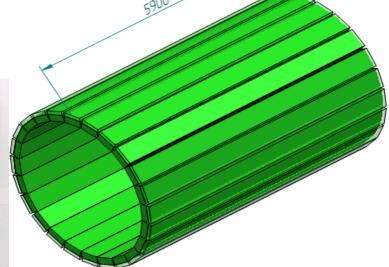
versus flux rate for several glass thickness



TOF Barrel Design

The barrel of consist of 12 super-modules (two modules connected together)

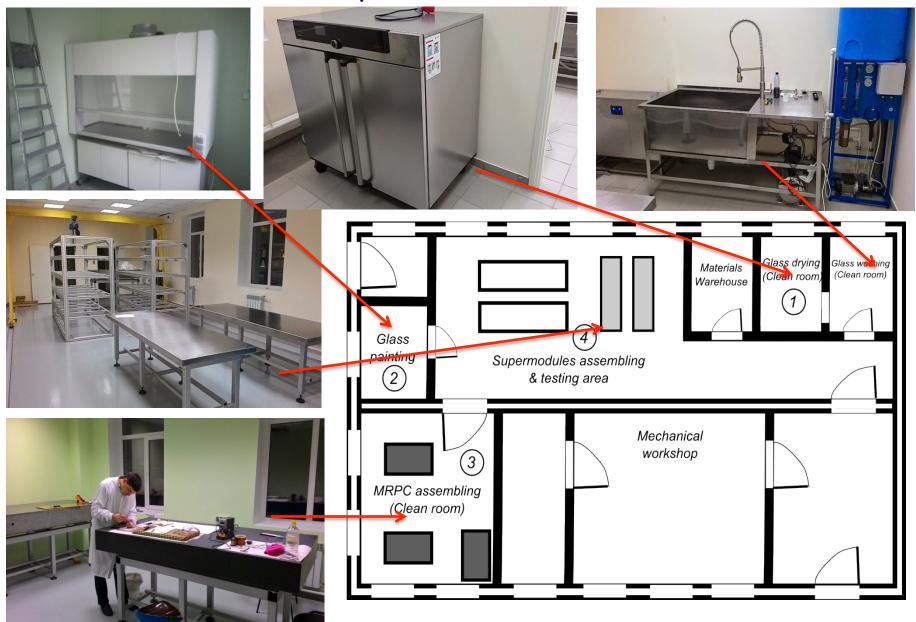
Active area of TOF barrel Number of channels



mRPC full scale prototype

~56 m² 13 824

Electronic test bench


Project status:

- R&D and tests of prototypes are finished,

& 24 ch. FEE based on NINO

- 80% readiness for the mass production

Area for mass-production of the TOF mRPC

29 June 2015

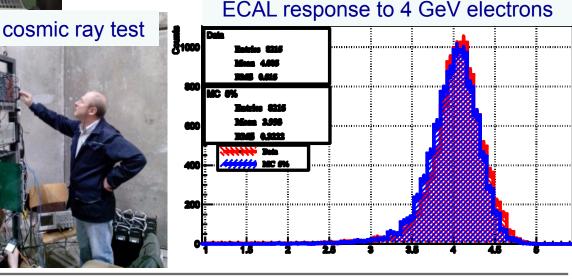
ECAL - TDR in preparation

Preparation for tests with electron beams at DESY (December'13)

ECAL tests with e beam(December '13):

- performance study of two ECAL modules (35 cm length, 14 radiation length) with *different* Wavelength Led Scintillator fibers
 Tests of the ECAL read out electropics
- Tests of the ECAL read-out electronics (amplifiers and ADCs)

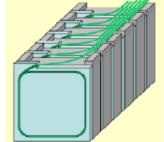
Energy scan (E_e = 1 - 6 GeV)


Analysis of the recorded data indicates

Energy resolution2.5% / \sqrt{E} Time resolution80 ps / \sqrt{E}

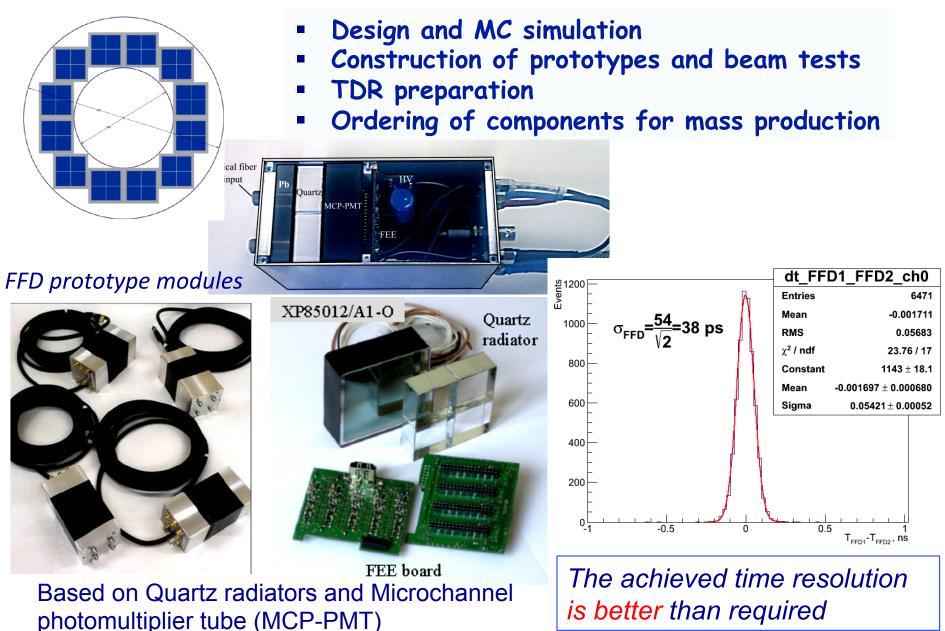
good performance:

fits the requirement



29 June 2015

Together with the RAS Institute for Nuclear Research Pb-scintillator sampling (5λ) Read-out: fibers+ Avalanche PD meai Fig.2 0.3 **σ(E)/(E) = 55%**/√E(GeV) **+2%** sigma +16%/ ⁴√E(GeV) 7.05.2010 15:85 Fig.1 0.2 Fig.1. Beam tests of ZDC modules at PS/CERN 0.1 Fig.2. ZDC energy resolution 50 100 150 ZDC provides required resolution E (GeV) in deposited energy

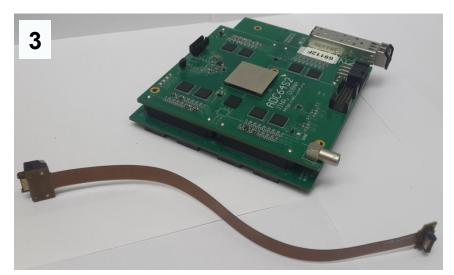

Zero Degree Calorimeter (ZDC)

ZDC coverage: 2.2<|η|< 4.8

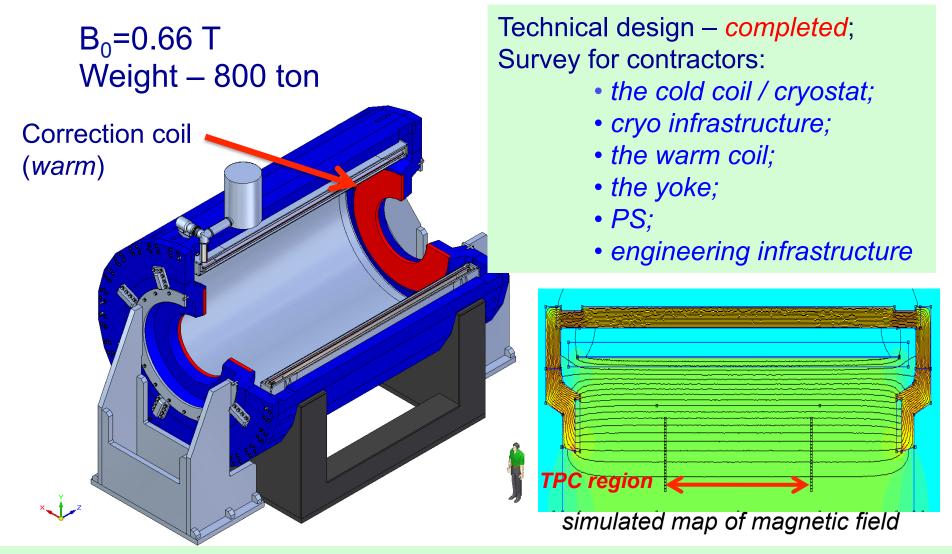
29 June 2015

Fast Forward Detector (FFD)

29 June 2015


Readout Electronics have been developed for TPC, TOF, and ECAL

 Ultra fast NINO pre-amplifier for mRPC readout: 24- and 8-channel, rise time < 400 ps
 ALTRO-based TPC Front-End card prototype.


3. High performance ADC for ECAL read-out: 64 channels, 13-bit, 65 MSPS conversion rate

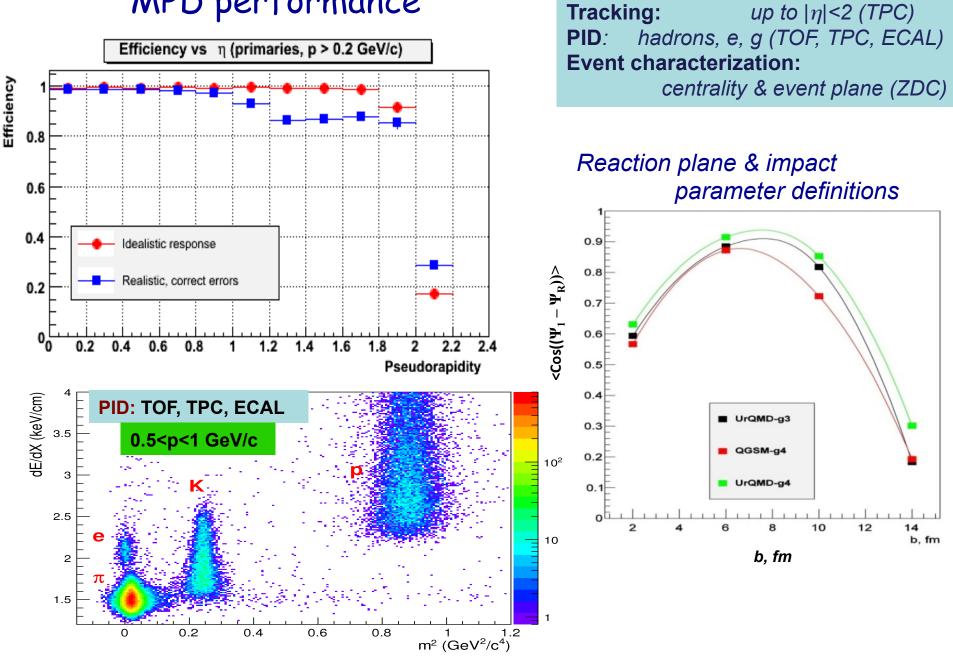
MPD Superconducting solenoid: challenging project - to reach high level (~ 10⁻⁴) of magnetic field homogeneity

Design: "Neva-Magnet" (*Russia*); production: ASG SC (Italy), TOSHIBA (Japan)

The MPD Hall

push-pull scheme of MPD operation

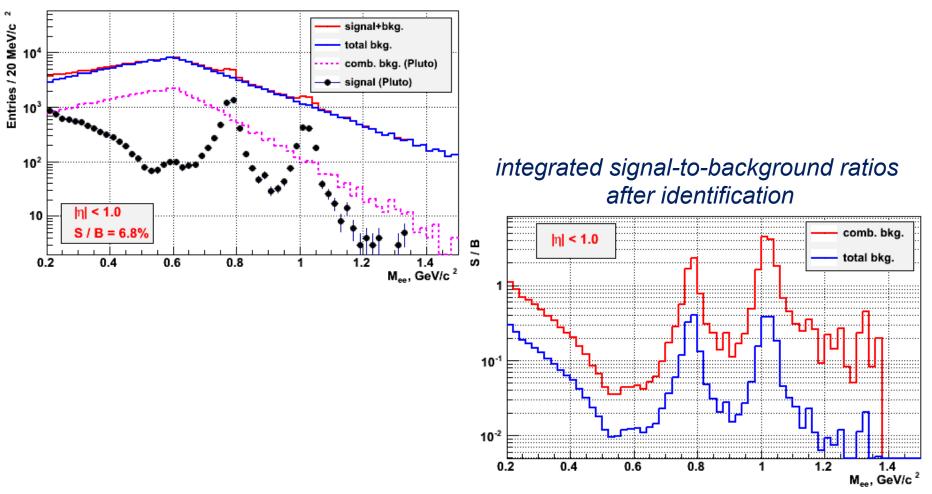
(parking & in-beam positions)


The weight of the magnet (~ 980 t) and the whole detector (~1200 t) led to rather tough technical requirements for the basement surface and stability

collider beam pipe

29 June 2015

Study of MPD performance


MPD performance

29 June 2015

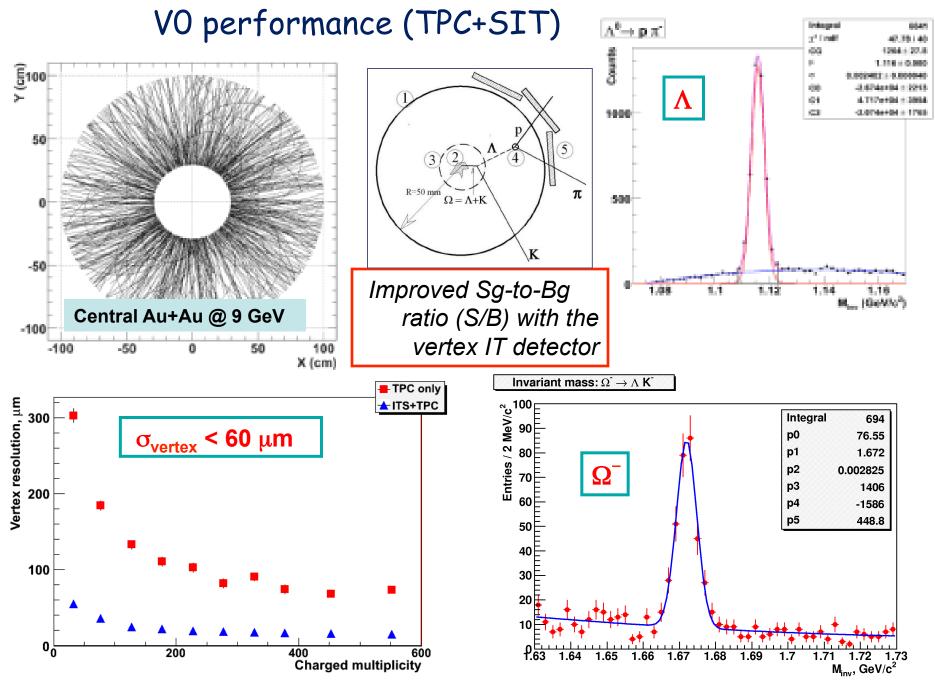
Study of electron-positron pairs

dileptonic decays of vector mesons ρ , ω , ϕ

signal-to-background ratios in M(e+e-)

The CBM - MPD consortium: development & production of STS for CBM (FAIR), MPD & BM@N

The **clean room** for assembling of STS modules is designed and constructed at LHEP


Design of super-module for IT MPD

mock-up carbon-fiber ladder (15 g / 1m) and module circuit board

00 THERE REPORT

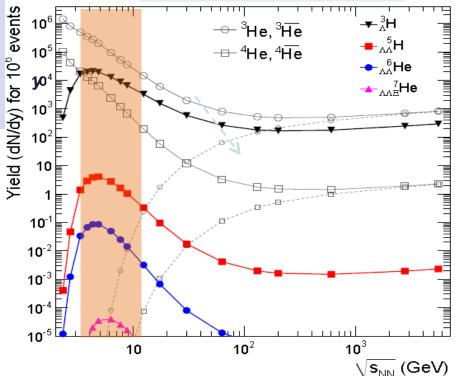
29 June 2015

Yu.Potrebenikov, 9th APCTP-BLTP JINR

Hypernuclei @ MPD

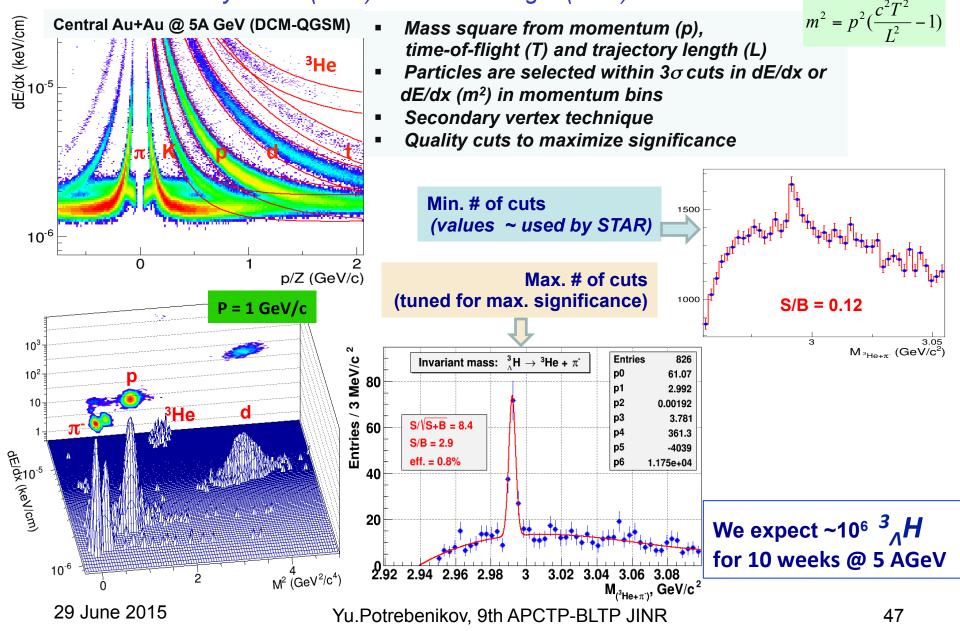
- Precise information on Y-N interaction: nuclear EOS, astrophysics
- Hypernuclei ground, excited states and life times:

critical assessments for QCD calculations and model predictions

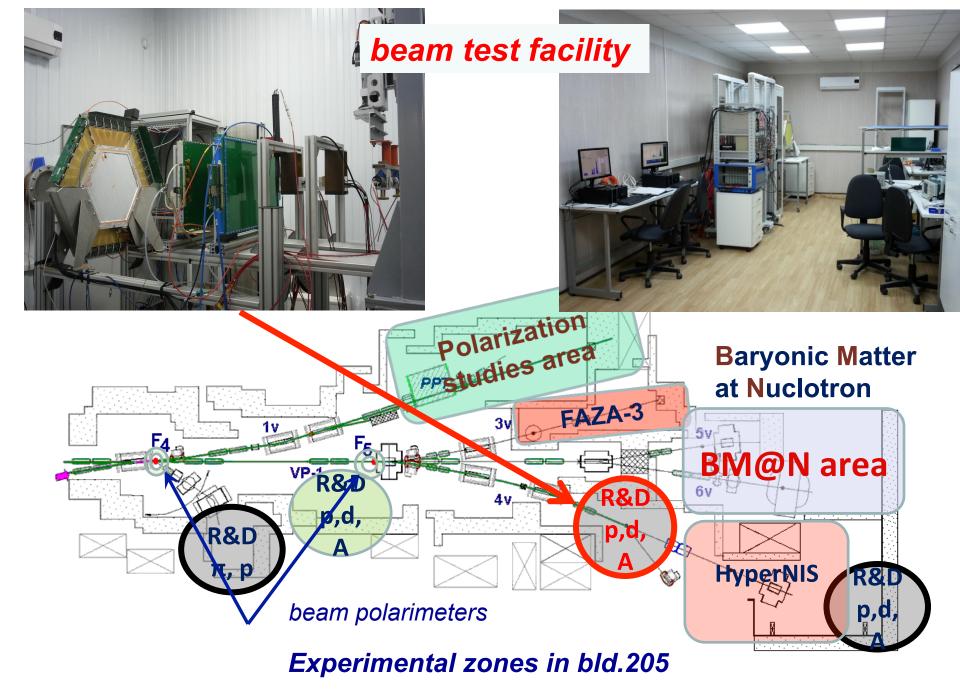

 Production mechanism of bound states with hyperons:

coalescence versus spectators-participants interactions, exotic states, dibaryons

Requirements MPD detector has to fulfill:

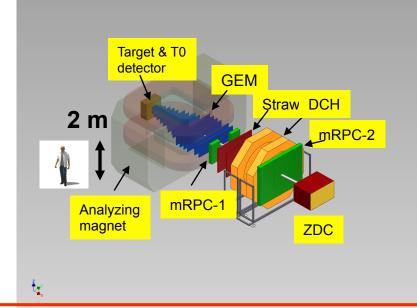

- efficient PID for hadrons and nuclei
- ability of precise reconstruction of secondary vertex

Hypernuclei production enhanced at high baryon densities (NICA)



Hypertritons at NICA-MPD. Feasibility study

PID is achieved by dE/dx (TPC) and time-of-flight (TOF) measurements



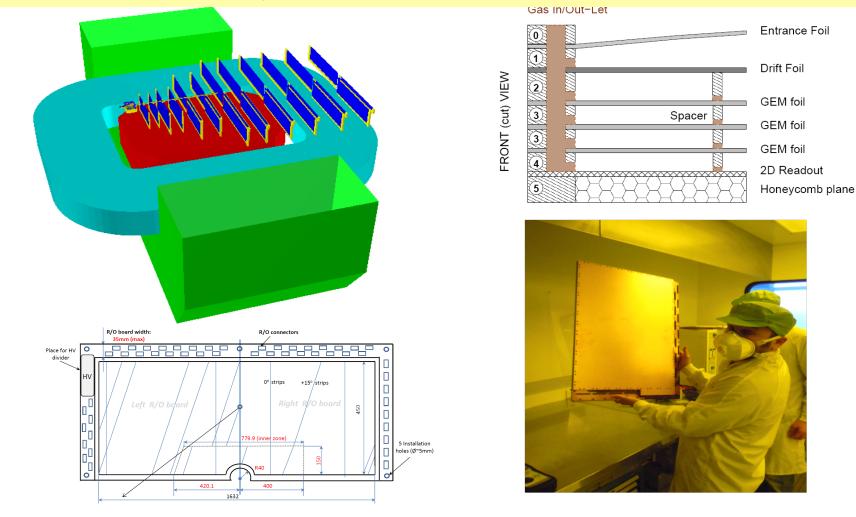
		Intensities, particles per cycle													
Beam	Energy	GSI (SIS18)	Nuclotron-M (2011)	Planned with Nuclotron-N (2015)	Planned with new ion source and booster (after 2016)										
р	4,5 GeV	2 ⋅10 ¹⁰	-	5·10 ¹¹	1.10 ¹²										
d	2,2 GeV	5 ⋅10 ¹¹	6 ⋅10 ¹⁰	5·10 ¹¹	1.10 ¹²										
⁴He			2·10 ⁹	3·10 ¹⁰	5·10 ¹¹										
d↑			2·10 ⁸	2·10 ¹⁰ (SPI)	2·10 ¹⁰ (SPI)										
⁷ Li ⁶⁺			7·10 ⁹	3·10 ¹⁰	1·10 ¹¹										
¹² C ⁶⁺	300 MeV	7 ⋅10 ¹⁰	6·10 ⁹	3·10 ¹⁰	1·10 ¹¹										
²⁴ Mg ¹²⁺	300 MeV	5 ⋅10 ¹⁰	7·10 ⁸	4·10 ⁹	5·10 ¹⁰										
⁴⁰ Ar ¹⁸⁺	300 MeV	6·10 ¹⁰	8·10 ⁶	2·10 ⁹	2·10 ¹⁰										
⁵⁶ Fe ²⁸⁺			4·10 ⁶	2·10 ⁹	2·10 ¹⁰										
⁵⁸ Ni ²⁶⁺	300 MeV	8·10 ⁹													
⁸⁴ Kr ³⁴⁺	0,3 -1 GeV	2 ⋅10 ¹⁰	2·10⁵	1·10 ⁸	1.10 ⁹										
¹²⁴ Xe ^{48/42+}	0,3 -1 GeV	1.10 ¹⁰	1·10⁵	7·10 ⁷	1.10 ⁹										
¹⁸¹ Ta ⁶¹⁺	1 GeV	2·10 ⁹													
¹⁹⁷ Au ^{65/79+}		3·10 ⁹		1·10 ⁸	1.10 ⁹										
238U28+/73+	0,05-1 GeV	6·10 ⁹ /2·10 ¹⁰													

BM@N: the 1st stage

Physics :

- *in-medium effects for strangeness and vector mesons decaying in hadron modes*
- hyperon production
- hadron femtoscopy
- *pp* and *pA* reactions as reference for *AA* interactions
- electromagnetic probes (optional)

19 scientific centers: INR, SINP MSU, IHEP + 2 Universities (Russia); GSI, Frankfurt U., Gissen U. (Germany): + CBM-MPD IT-Consortium,

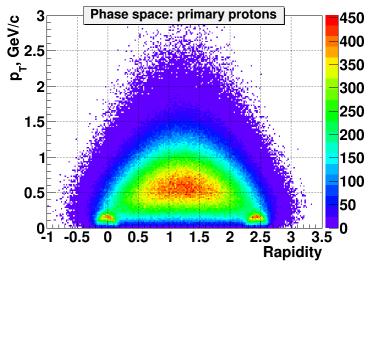

+ expressed an interest

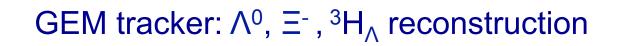
Required setup:

- central tracker inside analyzing magnet to reconstruct AA interactions
- outer tracker behind magnet to link central tracks to the ToF detector
- ToF system based on RPC and T0 detectors to identify hadrons and light nucleus
- ZDC calorimeter to measure centrality of AA collisions and to trigger
- ECAL to identify γ,e

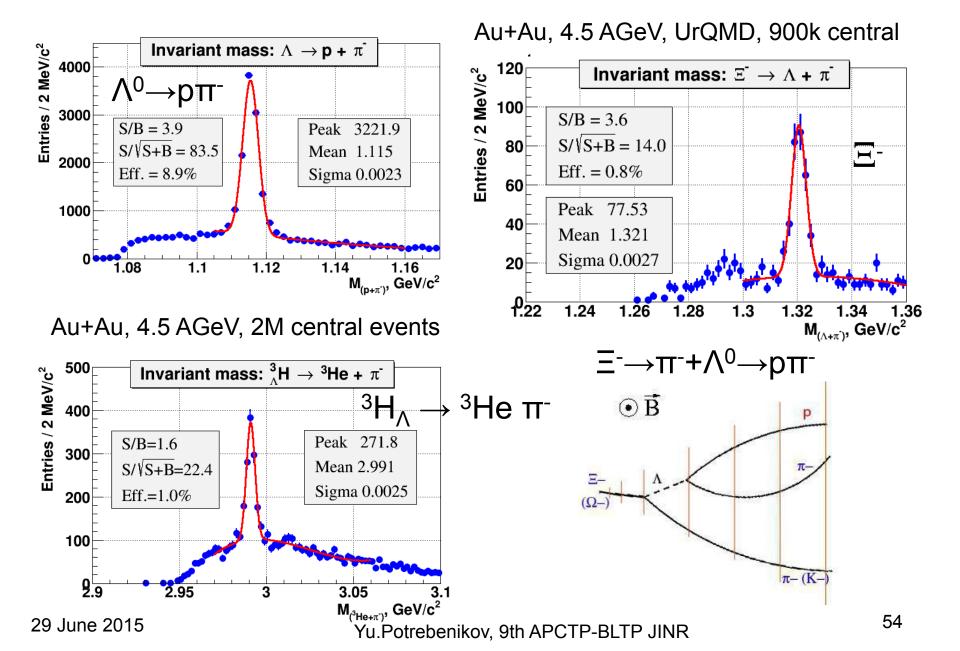
Simulated GEM tracker configuration

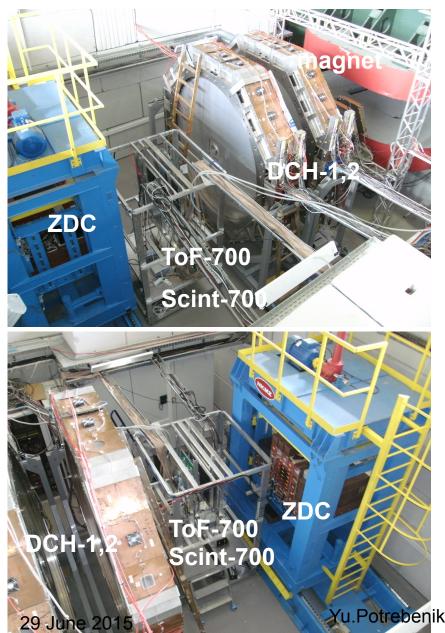
12 stations: Z = 30 - 45 - 60 - 80 - 100 - 130 - 160 - 190 - 230 - 270 - 315 - 360Stereo angles: 0 - 7.5 deg in stat. 1-4; 0 - 15 deg in stat. 5 - 12 Pitch: 400 um in stat. 1-4, 800 um in stat. 5-12

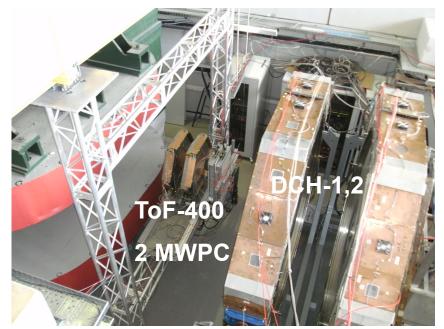

GEM tracker: acceptance / momentum resolution / detection efficiency


 $\Delta p / p$ vs p: 12 stations, B = 0.44 % .5 ∆**p / p,** 3.5 3 2.5 450 1.5 400 350 0.5 300 250 2 3 5 p, GeV/c 200 150 "Reconstructable" primaries: B = 0.44 Efficiency 100 50 0.8 3.5 0.6 0.4 0.2 **0** 2 3 5 4 p, GeV/c

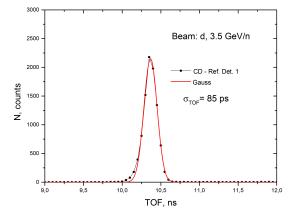
Momentum resolution / detection efficiency


Phase space / acceptance to primary protons:





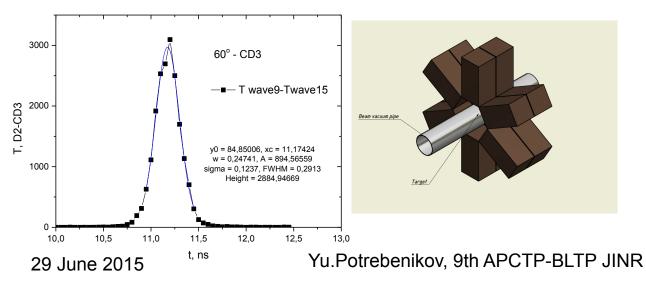
BM&N setup in the first technical run in February-March 2015


Tasks for BM@N technical run:

- deuteron and C^{12} beams with T_0 = 3.5 AGeV
- Trace beams, measure beam profile and time structure
- Test detector response: ToF-400, ToF-700, T0+Trigger, DCH-1,2, ZDC, ECAL modules, Beam monitors BM
- Test integrated DAQ and trigger system

Start Cherenkov detector and TO+Tr detectors in technical run

BM@N trigger group

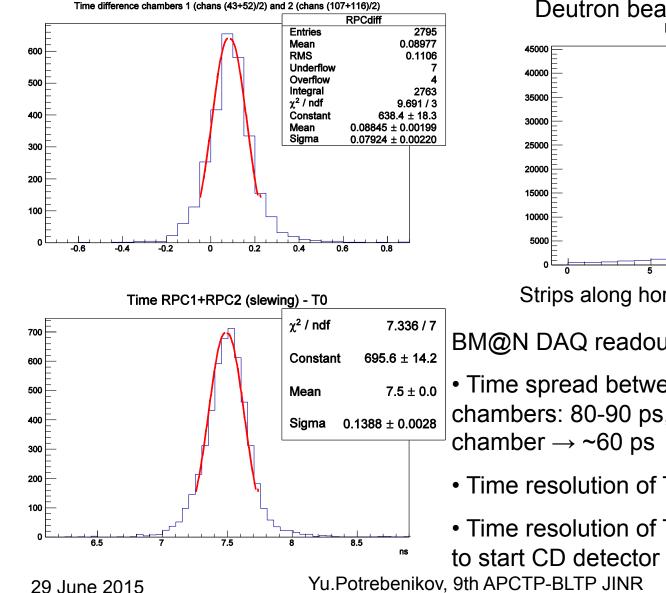


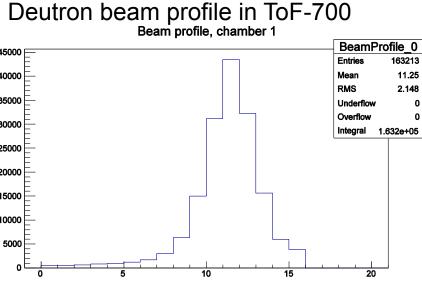
Time resolution of start CD detector measured using standalone readout electronics:

- 85 ps for deutron beam
- 27 ps for carbon beam

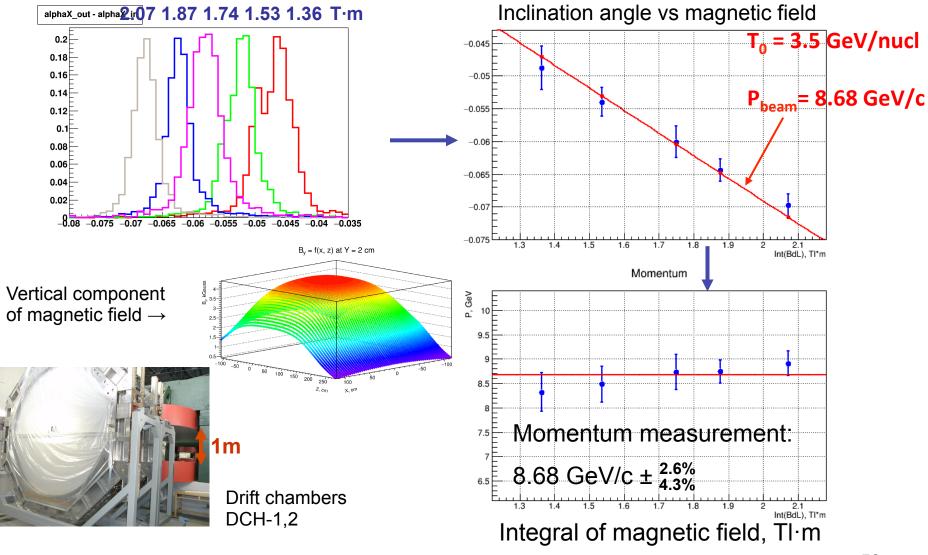
Time resolution of T0+Tr detector arranged at different angles to dipole magnetic field of SP-41:

T0+Tr(0°,180°):
$$\sigma_{TOF}$$
 = 72 ps , T0+Tr(60°,120°): σ_{TOF} =124 ps





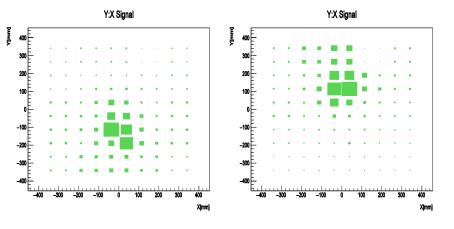
BM@N ToF-400 and ToF-700 groups

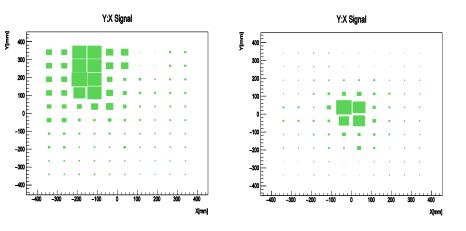

Strips along horizontal axis, strip width 1 cm

BM@N DAQ readout electronics:

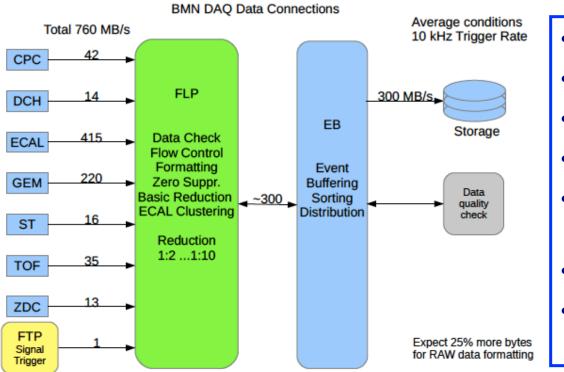
- Time spread between two ToF-700 chambers: 80-90 ps, time resolution of one
- Time resolution of ToF-400 chamber ~50 ps
- Time resolution of ToF-400, ToF-700 relative to start CD detector (T0) \rightarrow ~140 ps

Deuteron tracks and momentum reconstruction in Drift Chambers


Deutron beam inclination at different values of magnetic field



Calibration of ZDC calorimeter



- Special runs with carbon beam with ZDC at different positions
- Calibration of cell amplitudes to get beam energy in cluster
- Spread of energies reconstructed in different runs ~7%

BMN Data Flows, 2017

- 80 kB/event
- 10 kHz trigger rate
- 60% beam on time
- 20% DAQ standby time
- 950 MB/s readout rate (4800 MB/s peak)
- 25 TB RAW data per day
- Up to 5 PB RAW data per year

Together with MPD (2020) - more than 10 PB RAW data per year

Needs:

- Comp. CPU 5 000 GHz
- Cpmp. CPU cores 1
- Comp. RAM
- 1 60010 000 GB

- Disc storage 2 200 TB
- Mass storage 20 PB/year

Tentative schedule for NICA

	2014			2015			2016			2017				2018				2019						
	Ι	II		IV				IV	I	11		IV		II		IV	Ι	11		IV	I	II		IV
Injection complex																								
HI Source																								
HI Linac																								
Nuclotron development																								
Booster																								
Collider																								
BM@N																								
l stage																								
extracted channels																								
MPD																								
solenoid																								
TPC, TOF, Ecal (barrel)																								
Civil engineering																								
MPD Hall																								
SPD Hall																								
Collider tunnel																								
HEBT Nuclotron-collider																								
Cryogenics																								
for Booster																								
for Collider																								

Scientific cooperation of VBLHEP on the NICA projects

Belarus NC PHEP BSU (Minsk) GSU (Gomel)

...

Germany **GSI (Darmstadt)** JLU (Giessen) **UR (Regensburk)** Frankfurt/Main Univ. FIAS FZJ (Julich) FAU(Erlangen)

Bulgaria **INRNE BAS (Sofia) TU-Sofia** SU ISSP BAS **LTD BAS** SWU PU (Plovdiv) TUL (Blagoevgrad)

Poland Tech.University (Warsaw) Warsaw University Fracoterm (Krakow) Azerbaijan Wroclaw University **INP (Krakow)**

RSA

UCT (Cape Town) UJ (Johannesburg) iThemba Labs

KhNU, KFTI NASU (Kharkov) Russia **INR RAS (Moscow)** KI (Moscow) BINP RAS (Novosibirsk) **MSU (Mscow)** LPI RAS (Moscow) St.Pet. Univ ersity RI (St.Petersbug)

Czech Republic TUL (Liberec) CU (Prague)

Ukraine

BITP NASU (Kiev)

Italy Japan Moldova Mongolia Romania Serbia Slovakia **USA**

29 June 2015

Australia

CERN

China

France

Georgia

Greece

India

Scientific cooperation of VBLHEP on the NICA projects

The MoU's in cooperation are signed with:

Germany (BMBF, GSI) – tech. lines for SC magnets & Si trackers; China (ASIPP, Univ.) – NTSC current guides , SC magnets, RPC's; USA (FNAL) – systems for e- and stochastic- cooling; CERN – systems for BM@N and MPD; RSA – cryostats, diagnostic for SC ion sources.

29 June 2015

PROTOCOL

of the International Meeting on Prospects for Collaboration in the Mega-Science Project "Complex of Superconducting Rings for Heavy Ion Colliding Beams" - the NICA Complex

Dubna, 8 August 2013

- 1. The Participants of the Meeting representing:
- the State Committee of Science and Technology of the Republic of Belarus;
- the Nuclear Regulatory Agency of the Republic of Bulgaria;
- the Federal Ministry of Education and Research (BMBF) of the Federal Republic of Germany:
- the Atomic Energy Committee of the Ministry of Industry and New Technologies of the Republic of Kazakhstan;
- the Ministry of Education and Science of the Russian Federation;
- the State Agency for Science, Innovation and Informatization of Ukraine;
- the Joint Institute for Nuclear Research (JINR), an international research organization,

hereinafter referred to as the Parties,

have discussed the possibilities of collaboration in the mega-science project "Complex of Superconducting Rings for Heavy Ion Colliding Beams" --- the NICA Complex.

The Parties take note of the information concerning the proposal for the new accelerator

and experimental comp and quality of ion bean NICA Complex will be research, as well as to scientists.

3. The Parties express t aimed at construction a

The Parties note the countries and their pote 5. The Parties have age

Collaboration in the M

6 of them + JINR signed the Protocol

Signed: rvlov

for the State Committee of Science and Technology of the Republic of Belarus

for the Nuclear Regulatory Agency of the Republic of Bulgaria

B. Vierkorn–Rud

L. Kostov

Lot

for the Atomic Energy Committee of the Ministry of

for the Federal Ministry of Education and Research

(BMBF) of the Federal Republic of Germany

N. Burtebaey

Industry and New Technologies of the Republic of Kazakhstan

CN A. Povalko

for the Ministry of Education and Science of the Russian Federation

B. Grynyov

for the State Agency for Science, Innovation and Informatization of Ukraine

V. Matveev

for the Joint Institute for Nuclear Research

PROTOCOL

Governments about the Meeting on

Science Project "Complex of

by their countries

5. The Parties have agreed to inform their

Prospects for Collaboration in the Mega-

Superconducting Rings for Heavy Ion

Colliding Beams" – the NICA Complex

and to express their interest in preparing

a corresponding multilateral Agreement

and in taking steps towards its approval

of the International Meeting on Prospects for Collaboration in the Mega-Science Project "Complex of Superconducting Rings for Heavy Ion Colliding Beams" — the NICA Complex

Signed: for the State Committee of Science and Technology of the Republic of Belarus rylov LSG for the Nuclear Regulatory Agency of the Republic of Bulgaria L. Kostov for the Federal Ministry of Education and Research (BMBF) of the Federal Republic of Germany Vierkorn–Ruc for the Atomic Energy Committee of the Ministry of Industry and New Technologies of the Republic of N. Burtebae Kazakhstan CN for the Ministry of Education and Science of the Russian Federation A. Povalko for the State Agency for Science, Innovation and Informatization of Ukraine B. Grynyov for the Joint Institute for Nuclear Research

65

The meeting with EU experts in Brussels on 19-th June 2013

"The fact that NICA/JINR is a part of the European research infrastructure landscape has already been recognized by ESFRI.

The Expert Group recommends that the **NICA project** be fully taken into account in the forthcoming discussions on the next update of the **ESFRI** Roadmap"

In 2015 the NICA project is presented by Bulgaria (supported by Czech and Poland) to be include to the next update of the ESFRI Roadmap

29 June 2015

Concluding remarks

NICA complex has a potential for competitive research in the field of dense baryonic matter

a construction of the accelerator complex and its elements is in progress

both detectors BM@N & MPD are in preparation for experiments at the extracted Nuclotron beam & at the NICA collider

the R&D phase of MPD is practically completed

the BM@N project is progressing since 2012

The SPD project *is under prepration*

Thank you!

Yu.Potrebenikov, 9th APCTP-BLTP

- 0