9 th APCTP-BLTP JINR Joint WS at Kazakhstan 28 June - 3 July, 2015

New Platform for Hadron Physics at RCNP

H. Noumi (RCNP, Osaka University) 29 June, 2015

Contents:

- 1. Activities of Nuclear Hadron Physics at RCNP
- 2. A new platform of RCNP for hadron physics
 - High Resolution, High Momentum Bean Line at J-PARC
- 3. Baryon Spectroscopy with Heavy Flavors
 - Charmed Baryon
 - Double-Strange Baryon
- 4. Summary

RCNP: User Based Research Center for Nuclear Physics Founded in 1971

Cyclotron Facility (AVF, RING•G-RAIDEN) Laser Electron Photon Facility at SPring-8 (LEPS) Oto Cosmo Observatory (Science under the ground) Kamioka $\beta\beta$ Lab (Science under the ground)

RCNP: User Based Research Center for Nuclear Physics Founded in 1971

Cyclotron Facility (AVF, RING • G-RAIDEN) Laser Electron Photon Facility at SPring-8 (LEPS) Oto Cosmo Observatory (Science under the ground) Kamioka $\beta\beta$ Lab (Science under the ground)

CAGRA spectrometer

Clover-type Ge Detector Array

RCNP CYCLOTRON FACILITY

Radioisotope Beam UCN source

Ring Cyclotron K=400 MeV

2 World Bests Energy spread <0.01% Stability of Mag. Field <0.001%

Grand Raiden Spectrometer

Resolution (World Best) $\Delta p/p^{0.0027\%}$ at E=400 MeV MUSIC

Muon Source for Material Science AVF Cyclotron K=140 MeV

2nd Laser Electron Photon Facility (LEPS2) 8 GeV electron in operation since Apr. 2014

RCNP Activity

A new platform of RCNP for hadron physics at J-PARC

Joint Project between KEK and JAEA since 2001

Hadron Exp. Hall

Coming in Near Future

branched at upstream of the primary Beam Line

High-res., High-momentum Beam Line

CHARM Spectrometer Design

Inclusive Spectrum and Decay Mode ID (Sim.)

A new research project in High-res., High-p Beam Line at J-PARC

- MOU on research cooperation btwn RCNP, IPNS/KEK, and the J-PARC Center
- RCNP conducts in cooperation w/ J-PARC:
 - collection of research ideas and collaborators
 - introduction of new methods/techniques
 - High-resolution, high-p Secondary Beam Line
 - Multi-particle Spectrometer
- Proposal E50: "Charmed Baryon Spectroscopy via the (π⁻,D*-) reaction", stage-1 approval in the 18th PAC (May, 2014)

http://www.j-parc.jp/researcher/Hadron/en/Proposal_e.html#1301

Baryon Spectroscopy with Heavy Flavors

Hadron Structure

What we can learn from baryons with heavy flavors

- Quark motion of "qq" is singled out by a heavy Q
 - Diquark correlation
- Level structure, Production rate, Decay properties
 - sensitive to the internal quark(diquark) WFs.
- Properties are expected to depend on a Q mass.

Schematic Level Structure of Heavy Baryons

- λ and p motions split (Isotope Shift)
- HQ spin multiplet $(\vec{s}_{HQ} \pm \vec{j}_{Brown Muck})$

CQM calculation (P-wave Lambda)

non-rel. QM: $H=H_0 + V_{conf} + V_{SS} + V_{LS} + V_T$ $\rho - \lambda$ mixing (cal. By T. Yoshida (Tokyo I. Tech.)

CQM calculation (P-wave Sigma)

non-rel. QM: $H=H_0 + V_{conf} + V_{SS} + V_{LS} + V_T$ $\rho - \lambda$ mixing (cal. By T. Yoshida)

Level structure (Exp.)

✓ Classification based on λ /ρ mode has yet to be established.
 ✓ Little of Y_c is known.

Lambda Baryons

non-rel. QM: $H=H_0+V_{conf}+V_{SS}+V_{LS}+V_T$ $\rho-\lambda$ mixing (cal. By T. Yoshida)

Production Rate

S.H. Kim, A. Hosaka, H.C. Kim, HN, K. Shirotori, PTEP, 103D01, 2014.

C.S. DOES NOT go down at higher L when $q_{eff} > 1 \ GeV/c$ λ modes are excited by a simple mechanism

Charmed Baryon Spectroscopy Using Missing Mass Techniques

Conducted by the E50 experiment at J-PARC

Decay Properties

ρ mode (qq) $\Gamma(\Sigma_c \pi) > \Gamma(pD)$

 λ mode [qq] $\Gamma(\Sigma_c \pi) \leq \Gamma(pD)$

Strange Hyperons

Double-Strange Baryon Spectroscopy Using Missing Mass Techniques

- S=-1 Hyperon by $p(\pi^-, K^*)$, $Y^* \rightarrow pK$, πY
- S=-2 Hyperon by $p(K^-, K^*)$, (K^-, K) , (π, KK^*) , $\Xi^* \rightarrow YK$, $\pi\Xi$ x1000~10000 better statistics than Y_c^*

High-res., High-momentum Beam Line

- High-intensity secondary Pion beam
 >1.0 x 10⁷ pions/sec @ 20GeV/c
- High-resolution beam: ∆p/p~0.1%

Intense K beams are available w/ a good KID counter.

* Sanford-Wang:15 kW Loss on Pt, Acceptance :1.5 msr%, 133.2 m

RICH R&D is in progress

Measured RING IMAGE by 8x8 MPPC Array

Level Structure of double-strange baryons • λ and ρ mode excitations interchange $\sigma_{\alpha}\sigma_{\alpha\alpha}$, so

Structure and Decay Partial Width

p mode (QQ) $\Gamma(\Xi \pi) \leq \Gamma(YK^{bar})$

λ mode [QQ]

 $\overline{\Gamma(\Xi\pi)} > \Gamma(YK^{bar})$

Measured Ξ (PDG)

	Threshold		JP	rati ng	Width [MeV]	→Ξπ [%]	→ΛK [%]	→ΣK [%]	
		王(2500)	??	1*	150?				
	Ω <i>K</i> (2166)	王(2370)	??	2*	80?				Ω K~9±4
		王(2250)	??	2*	47+-27?				
		三(2120)	??	$1^*_{\Sigma \overline{K}}$	25?				
	$\Sigma \overline{K}^*$ (1983)	三(2030)	>=5/2?	3*	20 ⁺¹⁵ _5	small	~20	~80	Why Σ K?
* <i>K</i> (1878)	$\Delta \overline{K}^{*}(1908)$	三(1950)	??	3*	60+-20	seen	seen		
	(2000)	三(1820)	3/2-	3*	24 ⁺¹⁵ ₋₁₀	small	Large	Small	
$E^*\pi(1665)$	$\Sigma \overline{K}$ (1685)	三(1690)	??	3*	<30	seen	seen	seen	
	$\Lambda \overline{K}$ (1610)	三(1620)	??	1*	20~40?				
		三(1530)	3/2+	4*	19	100			
	三元(1450)								

✓ Most of spins/parities have NOT been determined yet.
 ✓ Why the Ξ* -> πΞ decay seems to be suppressed?
 ✓ expected to reflect QQq configuration.

RCNP Activity

Summary

- RCNP will conduct a new platform for hadron physics at the High-p Beam Line of J-PARC.
 - Hadron beam and γ -beam
 - Strangeness and charm
- Strong collaborations of experiment and theory are important to attack problems on hadron physics
- RCNP can provide a lot of opportunities to study nuclear hadron physics in Japan.
 - APCTP are expected to play an important role to strengthen mutual collaborations.

backup

PLAN

We welcome your join!

E50 collaboration:

Jung-Kun Ahn¹, Shuhei Ajimura², Kazuya Aoki³, Johann Goetz⁴, Ryotaro Honda⁵, Takatsugu Ishikawa⁶, Yue Ma⁷, Koji Miwa⁸, Yoshiyuki Miyachi⁹, Yuhei Morino³, Takashi Nakano², Megumi Naruki¹⁰, Hiroyuki Noumi², Kyoichiro Ozawa³, Fuminori Sakuma⁷, Takahiro Sawada¹¹, Kotaro Shirotori², Yorihito Sugaya², Tomonori Takahashi², Kiyoshi Tanida¹², Wen-Chen Chang¹¹, and Takumi Yamaga²

¹ Physics Department, Korea University, Seoul 136-713, Korea

- ² Research Center for Nuclear Physics (RCNP), Osaka University, Osaka 567-0047, Japan
- ³ Institute of Particle and Nuclear Studies (IPNS), High Energy Accelerator Research

Organization (KEK), Ibaraki 305-0801, Japan

- ⁴ Institute of Nuclear and Particle Physics, Ohio University, OH 45701, USA
- ⁵ Department of Physics, Osaka University, Osaka 560-0043, Japan
- ⁶ Research Center for Electron Photon Science (ELPH), Tohoku University, Miyagi 982-0826, Japan
- ⁷ RIKEN Nishina Center, RIKEN, Saitama 351-0198, Japan
- ⁸ Physics Department, Tohoku University, Miyagi 980-8578, Japan
- ⁹ Physics Department, Yamagata University, Yamagata 990-8560, Japan
- ¹⁰ Department of Physics, Kyoto University, Kyoto 606-8502, Japan
- ¹¹ Institute of Physics, Academia Sinica, Taipei 11529, Taiwan
- ¹² Department of Physics, Seoul National University, Seoul 151-747, Korea

Production Cross Section

A. Hosaka et al.

- Experimental data:
 - $\sigma(p(\pi^{-},D^{*-})\Lambda_{c}) < 7 \text{ nb (68%CL)}$ (BNL exp., 1985)
 - BG spectrum is well reproduced by a MC simulation w/ JAM
- Regge Theory suggests 10⁻⁴ of the hyperon production

 $- \underline{\sigma(p(\pi^-, D^{*-})\Lambda_{\underline{c}})} \sim a \text{ few nb}$

Hint in $R(NK)/R(\pi\Sigma)$

PDG Data

- Decay ratios in known hyperons SUGGEST the λ/ρ mode states
- λ/ρ mode ID by productions correlate w/ Decay Ratios
 → to be established

- Hyperon data indicate mode dependence
 → Errors should be improved.
- No data in charmed baryons

$\Lambda_{\rm c}(2880)/\Lambda_{\rm c}(2940)$

- Are $\Lambda_c(2880)/\Lambda_c(2940)$ *LS* partners?
 - LS splitting; $\Delta E(J^{,J_v)^{(2L+1)/2}$
 - $\Delta E(5/2^+, 3/2^+)/\Delta E(3/2^-, 1/2^-)=5/3$

c.f. exp. 60 MeV/35 MeV~5/3 seems consistent?

- If they are λ mode excited states w/ $L_{(\lambda)} = 2...$
 - $\Lambda_{\rm c}$ (2880):5/2⁺, $\Lambda_{\rm c}$ (2940):3/2⁺, possibly

 \rightarrow [HQ(1/2⁺) + Brown Muck(2⁺)]; HQS doublet?

- $-\sigma(5/2^+;2880):\sigma(3/2^+;2940)=3:2 (\sigma(J^{\wedge}):\sigma(J_{\vee})=L+1:L)$ c.f. $\sigma(3/2^-;2625):\sigma(1/2^-;2595)=2:1$ for
- If NOT,
 - Prod. Rates give information on their structure...
 - new states corresponding to $L_{(\lambda)} = 2$ should be observed

Sigma Baryons

non-rel. QM: $H = H_0 + V_{conf} + V_{SS} + V_{LS} + V_T$ $\rho - \lambda$ mixing (cal. By T. Yoshida)

Production Rate

 t-channel D* EX at a forward angle Production Rates are determined by the overlap of WFs

$$R \sim \left\langle \varphi_f \left| \sqrt{2} \sigma_- \exp(i \vec{q}_{eff} \vec{r}) \right| \varphi_i \right\rangle$$

and depend on:

- 1. Spin/Isospin Config. of Y_c Spin/Isospin Factor
- 2. Momentum transfer (q_{eff})

 $I_L \sim (q_{eff}/A)^L \exp(-q_{eff}^2/2A^2)$

A: (baryon size parameter)⁻¹

Hyperon production via $p(\pi^-, K^{*0})X$ Simulation $w/4x10^{11}$ pions (3 days) **Λ(1690)(3/2-)** Σ(1750)(1/2- $X \rightarrow K^{-}p$ decay ullet $\sum_{i=1}^{140} \Lambda(1670)(1/2-1)$ Inclusive K⁻ tagged, Missing "p" gated A(1890)(3/2+ 60 3000 Counts/5 MeV Green: BG 2500 20 2000 1.6 1.7 1.8 1500 RG Missing Mass (Inclusive) [GeV/c²] 1000 500 Counts/3 MeV 16000 8.8 K⁻ p decay 1.6 1.8 14000 Missing Mass [GeV/c²] 12000 10000 $X \rightarrow \pi^+ \Sigma^-$ decay 8000 ullet6000 4000 π^+ tagged, Missing " Σ " gated 2000 1.6 1.8 1.7 Missing Mass (KN mode) [GeV/c²] 3000 Counts/5 MeV 2500 8000_F Counts/3 MeV 2000 $\pi^+ \Sigma^-$ decay 7000 R 1500 6000 1000 5000 4000 500 3000 8.8

2000

1000

1.6

1.7

1.8

1.9

Missing Mass (πY mode) [GeV/c²]

1.2 1.4 1.6 1.8

Missing Mass [GeV/c²]

2 2.2

Strange Baryons

I = 1 only

(b)(π^+ ,K^{*+}) w/ $\pi\Sigma$ decay

I = 0, 1

Contribution of $\Sigma(1385)$ can be subtracted to extract the $\Lambda(1405)$ amplitude.

Ξ Baryon Spectroscopy w/ the High-p Secondary Beam

Lol submitted by M. Naruki and K. Shirotori

• Sizable yields are expected for a month.

"Schematic" Level Structure of Heavy Baryons

- λ and ρ motions split (Isotope Shift)
- Spin-dependent Int.

"Schematic" Level Structure of Heavy Baryons

- λ and ρ motions split (Isotope Shift)
- Spin-dependent Int.

E Hyperons

qQQ Baryon spectroscopy

Threshold			JP	rati ng	Width [MeV]	→NK [%]	→Λπ [%]	→Σπ [%]	
		Σ(1940)	3/2-	4*	220	<20	seen	Seen	
		Σ(1915)	5/2+	3*	120	5-15	seen	Seen	
	A(1890)		3/2+	4*	95	20~35		3~10	
		Σ(1880)	1/2+	2*	220?				
		Σ(1840)	3/2+	1*	120?				
K*N(1830)	Λ(1830)		5/2-	4*	95	3~10		35~75	
	A(1820)		5/2+	4*	80	55~65		8~14	
	A(1810)		1/2+	3*	150	20~50		10~40	
	Λ(1800)		1/2-	3*	300	25~40		Seen	
		Σ(1775)	5/2-	4*	120	37~43	14-20	2-5	
$\Sigma n(1740)$		Σ(1750)	1/2-	3*	90	10~40	seen	<8	(Ση)15~55
		Σ(1690)	??	2*					
	Λ <mark>(1690)</mark>		3/2-	4*	60	20~30		20~40	
Λη(1670)		Σ(1670)	3/2-	4*	60	7~13	5~15	30-60	
KN(1432)	Λ(1670)		1/2-	4*	35	20~30		25~55	
Σπ(1330)		Σ(1620)	1/2-	1*					
		Σ(1580)	3/2-	1*					
<u>Σ</u> *π(1520)	Λ(1520)			4*	19	45+-1		42+-1	22

Populated states via $p(\pi^-, K^{*0})X$

Cal. w/t-channel K* ex. reaction at p_{π} = 5 GeV/c

λ mode states
 well populated

ρ mode states

excited through λ / ρ mixing (P_{mix}) $P_{mix}(strange)$ is given, $P_{mix}(charm)$ could be deduced.

 $\checkmark P_{mix}(strange) > P_{mix}(charm)$

S.H. Kim, A. Hosaka, H.C. Kim, HN, K. Shirotori, arXiv:submit/0978210, 14 May, 2014.

Production (π^{-}, K^{*0})

57

Hyperon production via $p(\pi^-, K^{*0})X$

- K⁻ p decay
 - K⁻ tagged, Missing "p" gated

• $\pi^+\Sigma^-$ decay

Peak fitting for $p(\pi^+, K^{*+})\Sigma^{*+}$

M and Γ of 3 $\Sigma^{*+\prime}$ s are fixed first.

Calculated production rates

Calculated production rates

	p _π =20 GeV/c	Mass (GeV/c)	"ud" isospin factor	Y _c * Spin factor	q _{eff} (GeV/c)	Rate (Relative)
=0	$\Lambda_{\rm c}^{\rm 1/2+}$	2286	1/2	1	1.33	1
	$\Sigma_{\rm c}{}^{\rm 1/2+}$	2455	1/6	1/9	1.43	0.03
	$\Sigma_{\rm c}^{3/2+}$	2520	1/6	8/9	1.44	0.17
=1	$\Lambda_{\rm c}^{\rm 1/2-}$	2595	1/2	1/3	1.37	0.93
	$\Lambda_{\rm c}^{\rm 3/2-}$	2625	1/2	2/3	1.38	1.75
	$\Sigma_{\rm c}^{\rm 1/2-}$	2750	1/6	1/27	1.49	0.02
	$\Sigma_{\rm c}^{\rm 3/2-}$	2820	1/6	2/27	1.50	0.04
	$\Sigma_{\rm c}{}^{\rm 1/2-'}$	2750	1/6	2/27	1.49	0.05
	$\Sigma_{\rm c}^{3/2-\prime}$	2820	1/6	56/135	1.50	0.21
	$\Sigma_{\rm c}^{5/2-'}$	2820	1/6	2/5	1.50	0.21
=2	$\Lambda_{\rm c}^{3/2+}$	2940	1/2	2/5	1.42	0.49
	$\Lambda_{\rm c}^{\rm 5/2+}$	2880	1/2	3/5	1.41	0.86

Beam Line

A New Platform for Hadron Physics at the High-momentum Beam Line

- High-intensity secondary Pion beam
- High-resolution beam:

High-res., High-momentum Beam Line

- High-intensity secondary Pion beam
- High-resolution beam: △p/p~0.1%

A New Platform for Hadron Physics at the High-momentum Beam Line

- High-intensity secondary Pion beam >1.0 x 10⁷ pions/sec @ 20GeV/c
- High-resolution beam: ∆p/p~0.1%

Beam correlation btw p vs x at DFP

Beam Envelope (2nd order Transport)

J-PARC 30-GeV p High Momentum Beam Line V2.0, for 2ndary beam Thu Jan 23 14:18:56 2014 Zmin= 0.00 m Zmax=150.00 m Xmax= 25.0 cm Ymax= 25.0 cm Ap * 1.00 [cm] SQSQS X2X2X H H 2 2 Vertical 2 5 2 6 D.F.P. 20 Exp. TGT R11=0.708 R16=1.170 10 0 100 m 150 m 50 m T122=0 10 T126=0.003 Horizontal [mɔ] T166=-0.043 20

hpbl-pi130416.dat

$\pi 20$ Beam Extraction

Beam Swinger

Detectors

Acceptance

- Method: Mainly Forward scattering due Lorentz boost ($\theta < 40^{\circ}$)
 - Horizontal direction
 - Internal tracker and Surrounding TOF wall
 - Vertical direction
 - Internal tracker and Pole PAD TOF detector
 - \Rightarrow ~70% acceptance for K* detection
- Decay measurement: Angle in CM
 ⇒ Both pole and azimuthal angles: cosθ > −0.5
- * Minor change of detector system needed

High rate BFT at K1.8

To be Enlarged for E50

K. Miwa et al., Tohoku U.

Beamline Fiber Tracker

- Can operate stably under a high intensity beam.
- Structure
 - \circledast 320 ch of 1mm ϕ fibers
 - Two staggered layers
 - MPPC readout
 - We designed the high density MPPC PCB.
- We have finished the design. Detector and MPPC PCB are being produced now.
- We will use 10 EASIROC test board to operate 320 MPPCs, because we want to install this detector as soon as possible.

