

FUSION MECHANISM OF MASSIVE NUCLEI

<u>A.K. Nasirov^{1,2}, G. Giardina^{3,4}, G. Mandaglio^{3,4}, Y. Kim⁵, K. Kim⁵, Y. Oh^{6,7}</u>

¹Joint Institute for Nuclear Research, Dubna, Russia;
²Institute of Nuclear Physics, Tashkent, Uzbekistan;
³Dipartimento di Fisica dell'Universitá di Messina, Messina, Italy;
⁴Istituto Nazionale di Fisica Nucleare, Sezione di Catania, Catania, Italy;
⁵Rare Isotope Science Project, Institute for Basic Science, Daejeon, Republic Korea
⁶Kyungpook National University, Daegu, Republic Korea
⁷Asia Pacific Center for Theoretical Physics, Pohang, Gyeongbuk, Republic Korea

9th APCTP-BLTP JINR Joint Workshop at Kazakhstan Modern Problems of Nuclear and Particle Physics June 27- July 4, Almaty

- Motivation of theoretical study of the fusion mechanism.
- Advance and of the cold and hot fusion reactions used in the synthesis of superheavy elements.
- Comparison of the 4 reactions leading to formation ²²⁰Th to study the role of the nuclear shell effects and impact parameter of collision in formation of the observed evaporation residues.
- Conclusions

Motivation of study

An unambiguous estimation of the fusion cross section is difficult task for the experimental and theoretical point view.

1) overlap of the characteristics of the reaction products formed in different channels causes ambiguity in reconstruction of the realistic mechanism of the given reaction channel;

2) Theoretical model to calculate the cross section of processes in heavy ion collisions can be developed on the base of the realistic concept about reaction ³mechanism.

Mendeleev periodic table of the elements (2015)

	·																																		
I/	۹.																																	VII	IA
Bagopag H	1 13,59844 0,0899 -259,34	2	2																					13	3	1	4	1	5	1	6	1	7	Гелий Не	2 34.56747 0.1765 -272.3
Hydrogen	-252.87	II.4	٩																					IIIA	٩	IV	A	V	Ά	VI	A	VI	IA	Helium	-
Dirtivið Li 6,941 Lithium	3 5.39172 534 180,54 1342	Gepunnuk Be 9,01218 Beryllium	4 9.32263 5648 1287 3471																					6op B 10,811 Boron	5 *3960 2000 2000 2000	Vimepog C 12,011 Carbon	6 1,200 0,46, 864	Asor N 14,0067 Nitrogen	7 12000 12000 1000 1000	Kikonopag O 15,9994 Oxygen	8 12010 12010 200,70 100,00	Фтор F 18,9984 Fluorine	9 17.42200 1.560 1.964 1.964 1.964 1.964	Неон Ne 20,1797 Neon	10 ******
натрий Na	11 50 11 11 10 10 10 10 10 10 10	Marwelt	12 34 ['] 7.860 sto	6.9	8	ß		10	5		3	7	7	8	3		9	10	0	1	1	1:	2		13 50' 5100 1700 1700	Kpennank Si	14 ******	eccepop P	15 15	Cepa S	16 ********	Xnop CI	17 12 85% 1013	Аргон Аг	18 1.700 1.007
Sodium	80	Agnesium	100	111	в	IVE	3	v	в	VI	в	VII	в	VII	IB	VI	IIB	VIII	в	IE	3	IIE	3	Aluminum	2519	Silicon	12m	90,97376 Phosphoru	s 2//	Sulfur		Chlorine	-34,54	Argon	-18.45
Kanui K 39,0983 Potassium	19 ************************************	Kamuasii Ca 40,078 Calcium	20 ********	Compet SC 44,8591 Boandium	21 ******	Timus 2 Ti 47,88 Titanum	22 333888	Banazari V 50,9415 Vanadium	23 32911	Xpose Cr 51,9961 Chromium	24	Mapravena Mn 54.93805 Mangamese	25	Haneso Fe 55,547 Iron	26	Kotlamur Co Sili, 93320 Cobalit	27	Ni Sectors Nichal	28	Maga Cu s3,548 Copper	29 32 88	Lines Zn State Zinc	30 21 21 21 21 21 21 21 21 21 21 21 21 21	Ga 69,723 Gallium	31 ************************************	Fepmanusk Ge 72,61 Germanium	32 *#* 5500 800,75 2000	Muuuuse As 74,92159 Arsenic	33 40' STP Cylin ets	Cenex Se 78,96 Selenium	34 ************************************	Бром Br 79,904 Bromine	35 ************************************	Kpwmon Kr 83,80 Krypton	36 ************************************
Pydiagaa Rb	37	стронций Sr	38 100	urrpaa Y	39 ****	uprovi 4 Zr	10 	Notes	41	Monatiger	42	Tennengelt TC	43	Pyread Ru	44	Rh	45	Parmagent	46	Capatipo Ag	47	Cd	48	ninini In	49 1.780.50	onoso Sn	50	сурьма Sb	51	Tennyp Te	52	Иаа	53	коенон Хе	54
85,4678 Rubidium	10	87,62 Strontium	1342	88,90585 Yitnum		91,224 Zirkonium	-	92,90638 Nicibium	-	95,94 Motybdenum		Technetum	a	101,07 Ruthenium		102,90550 Rhodium	-	106,42 Palladium		107,8682 Silver	70	112,411 Cadmium		114,818 Indium	30072	118,710 Tin	211.0	121,757 Antimony	1527	127,60 Tellurium	300	126,90447 lodine		131,29 Xenon	-10,5
Lieanik Cs	55 3.8000 1873 28.44	Барияй Ва	56 64' 5310 707	La	57 57 5375 538 50	Hf	72 National	Tarran Ta	73 Ş ⁰ 94	W	74 500	Re	75 500 100 100	Os	76 50%	inpresent Ir	11 S.I.	Pt	78 51 100	Senoro Au	79 50% 1000 1000	Hg	80 NATE USALS	Tarunwii i TI	81 ************************************	Causeli Pb	82 *******	^{Висмут} Ві	83	Po	84	Actar At	85	Pagon Rn	86 1074000
Cesium		Barium		Lanthanum		Hattourn		Tantatum		Tungsten		Rhesium		Osmium		Indum		Plateum				Mercury		Thallium	9473	Lead	04	Bismuth		Polonium		Astatine		Radon	40
Франций Fr [223]	87	Pagesik Ra 226,025	88 ***********************************	Activities and a	89 ***	Rf	104	Db (262)	105	Contragenetal Sg (2006)	106	Bh	107	Xaccell Hs (209)	108	Medmager Mt (266)	· <u>/</u> -	Ds [269]	a 110 ar	Rg	111	Cn (277)	11.	11	3	Flero	vium	1	15	Liverm	orium	1	17	11	18
Francium	100	Radium	1,88	Aconum		Rutherfordium		Dutestam		Seatorgian	2	Bohrium		Hassian		Metherium		Darmstadtiun		Roentgeniun		Copernolum				FI	114			Lv	116				

Лантаноиды Lanthanides

Ce var Pr v Nd var Pm v Nd var	Церий	58	Празеодим 59	Нестини 60	О Прометий 6	1 Самария	62 Европий	63 Гадогичный 64	Тербияй	65 Диспрозий 60	в гольный	57 Эрбий	68 1	Tymusia (69 Иттербий	70 Doreusk	71
140,115 077 440,9785 077 440,24 076 [143] 726 150,36 727 151,965 151 157,25 727 158,92534 126 152,50 161,500 157,26 100 156,95012 126 157,26 100 156,95012 126 157,26 100 156,95012 126 157,26 100 156,95012 126 157,26 100 156,95012 126 157,26 100 156,95012 126 157,26 100 156,95012 126 157,26 100 156,95012 126 157,26 100 156,95012 126 156,	Ce	ers	≍ Pr	Nd	Pm	.≝ Sm			## Tb	Dv	Ho	Er		Tm	ť Yb		
Cenum 3424 Praseosymum 3251 Medoymum 356 Promeinum 3005 Semanum 1796 Europum 1566 Cabounum 3264 erorum 3251 Mysprosum 2561 Homum 366 Erorum	140,115	67	140,90765	6773 144,24	2008 [145]	1042 150,36	7520 151,965	157,25	158,92534	8230 1309 162,50	8501 1411 164,93032	8705 167,26	9008 1529	68,93421	173,04	8365 174,967 824	9641 1663
	Cenum	34	De Praseodymum	3510 Neodymum	2006 Promethium	2000 Samanum	1790 Europium	1596 Gadolinium	3264 Ferbium	3221 Dysprosium	2561 Homum	2004 Erbium	2662	hullum	1946 YDerbeum	1154 Lutebum	3363

Актиноиды Actinides

Тория	90	Протактичны 91	Ур	an 1	92	Нептуний	93	Плутоння	4	Америций \$	95	Корий	96	Берклий	97	Калифорний 98	Distanteinen 99	00	pmmi 100	Mesonena 101	Нобелий 102	Лоуренскі 103	3
Th		Ma Pa	31 U	J	5754	Np	5764 8.2847	Pu		Am	1.80	Cm	-	Bk		Cf	a Es	a F	m	.s Md	NO a	Lr	-
232,0381 Thorium		11700 231,03588 1750 Protactinium	15370 236 1572 Ura	8,0289 anium	10050	[237] Neptunium	20250	[244] Plutonium	10040	[243] Americium	13670	[247] Curium	136	10 [247] Berkelum	105	[251] Californium	soo [252] Einsteinium	800 [25	7]	1527 [258] Mendelevium	127 [259] s	[262] Lawrencium	1627
and the second																							

1. – симпол 1.01999 – алонной комер 1.01999 – алонной комер 1.019994 – Писсонский боловации, зВ 2.02994 – постоеть зби 29936 – температура глангения "С 25219 – температура клангения "С

ээлементы р-элементы 🔲 d-алементы f-алементы

The second of the second s

Synthesis of superheavy elements in the cold and hot fusion reactions.

Reaction channels in heavy ion collisions at low energies

Map of superheavy elements region

From paper Yuri Oganessian, Pure Appl. Chem., Vol. 78, No. 5, pp. 889–904, 2006

Transition of the advantage from the "cold" fusion reaction to the hot fusion reactions.

Cold fusion	Z _{CN}	Ν	B _f (MeV)	σ _{ER} (pb)	Hot fusion	Ν	B _f (MeV)	σ _{ER} (pb)
⁵⁴ Cr + ²⁰⁸ Pb [1]	106	156	6.05	500±140	²² Ne+ ²⁴⁸ Cm [3]	160	5.37	≈80
⁵⁸ Fe+ ²⁰⁸ Pb [1]	108	156	5.47	60±14	²⁶ Mg+ ²⁴⁸ Cm [4]	161	6.15	7^{+3}_{-3}
-	108		-	-	⁴⁸ Ca+ ²²⁶ Ra [5]	162	6.42	16^{+13}_{-7}
⁶⁴ Ni+ ²⁰⁸ Pb [1]	110	162	5.83	13±5	³⁴ S+ ²⁴⁴ Pu [6]	163	5.52	≈0.4
⁶⁴ Ni+ ²⁰⁹ Bi [1]	111	162	5.52	$3.5^{+4.6}_{-3.5}$	-		-	-
⁷⁰ Zn+ ²⁰⁸ Pb [1]	112	165	4.29	$0.5^{+1.1}_{-0.4}$	⁴⁸ Ca+ ²³⁸ U [7]	171	4.01	$2.5^{+1.8}_{-1.1}$
⁷⁰ Zn+ ²⁰⁹ Bi [2]	113	165	4.53	$0.022\substack{+0.020\\-0.013}$	⁴⁸ Ca+ ²³⁷ Np [8]	169	3.93	1.0
	114		-	-	⁴⁸ Ca+ ²⁴⁴ Pu [7]	174	5.53	$4.5^{+3.6}_{-1.9}$
-	115				⁴⁸ Ca+ ²⁴³ Am [9]	173	5.40	$8.5^{+6.4}_{-3.7}$
	116				⁴⁸ Ca+ ²⁴⁸ Cm [7]	176	6.22	$3.3^{+2.5}_{-1.4}$
	117				⁴⁸ Ca+ ²⁴⁹ Bk [10]	176	6.11	$3.6^{+6.1}_{-2.5}$
	118				⁴⁸ Ca+ ²⁴⁹ Cf [10]	176	5.99	$0.5^{+1.6}_{-0.3}$

 S. Hofmann, Rev. of Mod. Phys. 2000. V.72. P.733.
 K. Morita et al., J. Phys. Soc. of Jap, 81, (2012) 103201.

Yu. A. Lazarev, Phys. Rev. Lett. 1994. V.73. P. 624.
 J. Dvorak Phys. Rev. Lett. 2008. V.100. P.132503.
 Yu. Ts. Oganessian Phys. Rev. C. 2013. V.87.
 P.034605.

6. Yu. A. Lazarev Phys. Rev. .C. 1996. V.54. P.620.

7. Yu. Ts. Oganessian PRC 70, 2004. P.064609.

8. Yu. Ts. Oganessian, PRC 76. 2007, P.011601.

9. Yu. Ts. Oganessian PRC 69, 2004, P.021601(R), PRC 87, 2013, P.014302.

10. Yu. Ts. Oganessian PRL 109, 2012, P.162501.

Two main concepts forcomplete fusion of massive nuclei

Role of fission barrier in synthesis of the superheavy elements

Fission barriers calculated by macroscopic-microscopic model: M. Kowal, P. Jachimowicz, and A. Sobiczewski, Phys. Rev. C 82, 014303 (2010)

$$B_{\rm fis}(J,T) = c B_{\rm fis}^{LD}(J) - h(T)q(J)\delta W,$$

FIG. 6. (Color online) Contour map of calculated fission barrier heights B_f for even-even superheavy nuclei.

 $h(T) = \frac{1}{1 + \exp[(T - T_0)/d]}$ $T_0 = 1.16 \text{ MeV}, \ d = 0.3 \text{ MeV}$ $q(J) = \frac{1}{1 + \exp[(J - J_{1/2})/\Delta J]}$

I. Deep inelastic collisions:

- 1) Partial momentum transfer;
- 2) There is not equilibrium of energy distribution and mass distribution;
- 3) Anisotropic angular distribution

Formation of the dinuclear system (Capture reactions)

- II. Quasifission:
- 1) Full momentum transfer;
- 2) Equilibrium of energy distribution and mass distribution;
- 3) Anisotropic and isotropic angular distributions.

III. Compound nucleus formation:

- 1) Full momentum transfer;
- 2) Equilibrium of energy distribution and mass distribution;
- 3) Isotropic angular distributions.

Mechanisms of the reaction following after capture (capture means formation of dinuclear system): Fusion-fission, quasifission and fast-fission.

The methods of calculation of the capture and Fusion cross section in the dinuclear system approach.

Main assumptions:

- 1) the shell effects does not allow to fuse nuclei immediately;
- The hindrance to fusion is determined by the intrinsic fusion barrier B^{*}_{fus} which is determined from the landscape of the potential energy surface of dinuclear system;
 the interacting nuclei can be deformed and nucleon exchange between them takes place allowing dinuclear system to be transformed into compound nucleus or to populate shapes corresponding minimal values of the potential energy surface;
- 4) The lifetime of dinuclear system is determined by it_{DNS}^{15} excitation energy E_{DNS}^{*} and quasifission barrier B_{qf} .

16

$$\sigma_{ER} = \sum_{l=0}^{a} (2l+1)\sigma_l^{fus}(E,l)W_{surv}(E,l)$$

$$\sigma_l^{fus}(E,l) = \sigma_l^{capture}(E,l)P_{CN}(E,l)$$

 $P_{CN}(E, l)$ is fusion probability which calculated by diffusion-dissipative method, Y. Aritomo, Phys.Rev.C65, 014607 (2001) or G.G. Adamian, N.V. Antonenko, and W. Scheid, Eur. Phys. J. A 41, 235 (2009);. A. K. Nasirov, G. Giardina, S.Hofmann, et al. Phys. Rev. C **79**, 024606 (2009).

 $\sigma_l^{capture}$ is capture probability, which calculated in different theoretical models by different way.

Comparison of the capture cross sections of the reactions leading to ²²⁰Th

$$\mu(R)\ddot{R} + \gamma_R(R)\dot{R}(t) = -\frac{\partial V(R)}{\partial R} - \dot{R}^2 \frac{\partial \mu(R)}{\partial R}$$

Comparison of the potential wells of the nucleus-nucleus interaction for reactions leading to formation of ²²⁰Th.

Equations of motion used to find the capture of projectile by target-nucleus

$$\mu(R)\ddot{R} + \gamma_R(R)\dot{R}(t) = -\frac{\partial V(R)}{\partial R} - \dot{R}^2 \frac{\partial \mu(R)}{\partial R}$$

$$\begin{split} \mu(R) &= \delta \mu(R) + m_0 A_{\rm T} A_{\rm P} / A_{\rm tot} \\ \times \left(1 - \frac{2}{A_{\rm tot}} \int \frac{\rho_1^{(0)}(\mathbf{r} - \mathbf{r_1}) \rho_2^{(0)}(\mathbf{r} - \mathbf{r_2})}{\rho_1^{(0)}(\mathbf{r} - \mathbf{r_1}) + \rho_2^{(0)}(\mathbf{r} - \mathbf{r_2})} \mathrm{d}^3 \mathbf{r} \right) \,, \\ \frac{dL}{dt} &= \gamma_{\theta}(R) R(t) \left[\dot{\theta} R(t) - \dot{\theta}_1 R_{\mathrm{leff}} - \dot{\theta}_2 R_{\mathrm{2eff}} \right] \end{split}$$

$$L_0 = J_R \dot{\theta} + J_1 \dot{\theta}_1 + J_2 \dot{\theta}_2$$

$$E_{rot} = \frac{J_R \theta^2}{2} + \frac{J_1 \theta_1^2}{2} + \frac{J_2 \theta_2^2}{2}$$

Hamiltonian for calculation of the transport coefficients of collective motion

$$H = H_{coll}(Z_1, A_1, Z_2, A_2, R, \alpha_1, \alpha_2, \beta_1, \beta_2)$$
$$+ H_{micr}\left(\left\{\varepsilon_{i_1}, n_{i_1}\right\}, \left\{\varepsilon_{i_2}, n_{i_2}\right\}\right) + \delta V \qquad (1)$$

where

 $\begin{aligned} H_{coll} &= \frac{P^{2}}{2\mu} + U(Z_{1}, A_{1}, Z_{2}, A_{2}, R, \alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2}) \text{ - for the relative motion of nuclei; (2)} \\ H_{micr} &= \sum_{i_{p}} \varepsilon_{i_{p}} \hat{a}_{i_{p}}^{+} \hat{a}_{i_{p}} + \sum_{i_{T}} \varepsilon_{i_{T}} \hat{a}_{i_{T}}^{+} \hat{a}_{i_{T}}^{-} - for nucleons of nuclei; (3) \\ \delta V &= \sum_{i_{p}, j_{T}} g_{i_{p}j_{T}}(R)(\hat{a}_{i_{p}}^{+} \hat{a}_{i_{T}}^{-} + \hat{a}_{i_{T}}^{+} \hat{a}_{i_{p}}^{-}) + \sum_{i_{p}, j_{T}} \kappa_{i_{p}j_{T}}(R)(\hat{a}_{i_{p}}^{+} \hat{a}_{i_{T}}^{-} + \hat{a}_{i_{T}}^{+} \hat{a}_{i_{p}}^{-}) + \sum_{i_{p}, j_{T}} \kappa_{i_{p}j_{T}}(R)(\hat{a}_{i_{p}}^{+} \hat{a}_{i_{T}}^{-} + \hat{a}_{i_{T}}^{+} \hat{a}_{i_{p}}^{-}) \\ &+ \sum_{i_{p}, j_{P}} \Lambda_{i_{p}j_{P}}^{(T)}(R)\hat{a}_{i_{p}}^{+} \hat{a}_{i_{p}}^{-} + \sum_{i_{p}, j_{P}} \Lambda_{i_{T}i_{T}}^{(P)}(R)\hat{a}_{i_{T}}^{+} \hat{a}_{i_{T}}^{-} - nucleon exchange between nuclei and particle - hole excitations in nuclei; (4) \\ g_{i_{p}j_{T}}, \kappa_{i_{p}j_{T}} \text{ and } \Lambda^{(P)}_{i_{T}j_{T}} - matrix elements of nucleon exchange between nuclei and particle - hole excitations in them caused by meanfield of partner nucleus. \end{aligned}$

G.G. Adamian, et al. Phys. Rev. C**56** No.2, (1997) p.373-380 A.K. Nasirov, Thesis of the Doctor of Science, 2004, INP, Tashkent

Nucleus-nucleus interaction potential

$$V_{C}(R,\alpha_{1},\alpha_{2}) = \frac{Z_{1}Z_{2}}{R}e^{2}$$

$$+ \frac{Z_{1}Z_{2}}{R^{3}}e^{2}\left\{\left(\frac{9}{20\pi}\right)^{1/2}\sum_{i=1}^{2}R_{0i}^{2}\beta_{2}^{(i)}P_{2}(\cos\alpha_{i}) + \frac{3}{7\pi}\sum_{i=1}^{2}R_{0i}^{2}\left[\beta_{2}^{(i)}P_{2}(\cos\alpha_{i})\right]^{2}\right\}$$

$$V_{nucl}(R,\alpha_{1},\alpha_{2}) = \int \rho_{1}^{(0)}(\vec{r}-\vec{R})f_{eff}\left[\rho_{1}^{(0)}+\rho_{2}^{(0)}\right]\rho_{2}^{(0)}(\vec{r})d^{3}\vec{r}$$

$$\rho_{i}^{(0)}(\vec{r},\vec{R}_{i},\alpha_{i},\theta_{i},\beta_{2}^{(i)}) = \left\{1+\exp\left[\frac{\left|\vec{r}-\vec{R}_{i}(t)\right|-R_{oi}(1+\beta_{2}^{(i)}Y_{20}(\theta_{i},\alpha_{i}))}{a}\right]\right\}^{-1}$$

21
$$V_{rot} = \hbar^2 \frac{l(l+1)}{2\mu[R(\alpha_1, \alpha_2)]^2 + J_1 + J_2]}$$

Density dependent effective nucleon-nucleon forces

$$f_{eff}(r) = C_0 \left(f + f' \vec{\tau}_1 \vec{\tau}_2 + (g + g' \vec{\tau}_1 \vec{\tau}_2) \vec{\sigma}_1 \vec{\sigma}_2 \right)$$

$$f(r) = f^{ex} + (f^{in} - f^{ex}) \frac{\rho(r)}{\rho(0)}$$

Constants	s Versions							
	I	11						
1	2							
fin	-0,09	+0,09						
fex	-2,23	2,59						
fin	0,89	0,42						
f'ex	0,06	0,54						
g	0,7	0,7						
g'	0,83	0,83						

The values of the constants of the effective nucleon-nucleon forces from the textbook A.B. Migdal, "*Theory of the Finite Fermi-Systems and properties of Atomic Nuclei*", Moscow, Nauka, 1983. The constants of version II were used in our calculations.

Expressions for the friction coefficients

$$\gamma_R(R(t)) = \sum_{i,i'} \left| \frac{\partial V_{ii'}(R(t))}{\partial R} \right|^2 B_{ii'}^{(1)}(t), \qquad (B.1)$$
$$\gamma_\theta(R(t)) = \frac{1}{R^2} \sum_{i,i'} \left| \frac{\partial V_{ii'}(R(t))}{\partial \theta} \right|^2 B_{ii'}^{(1)}(t), \qquad (B.2)$$

and the dynamic contribution to the nucleus-nucleus potential

$$\delta V(R(t)) = \sum_{i \neq i'} \left| \frac{\partial V_{ii'}(R(t))}{\partial R} \right|^2 B_{ii'}^{(0)}(t), \quad (B.3)$$

$$B_{ik}^{(n)}(t) = \frac{2}{\hbar} \int_0^t dt'(t-t')^n \exp\left(\frac{t'-t}{\tau_{ik}}\right)$$

$$\times \sin\left[\omega_{ik}\left(\mathbf{R}(t')\right)(t-t')\right] \left[\tilde{n}_k(t') - \tilde{n}_i(t')\right], \quad (B.4)$$

$$\hbar \omega_{ik} = \epsilon_i + \Lambda_{ii} - \epsilon_k - \Lambda_{kk}. \quad (B.5)$$

Calculation of the competition between complete fusion and quasifission: $P_{cn}(E_{DNS},L)$

$$P_{CN}(E_{DNS}^{*},\ell) = \sum_{Z_{sym}}^{Z_{max}} Y_{Z}(E_{DNS}^{*},\ell) P_{CN}^{(Z)}(E_{DNS}^{*},\ell)$$

where

$$P_{CN}^{(Z)}(E_{DNS}^{*},\ell) = \frac{\rho(E_{DNS}^{*}(Z) - B_{fus}^{*}(Z),\ell)}{\rho(E_{DNS}^{*}(Z) - B_{fus}^{*}(Z),\ell) + \rho(E_{DNS}^{*}(Z) - B_{qf}^{*}(Z),\ell) + \rho(E_{DNS}^{*}(Z) - B_{sym}^{*}(Z),\ell)}$$

$$\frac{\partial}{\partial t} Y_Z(E_Z^*, \ell, t) = \Delta_{Z+1}^{(-)} Y_{Z+1}(E_Z^*, \ell, t) + \Delta_{Z-1}^{(+)} Y_{Z-1}(E_Z^*, \ell, t)$$
$$- (\Delta_Z^{(-)} + \Delta_Z^{(+)} + \Lambda_Z^{qf}) Y_Z(E_Z^*, \ell, t)$$
for Z = 2, 3,..., Z_{tot} - 2

Nasirov A.K. et al. Nuclear Physics A 759 (2005) 342–369 Fazio G. et al, Modern Phys. Lett. A 20 (2005) p.391

24

Comparison of the complete fusion cross sections of the 4 reactions

 $\sigma_l^{fus}(E,l) = \sigma_l^{capture}(E,l) P_{CN}(E,l)$

K.Kim et al, Phys. Rev. C 91, 064608 (2015)

80

Comparison of the complete fusion cross sections of the 4 reactions

 $\sigma_l^{fus}(E,l) = \sigma_l^{capture}(E,l)P_{CN}(E,l)$

Potential energy surface

 $U(Z_{1}, A_{1}, Z_{2}, A_{2}, R, Qgg) = B_{1}(Z_{1}, A_{1}) + B_{2}(Z_{2}, A_{2}) - B_{CN} + V_{int}(Z_{1}, A_{1}, Z_{2}, A_{2}, R)$

K.Kim et al, Phys. Rev. C 91, 064608 (2015)

Driving potential

 $U_{dr}(Z_1, A_1, Z_2, A_2, Rm, Qgg) = B_1(Z_1, A_1) + B_2(Z_2, A_2) - B_{CN} + V_{int}(Z_1, A_1, Z_2, A_2, Rm)$

Dependence of the driving potential on the angular momentum

Dependence of the quasifission barrier on the angular momentum

Partial fusion cross section of the ⁴⁰Ar+¹⁸⁰Hf and ⁸²Se+¹³⁸Ba reactions

K.Kim et al, Phys. Rev. C 91, 064608 (2015)

Probability of fusion as a function of the energy and angular momentum.

$$P_{\rm CN}(E_{\rm CN},l) = \frac{\sigma_{\rm fus}(E_{\rm CN},l)}{\sigma_{\rm cap}(E_{\rm CN},l)}$$

The partial fusion probability decreases by the increase of angular momentum ℓ but total cross section is proportional to ℓ .

$$\sigma_{ER} = \sum_{l=0}^{l_d} (2l+1)\sigma_l^{fus}(E,l)W_{surv}(E,l)$$

30

Probability of surviving the heated and rotating compound nucleus against fission as a function of the energy and angular momentum.

Comparison of the evaporation residue cross sections calculated for the 4 reactions leading to ²²⁰Th.

The survived part of the compound nucleus against to fission.

Total cross section of the evaporation residues formation.

Kim et al. Phys.Rev.C91, 064608 (2015)

Comparison of the cross sections of the different neutron emission channels with the corresponding experimental data.

EFFECTS OF ENTRANCE CHANNELS ON THE ...

PHYSICAL REVIEW C 91, 064608 (2015)

Comparison of the cross sections of the different neutron emission channels with the corresponding experimental data.

Conclusions

The experiments of synthesis of superheavy elements were successful cold and hot fusion reactions due to using favorable conditions for the entrance channel and properties of the being formed compound nucleus. The strong hindrance to complete fusion increases in mass symmetric reactions. This hindrance is increase of the intrinsic fusion barrier which is determined by the landscape of the potential energy surface.

The hindrance to complete fusion is not so strong in hot fusion reactions because the mass asymmetry of those reactions is small. Initial system is already close to be fused. But large excitation energy can decrease of the survival probability of the compound nucleus against fission.

Therefore, it is important to analyze the fusion probability of colliding nuclei and the survival probability of the compound nucleus in order to choice reaction partners and beam energy.

Thank you for attention !

Thank you for warm hospítalíty !

About description of the events of the synthesis of superheavy elements

The measured evaporation cross section can be described by the formula:

$$\sigma_{ER}(E^*) = \sum_{\ell=0}^{\ell=\ell_f} \sigma_{cap}(E_{c.m.},\ell) P_{CN}(E^*,\ell) W_{surv}(E^*,\ell)$$

where

$$\sigma_{\rm fus}(E_{\rm c.m.},\ell) = \sigma_{\rm cap}(E_{\rm c.m.},\ell) P_{\rm CN}(E^*,\ell)$$

is considered as the cross section of compound nucleus formation; W_{surv} is the survival probability of the heated and rotating nucleus. The smallness of P_{CN} means hindrance to fusion caused by huge contribution of quasifission process:

$$\sigma_{\rm qfis}(E_{\rm c.m.},\ell) = \sigma_{\rm cap}(E_{\rm c.m.},\ell) (1 - P_{\rm CN}(E^*,\ell))$$

Collective enhancement of level density of DNS

$$K_{rot}(E_{DNS}) = \begin{cases} (\sigma_{\perp}^2 - 1)f(E_{DNS}) + 1, & \text{if } \sigma_{\perp} > 1, \\ 1, & \text{if } \sigma_{\perp} \le 1, \end{cases}$$

where $\sigma_{\perp} = J_{(DNS)}T/\hbar^2$; $f(E) = (1 + \exp[(E - E_{cr})/d_{cr}])$; $E_{cr} = 120\tilde{\beta}_2^2 A^{1/3} \text{ MeV}$; $d_{cr} = 1400\tilde{\beta}_2^2 A^{2/3}$. $\tilde{\beta}$ is the effective quadrupole deformation for the dinuclear system. We find it from the calculated $\mathcal{J}_{\perp}^{(DNS)}$.

Dependence of the fission barrier on the excitation energy and angular momentum of compound nucleus.

$$B_{\rm fis}(J,T) = c \ B^m_{\rm fis}(J) - h(T) \ q(J) \ \delta W,$$

with

$$h(T) = \begin{cases} 1, & T \le 1.65 \text{ MeV} \\ k \exp(-mT), & T > 1.65 \text{ MeV}, \end{cases}$$

and

$$q(J) = \{1 + \exp[(J - J_{1/2})/\Delta J]\}^{-1},$$

where $B_{\rm fis}^{\rm m}(J)$ is the parameterized macroscopic fission barrier [15] depending on angular momentum J, $\delta W = \delta W_{\rm sad} - \delta W_{\rm gs} \simeq -\delta W_{\rm gs}$ is the microscopic (shell) correction to the fission barrier taken from the tables [8] and the constants for the macroscopic fission barrier scaling, temperature and angular momentum dependencies of the microscopic correction are chosen to be as follows: c = 1.0, k = 5.809, m = 1.066 MeV⁻¹, $\Delta J = 3\hbar$; for nuclei with Z > 102 we use $J_{1/2} = 20\hbar$. This procedure let the shell corrections become dynamical quantities, too.

G.Giardina, et al. Eur. Phys. J. A 8, 205–216 (2000)

ependence of the driving otential and quasifission arrier on the angular nomentum of dinuclear system ormed in reactions leading to ormation of compound nucleus ¹⁶Th.

es by increasing the

n.