Chang-Hwan Lee & Ismail Zahed PRC 90, 025204 (2014)

Electromagnetic Radiation in Hot QCD Matter

rates, electric conductivity, flavor susceptibility, and diffusion

contents

- Experiments : current motivation
- EM radiation from hadronic gas
 - rates
 - mixing of vector and axial correlators
 - electric conductivity
- EM radiation from sQGP
 - rates
 - electric conductivity
- Future work

theory vs experiment

hadronic gas & sQGP perturbative approach

quark number susceptibility electric conductivity flavor diffusion constant

photon & dilepton rates azimuthal anisotropy

lattice simulation

experiments

why photons & dileptons?

- no strong interaction
- can provide us direct information on dense medium

CERES/NA45 (Pb+Au, 8.8 & 17.3 GeV)

R.Rapp, arXiv: 1306.6394

key question : low-mass dilepton enhancement

STAR (Au+Au, 200 GeV)

arXiv:1305.5447

dilepton enhancement

STAR Au+Au 200 GeV

STAR (BES)

STAR (BES)

STAR (Au+Au, 200 GeV)

motivation

right time to revisit dilepton & photon

in this work

- investigated on the basic properties of EM radiation from pionic gas & sQGP
- hydro evolution is not included, yet
- comparison with experiments is on-going

rate, hydro evolution, detector acceptance

Contents

- Experiments : current motivation
- EM radiation from hadronic gas
 - rates
 - mixing of vector and axial correlators
 - electric conductivity
 - EM radiation from sQGP
 - rates
 - electric conductivity
 - Future work

dilepton rates from correlation functions

direct/virtual photon rates

pionic gas : current work

$$\mathbf{W}^{F}(q) = \mathbf{W}_{0}^{F}(q) + \frac{1}{f_{\pi}^{2}} \int d\pi \mathbf{W}_{\pi}^{F}(q,k) + \frac{1}{2!} \frac{1}{f_{\pi}^{4}} \int d\pi_{1} d\pi_{2} \mathbf{W}_{\pi\pi}^{F}(q,k_{1},k_{2}) + \cdots$$

$$\bigwedge \int d\pi = \int \frac{d^{3}k}{(2\pi)^{3}} \frac{n(E-\mu_{\pi})}{2E}$$

$$\begin{aligned} \mathbf{W}_{0}^{F}(q) &= i \int d^{4}x e^{iq \cdot x} \langle 0|T^{*} \mathbf{J}^{\mu}(x) \mathbf{J}_{\mu}(0)|0 \rangle \\ \mathbf{W}_{\pi}^{F}(q,k) &= i f_{\pi}^{2} \int d^{4}x e^{iq \cdot x} \langle \pi^{a}(k)|T^{*} \mathbf{J}^{\mu}(x) \mathbf{J}_{\mu}(0)|\pi^{a}(k) \rangle \\ \mathbf{W}_{\pi\pi}^{F}(q,k_{1},k_{2}) &= i f_{\pi}^{4} \int d^{4}x e^{iq \cdot x} \langle \pi^{a}(k_{1})\pi^{b}(k_{2})|T^{*} \mathbf{J}^{\mu}(x) \mathbf{J}_{\mu}(0)|\pi^{a}(k_{1})\pi^{b}(k_{2}) \rangle \end{aligned}$$

vector & axial correlators & spectral functions

$$\mathbf{J}_{\mu} = \bar{q}\gamma_{\mu}Q^{\mathrm{em}}q = \mathbf{V}_{\mu}^{3} + \frac{1}{\sqrt{3}}\mathbf{V}_{\mu}^{8}$$

$$\mathbf{Lee, Yamagishi, Zahed, PLB (1996) : SU(2)$$

$$\mathbf{Lee, Yamagishi, Zahed, PRC (1998) : SU(3)$$

$$\mathrm{Im}\left(i\int_{y}e^{-iq\cdot y}\langle 0|T^{*}(\mathbf{V}_{\mu}^{c}(y)\mathbf{V}_{\nu}^{d}(0)|0\rangle\right) = \left(-q^{2}g_{\mu\nu} + q_{\nu}q_{\nu}\right)\mathrm{Im}\mathbf{\Pi}_{V}^{cd}(q^{2})$$

$$\mathrm{Im}\left(i\int_{y}e^{-iq\cdot y}\langle 0|T^{*}(\mathbf{j}_{A,\mu}^{c}(y)\mathbf{j}_{A,\nu}^{d}(0)|0\rangle\right) = \left(-q^{2}g_{\mu\nu} + q_{\nu}q_{\nu}\right)\mathrm{Im}\mathbf{\Pi}_{A}^{cd}(q^{2})$$

		$I^G(J^{PC})$	Mass (m_i)	Decay width (G_i)	Decay constant (f_i)	
Π_V^I	$\rho(770)$	$1^+(1^{})$	768.5	150.7	130.67	
	$\rho(1450)$		1465	310	106.69	
	$\rho(1700)$		1700	235	75.44	
Π_V^Y	$\omega(782)$	$0^{-}(1^{})$	781.94	8.43	46	
	$\omega(1420)$		1419	174	46	
	$\omega(1600)$		1649	220	46	
	$\phi(1020)$	$0^{-}(1^{})$	1020	4.43	79	
	$\phi(1680)$		1680	150	79	
Π^{I}_{A}	$a_1(1260)$	$1^{-}(1^{++})$	1230	400	190 (f_{ρ})	Π^{I}
$\Pi_A^{\widetilde{U}V}$	$K_1(1270)$	$\frac{1}{2}(1^+)$	1273	90	90	11 V
	$K_1(1400)$		1402	174	90	Π_{V}^{Y}

spectral functions

Steele, Yamagishi, Zahed, PLB (1996) : SU(2) Lee, Yamagishi, Zahed, PRC (1998) : SU(3)

mixing between vector & axial (full up to one pion)

mixing between vector & axial \rightarrow partial chiral symmetry restoration

dilepton rates (full up to two pion)

Low-mass enhancement due to mixing between vector & axial

electric conductivity (full up to two pion)

$$\rho_V(M, \vec{q}) = -\frac{2}{\tilde{\mathbf{e}}^2} \operatorname{Im} \mathbf{W}^R(M, \vec{q})$$

$$\tilde{\mathbf{e}}^2 \equiv \sum_f \tilde{e}_f^2$$
$$\rho_V = -\rho_{00} + \rho_{ii}$$
$$\rho_{ii}(M, \vec{0}) = \rho_V(M, \vec{0})$$

$$\sigma_E = \lim_{M \to 0} \frac{\tilde{\mathbf{e}}^2 \rho_{ii}(M, \vec{0})}{6M} = \lim_{M \to 0} \frac{-\mathrm{Im} \mathbf{W}^R(M, \vec{0})}{3M} = \lim_{M \to 0} \frac{-\mathrm{Im} \mathbf{W}^F(M, \vec{0})}{6T}$$

comparable to unitarized ChPT [arXiv:1205.0782]

Contents

- Experiments : current motivation
- EM radiation from hadronic gas
 - rates
 - mixing of vector and axial correlators
 - electrictivity conductivity
- EM radiation from sQGP
 - rates
 - electric conductivity
 - Future work

$$\operatorname{Im} \mathbf{W}_{4}^{R}(q) = \frac{N_{c}\tilde{\mathbf{e}}^{2}}{4\pi} \left[-\frac{1}{6} \left\langle \frac{\alpha_{s}}{\pi} E^{2} \right\rangle + \frac{1}{3} \left\langle \frac{\alpha_{s}}{\pi} B^{2} \right\rangle \right] \left(\frac{4\pi^{2}}{T|\vec{q}|} \right) \left(n_{+}(1-n_{+}) - n_{-}(1-n_{-}) \right)$$

 $\langle \frac{\alpha_s}{\pi} A_4^2 \rangle / T^2 \approx 0.4 \rightarrow$ ruled out by Kaczmarek et al., arXiv:1301.7436

 $\langle \alpha_s B^2 \rangle \approx \langle \alpha_s E^2 \rangle \approx \frac{1}{2} \times \frac{1}{4} \langle \alpha_s G^2 \rangle_0$ $\langle \alpha_s G^2 \rangle_0 = 0.068 \text{ GeV}^4$ [Narison, PLB (2009)]

sQGP (T-dep E&B; fixed by E-conductivity)

$$\langle \alpha_s E^2 \rangle \approx \langle \alpha_s B^2 \rangle \approx \frac{288}{N_c} \left\langle \frac{\sigma_E}{\tilde{\mathbf{e}}^2 T} \right\rangle T^4 \approx 48 T^4$$

 $\langle \sigma_E / \tilde{\mathbf{e}}^2 T \rangle \sim 0.5$ arXiv:1312.5609

what we have confirmed

- partial restoration of chiral symmetry through the mixing between vector & axial correlators
 → low-mass dilepton enhancements
- our systematic expansion of resonance gas allows us to obtain the electric conductivity,
- gluon condensates in sQGP constrained by lattice results allow us to describe the transition from sQGP to resonance gas

on-going/future works

$$\frac{d^4N}{MdMq_Tdq_Tdyd\phi}(M,q_T,y,\phi) = \mathbf{DetAcc}(M,q_T,y,\phi) \times \int_{\tau_0}^{\tau_{f,o}} \tau d\tau \int_{-\infty}^{\infty} d\eta \int_0^{r_{\max}} r dr \int_0^{2\pi} d\theta \\ \times \left[\frac{dR}{d^4q}(q;T,\mu_B,\mu_\pi) \otimes \mathbf{Hydro}(T,\mu_B,\mu_\pi;\tau,\eta,r,\theta)\right]$$

- dilepton/photon with nucleons
- rates + hydro evolution
- comparison with recent experimental data

for the future

Many Thanks