9th APCTP - BLTP JINR Joint Workshop at Kazakhstan
Modern problems of nuclear and elementary particle physics

June 27 - July 4, 2015, Almaty, Kazakhstan

Momentum Sharing in Imbalanced Fermi Systems

O. Hen, L. Weinstein
V. Burkert

Jefferson Lab
W. Kim, A. Kim, S.S. Stepanyan

CLAS Collaboration

Short-Range Nucleon-Nucleon Correlations Investigated with the Reaction ${ }^{12} \mathrm{C}\left(\mathrm{e}, \mathrm{e}^{\prime} \mathrm{p}\right.$ p)

$$
\text { PRL } 74 \text { (1995) }
$$

L. J.H. M. Kester, ' W. H. A. Hesselink, (NIKHEF), F.W. Hersman, W. Kim (UNH)
$\Rightarrow \underline{{ }^{12} \mathrm{C}\left(\mathrm{e}, \mathrm{e}^{\prime} \mathrm{p} p\right)}$ studied at an energy transfer $\omega=212 \mathrm{MeV}$ and a three momentum transfer $|\boldsymbol{q}|=70 \mathrm{MeV} / \mathrm{c}$.

The measured missing-energy spectrum shows a signature for knockout of proton pairs from (1 p$)^{2,},(1 \mathrm{p}, 1 \mathrm{~s})$, and (1 s$)^{2}$ states.
\Rightarrow Measured cross section for the knockout of a (1p) ${ }^{2}$ pair can largely be attributed to short-range nucleon-nucleon correlations.

Number of True Triple Coincidence Events

Upper panel - the total number of triple coincidences, is displayed as a function of the double missing energy $E_{2 m} \equiv E_{e}-E_{e}^{\prime}-T_{p_{1}}-T_{p_{2}}-T_{\text {recoil }}$. The data have been corrected for inefficiencies and accidental coincidences.

Lower panel - the cross sections obtained from these data are presented. They are corrected for radiative effects.

Short Range Correlation

The protons and neutrons in a nucleus can form strongly correlated nucleon pairs
\Rightarrow In electron scattering experiments, a proton is knocked out of the nucleus with high-momentum transfer and high missing momentum
\Rightarrow In ${ }^{12} \mathrm{C}$ the $n-p$ pairs are nearly 20 times as prevalent as p-p pairs and, by inference, n-n pairs
\Rightarrow Difference between the types of pairs is due to the nature of the strong force and has implications for understanding cold dense nuclear systems such as neutron stars

Illustration of the ${ }^{12} \mathrm{C}(\mathrm{e}, \mathrm{e} \mathrm{e} \mathrm{pN})$ Reaction

Fractions of Correlated Pair Combinations in Carbon as Obtained from the (e,e'pp) and (e,e'pn) Reactions, as well as from (p,2pn) Data

R. Subedi, Seonhu Choi (SNU) Jlab Hall A Collaboration SCIENCE 320 (2008)

Average Fraction of Nucleons in the various Initial-state Configurations of ${ }^{12} \mathrm{C}$

\square Single nucleons

Two and Three Nucleon SRC Probabilities in Nuclei

Ratios of $A(e, e$ ') Inclusive Electron Scattering
K. S. Egiyan et al., CLAS Collaboration PRL 96, (2006)

Weighted cross section ratios of (a) ${ }^{4} \mathrm{He},(b){ }^{12} \mathrm{C}$, and
(c) ${ }^{56} \mathrm{Fe}$ to ${ }^{3} \mathrm{He}$ as a function of X_{B} for $\mathrm{Q}^{2}>1.4 \mathrm{GeV}^{2}$

Momentum Sharing in Imbalanced Fermi Systems

O. Hen, L. B. Weinstein V. Burkert, W. Kim et al., CLAS Collaboration SCIENCE 346 (2014)

Schematic representation of the momentum distribution, $\mathrm{n}(\mathrm{k})$, of two-component imbalanced Fermi systems.

Illustration of the CLAS Detector with a Reconstructed Two-proton Knockout Event

Extracted Fractions of np and pp SRC Pairs

The green and yellow bands reflect 68 and 95% confidence levels (CLs). np-SRC pairs dominate over pp-SRC pairs in all measured nuclei.

SUMMARY

\Rightarrow If the protons and neutrons did not interact, the Pauli Exclusion Principle would force the majority of fermions (usually neutrons) to have a higher average momentum

The high-energy electron-scattering measurements using ${ }^{12} \mathrm{C}$, ${ }^{27} \mathrm{Al},{ }^{56} \mathrm{Fe}$, and ${ }^{208} \mathrm{~Pb}$ targets show that even in heavy, neutronrich nuclei, short-range interactions between the fermions form correlated high-momentum n-p pairs

Thus, in neutron-rich nuclei, protons have a greater probability than neutrons to have momentum greater than the Fermi momentum

This finding has implications ranging from nuclear few-body systems to neutron stars

