9th APCTP-BLTP JINR Joint Workshop at Kazakhstan "Modern Problems of Nuclear and Elementary Particle Physics" Almaty, Kazakhstan, 27 June-4 July, 2015

Future Opportunity of Nuclear Symmetry Energy at LAMPS/RAON

Byungsik Hong (Korea University)

<u>Outline</u>

- 1. Introduction
 - Isospin-dependent dynamics of heavy-ion reactions
 - Interesting observables
- 2. Experimental setups @ RAON
 - KOBRA: Broad acceptance recoil spectrometer at low energies
 - LAMPS: Large-acceptance multipurpose spectrometer from low to high energies
- 3. Current R&D efforts
- 4. Summary

Nuclear EOS & Symmetry Energy

$$E(\rho, \delta)/A = E(\rho, \delta = 0) + E_{sym}(\rho)\delta^2 + O(\delta^4) + \cdots$$

with $\rho = \rho_n + \rho_p$ and $\delta = (\rho_n - \rho_p)/\rho$

Nuclear Symmetry Energy $E_{sym}(\rho) = \frac{1}{3} \varepsilon_F (\rho / \rho_0)^{2/3} + E_{sym}^{pot}(\rho)$

- $E_{sym}^{pot}(\rho)$ is often parametrized as $C(\rho / \rho_0)^{\gamma}$
- A useful expansion of $E_{sym}(\rho)$ around ρ_0

$$E_{sym}(\rho) = J + \frac{L}{3} \left(\frac{\rho - \rho_0}{\rho_0}\right) + \frac{K_{sym}}{18} \left(\frac{\rho - \rho_0}{\rho_0}\right)^2$$

where

$$L = \frac{3}{\rho_0} P_{sym} = 3\rho_0 \frac{\partial E_{sym}(\rho)}{\partial \rho} \Big|_{\rho = \rho_0} \quad \text{(slope)}$$
$$K_{sym} = 9\rho_0^2 \frac{\partial^2 E_{sym}(\rho)}{\partial \rho^2} \Big|_{\rho = \rho_0} \quad \text{(curvature)}$$

Relevant Observables

- Low-energy LAMPS @ ~20 MeV/u
 - Fusion reaction cross section
 - Yield ratio of mirror nuclei
 - N/Z of fragments
 - Charge equilibration/Isospin mixing/Neck fragmentation
 - Dipole emission
 - Yield & polar angle dependence
- High-energy LAMPS @ >200 MeV/u
 - Yield ratio of mirror nuclei
 - Isospin diffusion parameter
 - Collective flow
 - $-\pi^-/\pi^+$ ratio
 - Dipole emission

Dipole Emission in Fusion

 $N_1/Z_1 \neq N_2/Z_2$

• The charge oscillation in fusion radiates collective dipole bremsstrahlung γ 's

C. Rizzo et al., PRC 83, 014604 (2011): SMF

during the isospin equilibration process.

Relative position of $D(t) \equiv \frac{NZ}{A} \Big[X_p(t) - X_n(t) \Big]$ CM's for n & p:

• Photon emission probability with $E_{\gamma} = \hbar \omega$

$$\frac{dP}{dE_{\gamma}} = \frac{2e^2}{3\pi\hbar c^3 E_{\gamma}} \left(\frac{NZ}{A}\right)^2 \left|D''(\omega)\right|^2$$

Similar effect in (ID)QMD model
 [Wu et al., PRC81, 047602 (2010)]

- More γ emission for Asy-soft
 - Fusion \approx Breakup
 - The strength increases with the isospin asymmetry

Dipole Response at High Energies

<u>FRS Expt. @ GSI</u> ^{124,130,132}Sn+²⁰⁸Pb @ 500 AMeV

 Coulomb excitations of n-rich ^{130,132}Sn isotopes reveal peaks at ~10 MeV (PDR)

Absent for stable
 ¹²⁴Sn isotope

P. Adrich et al., PRL 95, 132501 (2005)

Dipole Response of n-Rich Nuclei

N. Ryezayeva et al., PRL 89, 272502 (2002) Microscopic quasiparticle phonon model

 Pygmy dipole resonance (PDR) can be interpreted as an oscillation of a n-skin relative to the core

Charge Equilibration

- Charge equilibration
 - In fusion, dipole oscillation is important.
 - In deep inelastic coll., dipole oscillation is overdamped: Diffusion of charges

$$D(t) = D(0) \exp(-t / \tau_d)$$

$$\left(\tau_d \leftrightarrow E_{sym}\right)$$

- Degree of equilibration governed by contact time and symmetry energy
- Observable: N/Z of light charged particles emitted by PLF as a function of dissipated energy: $(N/Z)_{CP}$ vs. $E_{diss} \equiv E_{cm} - E_{kin}(PLF + TLF)$

Isospin Transport/Diffusion

APCTP-BLTP JINR Joint Workshop

27 June - 4 July 2015

Pion Ratio

27 June - 4 July 2015 APCTP-BLT

RAON

	ECR-IS	Accelerator Driver Li		rlinac	Post Acc	Cyclotron	
	LDT = (T0κev/u,T2 pµA)	7.0001010101	Dive		1 0017100.	Cyclotton	
F	RFQ (300keV/u, 9.5 pµA)	Particle	proton	U ⁺⁷⁹	RI beam	proton	
	MEBT	Beam energy	600 MeV	200 MeV/u	18.5 MeV/u	70 MeV	
n in		Beam current	660 µA	8.3 pµA	-	1 mA	
S	SCL1 (18.5MeV/u, 9.5 pµA)	Power on target	400 kW	400 kW	-	70 kW	
	Driver LINACCyclotronCharge StripperSCL2 (200MeV/u, 8.3 pµA for U+78) (600MeV, 660 µA for p)(p, 70 MeV, 1 mA) µSR						
	SCL3 (18.5MeV/u) ME Post Accelerator FC	RFQ HRM BT CB C	ISOL S target RF ooler		Medical re target	esearch system	
Low-Ener Experimer Area	'gy ntal	Trap	n ISOL s High-I Experime	system Energy ntal Area	Separator		

Experimental Facilities @ RAON

KOBRA

Target and Detection Systems for KOBRA

Supersonic gas-jet target

Low-Energy LAMPS (LAMPS-L)

- Si-Csl Array
 - \checkmark Charged particles & $\gamma's$
 - $\checkmark \Delta E/E \sim 10^{-2}$
 - ✓ Particle ID

Scintillator Array

- ✓ Neutrons
- ✓ Acceptance=100~300 mSr
- $\checkmark \Delta E/E \sim 5.0 \times 10^{-2}$ via TOF

Solenoid Spectrometer \oplus Dipole Spectrometer \oplus Neutron Array

Coulomb Breakup Expts. @ LAMPS-H

- PDR/GDR measurements ^{124,130,132}Sn+²⁰⁸Pb, ^{68,70,72}Ni+²⁰⁸Pb, ^{50,54,60}Ca+²⁰⁸Pb, etc.
- Photoabsorption measurements Various 1n and 2n removal cross sections for unstable nuclei
- Measurement of E^* from gamma, beam fragment, and neutrons

Design of Solenoid Magnet

Cross section: 2.6 x 2.6 m² $B_{op} \sim 0.5 \text{ T \& } B_{max} \sim 1 \text{ T}$ $\Delta B/B < 2 \%$

Magnitude of B-field (Bmod, R=500)

Design of 1/2-Size Prototype TPC

Prototype TPC-Assembly Inner Field Cage installed Outer Field Cage installed Prototype TPC assembled

27 June - 4 July 2015

APCTP-BLTP JINR Joint Workshop

Test of Triple GEM Readout

Neutron Detector Array

1.7 m

 \overline{Z}

- Construction of real-size prototype detectors (0.1X0.1X2.0 m³)
- Testing performance using ⁶⁰Co and ²⁵²Cf sources

y

Symmetry-Energy Research at RIBF

(RIBF: Rare-Isotope Beam Factory at RIKEN, Japan)

<u>SRC</u>: K=2500 MeV, Heavy-ion beams up to ²³⁸U at 345MeV/u (Light ions up to 440MeV/u) <u>BigRIPS</u>: Large acceptance fragment separator (80 mrad x 100 mrad, $\Delta P/P \sim 6\%$)

<u>SπRIT</u> Collaboration

SAMURAI Pion Reconstruction and Ion-Tracker

MSU TAMU RIKEN Kyoto Univ. Rikkyo Univ. Liverpool/Darsbury Korea Univ. WMU INFN SINAP Tsinghua Univ. CEA INP ORNL Tohoku Univ. TIT GSI

<u>SπRIT TPC</u>

<u>Current Status of SπRIT</u>

- 1. We are testing entire $S\pi RIT$ system using cosmic rays.
- 2. We will be ready to measure π^{\pm} and light fragments at 300 AMeV by spring of next year (2016).

Primary	Beam	Target	E _{beam} /A	δ _{sys}	Goal	Days
²³⁸ U	¹³² Sn	¹²⁴ Sn	300	0.22	Probe maximum δ	3
	¹²⁴ Sn	¹¹² Sn	300	0.15	Probe intermediate δ	3
¹²⁴ Xe	¹⁰⁸ Sn	¹¹² Sn	300	0.09	Probe minimum δ	3
	¹¹² Sn	¹²⁴ Sn	300	0.15	Probe intermediate δ	3

<u>Summary</u>

- 1. RAON
 - First large-scale RIB facility for nuclear physics in Korea
- 2. KOBRA
 - To cover nuclear structure and nuclear astrophysics
 - Nuclear symmetry energy @ $\rho < \rho_0$ with LAMPS-L
- 3. LAMPS
 - Primary purpose is to measure the nuclear symmetry energy at @ $\rho > \rho_0$
 - Useful also for various photoabsorption processes
- 4. $S\pi RIT$ Collaboration at RIBF
 - Plan to take the first physics data in early 2016

