Few-Nucleon Systems in the Bethe-Salpeter Approach

S. Bondarenko ${ }^{1}$, V. Burov ${ }^{1}$, S. Yuriev ${ }^{2}$

${ }^{1}$ Joint Institute for Nuclear Research, Dubna, Russia
${ }^{2}$ Far Eastern Federal University, Vladivostok, Russia

The 9th APCTP - BLTP JINR Joint Workshop, Almaty, Kazakhstan June 27 - July 4, 2015

The 9th APCTP - BLTP JINR Joint Workshop, Almaty, Kazakhstan, July 2, 2015

We use the relativistic covariant Bethe-Salpeter approach with separable kernel for the nucleon-nucleon interactions to investigate systems of nucleons and reactions with them at high energies: such as static properties of the deuteron, phase shifts and inelasticity parameters of the $n p$-pair, reactions of the elastic electron-deuteron scattering, inelastic electro- and photobreakup of the deuteron with final state interaction etc.

Recently we start to investigate three-nucleon systems using Bethe-SalpeterFadeev equations. Our first aim is the $3 N$ bound states $-{ }^{3} \mathrm{He}, T$. Our next plans are to study the interacting $p d$ and $3 N$ systems in the reactions.

- two-particles BS equation: formalism, separable kernel, solution
- three-particle BSF equation: formalism
- three-particle BSF equation: one-rank separable kernel and partial-states with $L=0$, solution, results
- three-particle BSF equation: multirank separable kernel and partial-states with $L>0$, solution, results
- conclusion

Bethe-Salpeter equation for the nucleon-nucleon T matrix ($n p$ state)

$$
T\left(p^{\prime}, p ; P\right)=V\left(p^{\prime}, p ; P\right)+\frac{i}{4 \pi^{3}} \int d^{4} k V\left(p^{\prime}, k ; P\right) G(k ; P) T(k, p ; P)
$$

p^{\prime}, p - the relative four-momenta
P - the total four-momentum
$V\left(p^{\prime}, p ; P\right)$ - the interaction kernel

$$
G(k ; P)=1 /\left((P / 2+k)^{2}-m_{N}^{2}+i \epsilon\right) /\left((P / 2-k)^{2}-m_{N}^{2}+i \epsilon\right)
$$

free two-particle Green function

The partial-wave decomposed equation for T matrix

$$
\begin{gathered}
T_{L^{\prime} L}\left(p_{0}^{\prime},\left|\mathbf{p}^{\prime}\right| ; p_{0},|\mathbf{p}| ; s\right)=V_{L^{\prime} L}\left(p_{0}^{\prime},\left|\mathbf{p}^{\prime}\right| ; p_{0},|\mathbf{p}|\right)+\frac{i}{4 \pi^{3}} \sum_{L^{\prime \prime}} \int_{-\infty}^{+\infty} d k_{0} \int_{0}^{\infty} \mathbf{k}^{2} d|\mathbf{k}| \\
V_{L^{\prime} L^{\prime \prime}}\left(p_{0}^{\prime},\left|\mathbf{p}^{\prime}\right| ; k_{0},|\mathbf{k}|\right) S\left(k_{0},|\mathbf{k}| ; s\right) T_{L^{\prime \prime} L}\left(k_{0},|\mathbf{k}| ; p_{0},|\mathbf{p}| ; s\right)
\end{gathered}
$$

with scalar propagators

$$
S\left(k_{0},|\mathbf{k}| ; s\right)=\left[\left(s / 4-k_{0}^{2}+E_{\mathbf{k}}^{2}\right)^{2}-s E_{\mathbf{k}}^{2}\right]^{-1}
$$

and

$$
L={ }^{1} S_{0} \quad \text { or } \quad L={ }^{3} S_{1}-{ }^{3} D_{1}
$$

(scalar-vector spin-isospin) (vector-scalar spin-isospin)

Separable Ansatz for the interaction kernel

$$
V_{L^{\prime} L}\left(p_{0}^{\prime},\left|\mathbf{p}^{\prime}\right| ; p_{0},|\mathbf{p}| ; s\right)=\sum_{i, j=1}^{N} \lambda_{i j}(s) g_{i}^{L^{\prime}}\left(p_{0}^{\prime},\left|\mathbf{p}^{\prime}\right|\right) g_{j}^{L}\left(p_{0},|\mathbf{p}|\right)
$$

$g_{j}^{[L]}$ - the model functions and $\lambda_{i j}(s)$ - a matrix of model parameters of the chosen channel

Solution for the T matrix

$$
T_{L^{\prime} L}\left(p_{0}^{\prime},\left|\mathbf{p}^{\prime}\right| ; p_{0},|\mathbf{p}| ; s\right)=\sum_{i, j=1} \tau_{i j}(s) g_{i}^{\left[L^{\prime}\right]}\left(p_{0}^{\prime},\left|\mathbf{p}^{\prime}\right|\right) g_{j}^{[L]}\left(p_{0},|\mathbf{p}|\right)
$$

where

$$
1 / \tau_{i j}(s)=1 / \lambda_{i j}+h_{i j}(s)
$$

and

$$
h_{i j}(s)=-\frac{i}{4 \pi^{3}} \sum_{L} \int d k_{0} \int \mathbf{k}^{2} d|\mathbf{k}| g_{i}^{[L]}\left(k_{0},|\mathbf{k}|\right) g_{j}^{[L]}\left(k_{0},|\mathbf{k}|\right) S\left(k_{0},|\mathbf{k}| ; s\right)
$$

The relativistic three-particle equation for T matrix

is considered in the Fadeev form with the following assumptions:

- no three-particles interaction $V_{123}=\sum_{i \neq j} V_{i j}$
- two-particles interaction is separable
- nucleon propagators are chosen in a scalar form
- the only strong interactions are considered (not EM), so ${ }^{3} \mathrm{He} \equiv T$

Bethe-Salpeter-Fadeev-type equation

$$
\left[\begin{array}{l}
T^{(1)} \\
T^{(2)} \\
T^{(3)}
\end{array}\right]=\left[\begin{array}{c}
T_{1} \\
T_{2} \\
T_{3}
\end{array}\right]-\left[\begin{array}{ccc}
0 & T_{1} G_{1} & T_{1} G_{1} \\
T_{2} G_{2} & 0 & T_{2} G_{2} \\
T_{3} G_{3} & T_{3} G_{3} & 0
\end{array}\right]\left[\begin{array}{l}
T^{(1)} \\
T^{(2)} \\
T^{(3)}
\end{array}\right],
$$

where full three-particles T matrix $T=\sum_{i} T^{(i)}, G_{i}$ is the free two-particles (j and n) Green function (ijn is cyclic permutation of ($1,2,3$)):

$$
G_{i}\left(k_{j}, k_{n}\right)=1 /\left(k_{j}^{2}-m_{N}^{2}+i \epsilon\right) /\left(k_{n}^{2}-m_{N}^{2}+i \epsilon\right),
$$

and T_{i} is the two-particles T matrix which can be written as following

$$
T_{i}\left(k_{1}, k_{2}, k_{3} ; k_{1}^{\prime}, k_{2}^{\prime}, k_{3}^{\prime}\right)=(2 \pi)^{4} \delta^{(4)}\left(k_{i}-k_{i}^{\prime}\right) T_{i}\left(k_{j}, k_{n} ; k_{j}^{\prime}, k_{n}^{\prime}\right) .
$$

with $s_{i}=\left(k_{j}+k_{n}\right)^{2}=\left(k_{j}^{\prime}+k_{n}^{\prime}\right)^{2}$.

Introducing the equal-mass Jacobi momenta

$$
p_{i}=\frac{1}{2}\left(k_{j}-k_{n}\right), \quad q_{i}=\frac{1}{3} K-k_{i}, \quad K=k_{1}+k_{2}+k_{3}
$$

one can separate the conserved total momentum

$$
T^{(i)}\left(k_{1}, k_{2}, k_{3} ; k_{1}^{\prime}, k_{2}^{\prime}, k_{3}^{\prime}\right)=(2 \pi)^{4} \delta^{(4)}\left(K-K^{\prime}\right) T^{(i)}\left(p_{i}, q_{i} ; p_{i}^{\prime}, q_{i}^{\prime} ; s\right),
$$

with $s=K^{2}$
Amplitude of three-particle state as a projection of T matrix to the bound state:

$$
\Psi^{(i)}\left(p_{i}, q_{i} ; s\right)=\left\langle p_{i}, q_{i}\right| T^{(i)}\left|M_{B}\right\rangle,
$$

with $\sqrt{s}=M_{B}=3 m_{N}-E_{t}$.
Take into account then all three masses are equal $m_{1}=m_{2}=m_{3}=m_{N}$ then

$$
\Psi^{(i)}\left(p_{i}, q_{i} ; s\right) \equiv \Psi(p, q ; s)
$$

Rank-I separable kernel and $L=0$ partial-states

If one uses the separable Ansatz rank I for the interaction kernel V :

$$
V^{a}\left(p_{0}^{\prime},\left|\mathbf{p}^{\prime}\right| ; p_{0},|\mathbf{p}| ; s\right)=\lambda^{a} g^{a}\left(p_{0}^{\prime},\left|\mathbf{p}^{\prime}\right|\right) g^{a}\left(p_{0},|\mathbf{p}|\right)
$$

then the two-body T matrix is:

$$
T^{a}\left(p_{0}^{\prime},\left|\mathbf{p}^{\prime}\right| ; p_{0},|\mathbf{p}| ; s\right)=\tau^{a}(s) g^{a}\left(p_{0}^{\prime},\left|\mathbf{p}^{\prime}\right|\right) g^{a}\left(p_{0},|\mathbf{p}|\right)
$$

and the amplitude can be presented in the form

$$
\Psi^{a}(p, q)=g^{a}(p) \tau^{a}\left[\left(\frac{3}{2} K+q\right)^{2}\right] \Phi^{a}(q)
$$

with

$$
(a=1) \equiv\left(L={ }^{1} S_{0}\right), \quad(a=2) \equiv\left(L={ }^{3} S_{1}\right)
$$

Function $\Phi^{a}(q)$ obeys the equation

$$
\Phi^{a}(q)=2 i \int \frac{d^{4} q^{\prime}}{(2 \pi)^{4}} \sum_{b=1}^{2} Z^{a b}\left(q, q^{\prime} ; s\right) S\left(\frac{1}{3} K-q^{\prime}\right) \tau^{b}\left(s_{2}\right) \Phi^{b}\left(q^{\prime}\right)
$$

with

$$
Z^{a b}\left(q, q^{\prime} ; s\right)=C^{a b} g^{a}\left(-\frac{1}{2} q-q^{\prime}\right) S\left(\frac{1}{3} K+q+q^{\prime}\right) g^{b}\left(q+\frac{1}{2} q^{\prime}\right)
$$

and

$$
C^{a b}=\left[\begin{array}{rr}
1 / 4 & -3 / 4 \\
-3 / 4 & 1 / 4
\end{array}\right]
$$

to take into account the $\left[\left({ }^{1} S_{0},{ }^{3} S_{1}\right) \Leftrightarrow\left({ }^{1} S_{0},{ }^{3} S_{1}\right)\right]$ transitions and spin- and isospin-one-half nature of nucleons.

Partial-wave decomposition

$$
\vec{L}=\vec{l}+\vec{\lambda}
$$

where L is full momenta, l is momenta of the two-nucleon pair, λ is relative momentum of the 3 rd particle.
Since $l=0$ for ${ }^{1} S_{0}$ and ${ }^{3} S_{1}$ states and $L=0$ for ground state then $\lambda=0$.
Therefore

$$
\begin{aligned}
\Phi^{a}\left(q_{4}, q\right)=\sum_{b=1}^{2} \frac{i}{4 \pi^{3}} \int & d q_{0}^{\prime} \int q^{\prime 2} d q^{\prime} Z^{a b}\left(q_{0}, q, q_{0}^{\prime}, q^{\prime} ; s\right) \\
& \times \frac{\tau^{b}\left(\left(\frac{2}{3} \sqrt{s}+q_{0}^{\prime}\right)^{2}-q^{2}\right)}{\left(\frac{1}{3} \sqrt{s}-q_{0}\right)^{2}-q^{\prime 2}-m_{N}^{2}+i \epsilon} \Phi^{b}\left(q_{0}^{\prime}, q^{\prime} ; s\right)
\end{aligned}
$$

with

$$
\begin{aligned}
& Z^{a b}\left(q_{0}, q, q_{0}^{\prime}, q^{\prime} ; s\right)=C^{a b} \int d \cos \theta_{q q^{\prime}} \\
& \quad \times \frac{g^{a}\left(-\frac{1}{2} q_{0}-q_{0}^{\prime},\left|-\frac{1}{2} \mathbf{q}-\mathbf{q}^{\prime}\right|\right) g^{b} m^{\prime}\left(q_{0}+\frac{1}{2} q_{0}^{\prime},\left|\mathbf{q}+\frac{1}{2} \mathbf{q}^{\prime}\right|\right)}{\left(\frac{1}{3} \sqrt{s}+q_{0}+q_{0}^{\prime}\right)^{2}-\left(\mathbf{q}+\mathbf{q}^{\prime}\right)^{2}-m_{N}^{2}+i \epsilon}
\end{aligned}
$$

The 9th APCTP - BLTP JINR Joint Workshop, Almaty, Kazakhstan, July 2, 2015

Singularities

Poles from one-particle propagator

$$
q_{1,2}^{0 \prime}=\frac{1}{3} \sqrt{s} \mp\left[E_{\left|\mathbf{q}^{\prime}\right|}-i \epsilon\right]
$$

Poles from propagator in Z-function

$$
q_{3,4}^{0 \prime}=-\frac{1}{3} \sqrt{s}-q^{0} \pm\left[E_{\left|\mathbf{q}^{\prime}+\mathbf{q}\right|}-i \epsilon\right]
$$

Poles from Yamaguchi-functions

$$
q_{5,6}^{0 \prime}=-2 q^{0} \pm 2\left[E_{\left|\frac{1}{2} \mathbf{q}^{\prime}+\mathbf{q}\right|, \beta}-i \epsilon\right]
$$

and

$$
q_{7,8}^{0 \prime}=-\frac{1}{2} q^{0} \pm \frac{1}{2}\left[E_{\left|\mathbf{q}^{\prime}+\frac{1}{2} \mathbf{q}\right|, \beta}-i \epsilon\right]
$$

Cuts from two-particle propagator τ

$$
q_{9,10}^{0 \prime}= \pm \sqrt{q^{\prime 2}+4 m^{2}}-\frac{2}{3} \sqrt{s} \quad \text { and } \quad \pm \infty
$$

Poles from two-particle propagator τ

$$
q_{11,12}^{0 \prime}= \pm \sqrt{q^{\prime 2}+4 M_{d}^{2}}-\frac{2}{3} \sqrt{s}
$$

The 9th APCTP - BLTP JINR Joint Workshop, Almaty, Kazakhstan, July 2, 2015

Wick-rotation procedure
If $\sqrt{s}=3 m_{N}-E_{t}<3 m_{N}$ then there are no singularities in the Ist and IIIrd quadrant of q_{0} and therefore the Wick-rotation procedure can be applied to the equation. Then

$$
\begin{aligned}
& \Phi^{a}\left(q_{4}, q\right)=\sum_{b=1}^{2} \frac{1}{4 \pi^{3}} \int d q_{4}^{\prime} \int q^{\prime 2} d q^{\prime} Z^{a b}\left(q_{4}, q, q_{4}^{\prime}, q^{\prime} ; s\right) \\
& \times \frac{\tau^{a b}\left(\left(\frac{2}{3} \sqrt{s}+i q_{4}^{\prime}\right)^{2}-q^{\prime 2}\right)}{\left(\frac{1}{3} \sqrt{s}-i q_{4}\right)^{2}-q^{\prime 2}-m_{N}^{2}} \Phi^{b}\left(q_{4}^{\prime}, q^{\prime}\right)
\end{aligned}
$$

with

$$
\begin{aligned}
& Z^{a b}\left(q_{4}, q, q_{4}^{\prime}, q^{\prime} ; s\right)=C^{a b} \int d \cos \theta_{q q^{\prime}} \\
& \quad \times \frac{g_{i}\left(-\frac{1}{2} i q_{4}-i q_{4}^{\prime},\left|-\frac{1}{2} \mathbf{q}-\mathbf{q}^{\prime}\right|\right) g_{m^{\prime}}\left(i q_{4}+\frac{1}{2} i q_{4}^{\prime},\left|\mathbf{q}+\frac{1}{2} \mathbf{q}^{\prime}\right|\right)}{\left(\frac{1}{3} \sqrt{s}+i q_{4}+i q_{4}^{\prime}\right)^{2}-\left(\mathbf{q}+\mathbf{q}^{\prime}\right)^{2}-m_{N}^{2}}
\end{aligned}
$$

Solving the equation

The calculate the integrals the Gauss quadratures method is used:

$$
\int A(x, y) f(y)=\sum_{j=1, n} A\left(x_{i}, y_{j}\right) w_{j} f\left(y_{j}\right)
$$

with x_{i}, y_{j} and w_{j} are the Gauss points and weights, resp. and n is the number of points
The homogeneous system of linear equations is solving using the fact that

$$
\left[\Phi^{(n+1)}\left(q_{4}, q ; s\right) / \Phi^{(n)}\left(q_{4}, q ; s\right)\right]_{s=M_{B}^{2}, n \rightarrow \infty} \rightarrow 1
$$

where $\Phi^{(n)}$ is nth iteration of the solution.

Rank-one covariant Yamaguchi-function

The proton-neutron scattering phase shifts

The 9th APCTP - BLTP JINR Joint Workshop, Almaty, Kazakhstan, July 2, 2015

Rank-one covariant Yamaguchi-function

Properties of the proton-neutron scattering and deuteron

	${ }^{3} S_{1}$	exp.	${ }^{1} S_{0}$	exp.
$a(\mathrm{fm})$	5.424	$5.424(4)$	-23.748	$-23.748(10)$
$r_{0}(\mathrm{fm})$	1.775	$1.759(5)$	2.75	$2.75(5)$
$E_{d}(\mathrm{MeV})$	2.2246	$2.224644(46)$		

Triton binding energy: $E_{t}=11.09 \mathrm{MeV}$ ($\exp .8 .48 \mathrm{MeV}$)
To improve E_{t} one needs to extend the method:

- to increase the rank of kernels
- to add the ${ }^{3} D_{1}$ partial-state of $n p$-pair

Multirank separable kernel and ${ }^{3} D_{1}$ partial-state

If one uses the separable Ansatz rank N for the interaction kernel V :

$$
V^{a}\left(p_{0}^{\prime},\left|\mathbf{p}^{\prime}\right| ; p_{0},|\mathbf{p}| ; s\right)=\sum_{i, j=1}^{N} \lambda_{i j}^{a}(s) g_{i}^{a}\left(p_{0}^{\prime},\left|\mathbf{p}^{\prime}\right|\right) g_{j}^{a}\left(p_{0},|\mathbf{p}|\right)
$$

then the two-body T matrix is:

$$
T^{a}\left(p_{0}^{\prime},\left|\mathbf{p}^{\prime}\right| ; p_{0},|\mathbf{p}| ; s\right)=\sum_{i, j=1}^{N} \tau_{i j}^{a}(s) g_{i}^{a}\left(p_{0}^{\prime},\left|\mathbf{p}^{\prime}\right|\right) g_{j}^{a}\left(p_{0},|\mathbf{p}|\right)
$$

and the amplitude can be presented in the form

$$
\Psi^{a}(p, q)=\sum_{i, j=1}^{N} g_{i}^{a}(p) \tau_{i j}^{a}\left[\left(\frac{3}{2} K+q\right)^{2}\right] \Phi_{j}^{a}(q)
$$

with

$$
(a=1) \equiv\left(L={ }^{1} S_{0}\right), \quad(a=2) \equiv\left(L={ }^{3} S_{1}\right), \quad(a=3) \equiv\left(L={ }^{3} D_{1}\right)
$$

Partial-wave decomposition

$$
\vec{L}=\vec{l}+\vec{\lambda}
$$

where L is full momenta, l is momenta of the two-nucleon pair, λ is relative momenta of the 3rd particle.

- if $l=0$ for ${ }^{1} S_{0}$ and ${ }^{3} S_{1}$ states and $L=0$ for ground state then $\lambda=0$
- if $l=2$ for ${ }^{3} D_{1}$ state and $L=0$ for ground state $\lambda=2$

Therefore

$$
\begin{aligned}
\Phi_{j}^{a}\left(q_{4}, q\right)= & \frac{-1}{4 \pi^{3}} \int d q_{4}^{\prime} \int q^{\prime 2} d q^{\prime} \\
& \sum_{b=1}^{3} \sum_{k, l=1}^{N_{b}} Z_{j k}^{a b}\left(q_{4}, q, q_{4}^{\prime}, q^{\prime} ; s\right) \frac{\left.\tau_{k l}^{b}\left[\left(\frac{2}{3} \sqrt{s}+i q_{4}^{\prime}\right)^{2}-q^{\prime 2}\right)\right]}{\left(\frac{1}{3} \sqrt{s}-i q_{4}^{\prime}\right)^{2}-q^{\prime 2}-m_{N}^{2}} \Phi_{l}^{b}\left(q_{4}^{\prime}, q^{\prime}\right)
\end{aligned}
$$

with

$$
\begin{aligned}
& Z_{i j}^{a b}\left(q_{4}, q, q_{4}^{\prime}, q^{\prime} ; s\right)=C^{a b} \int d \cos \theta_{q q^{\prime}} K^{a b}\left(\cos \theta_{q q^{\prime}}\right) \\
& \quad \times \frac{g_{i}^{a}\left(-\frac{1}{2} i q_{4}-i q_{4}^{\prime},\left|-\frac{1}{2} \mathbf{q}-\mathbf{q}^{\prime}\right|\right) g_{j}^{b}\left(i q_{4}+\frac{1}{2} i q_{4}^{\prime},\left|\mathbf{q}+\frac{1}{2} \mathbf{q}^{\prime}\right|\right)}{\left(\frac{1}{3} \sqrt{s}+i q_{4}+i q_{4}^{\prime}\right)^{2}-\left(\mathbf{q}+\mathbf{q}^{\prime}\right)^{2}-m_{N}^{2}}
\end{aligned}
$$

The 9th APCTP - BLTP JINR Joint Workshop, Almaty, Kazakhstan, July 2, 2015

$$
C^{a b}=\left[\begin{array}{rrr}
1 / 4 & -3 / 4 & -3 / 4 \\
-3 / 4 & 1 / 4 & 1 / 4 \\
-3 / 4 & 1 / 4 & 1 / 4
\end{array}\right], \quad K^{a b}=\left[\begin{array}{lll}
K_{00} & K_{00} & K_{02} \\
K_{00} & K_{00} & K_{02} \\
K_{20} & K_{20} & K_{22}
\end{array}\right]
$$

where

$$
\begin{aligned}
& K_{00}=1 \\
& K_{02}=\frac{4 \pi}{\sqrt{5}} \mathrm{Y}_{20}\left(\vartheta^{\prime}, 0\right) \mathrm{Y}_{20}(\theta, 0) \\
& K_{20}=\sqrt{4 \pi} \mathrm{Y}_{20}^{*}(\vartheta, 0) \\
& K_{22}=\frac{\sqrt{(4 \pi)^{3}}}{\sqrt{5}} \mathrm{Y}_{20}^{*}(\vartheta, 0) \mathrm{Y}_{20}\left(\vartheta^{\prime}, 0\right) \mathrm{Y}_{20}(\theta, 0) \\
& \cos \theta=\cos \theta_{q q^{\prime}} \\
& \cos \vartheta=\left(q / 2+q^{\prime} \cos \theta_{q q^{\prime}}\right) /\left|\mathbf{q} / 2+\mathbf{q}^{\prime}\right| \\
& \cos \vartheta^{\prime}=\left(q+q^{\prime} / 2 \cos \theta_{q q^{\prime}}\right) /\left|\mathbf{q}+\mathbf{q}^{\prime} / 2\right|
\end{aligned}
$$

Multirank covariant Graz-II kernels

4-channels system of integral equations:
${ }^{1} S_{0}-\operatorname{rank}$ II: $\Phi_{1,2}^{1} S_{0}$
${ }^{3} S_{1}-{ }^{3} D_{1}-\operatorname{rank}$-III: $\Phi_{1,2}^{3} S_{1}$
5-channels system of integral equations:
${ }^{1} S_{0}$ - rank-II: $\Phi_{1,2}^{1 S_{0}}$
${ }^{3} S_{1}-{ }^{3} D_{1}$ - rank-III: $\Phi_{1,2}^{3} S_{1}, \Phi_{3}^{3} D_{1}$

Multirank covariant Graz-II kernels

Properties of the proton-neutron scattering and deuteron
${ }^{1} S_{0}$ - rank-II

	$a(\mathrm{fm})$	$r_{0}(\mathrm{fm})$
BS	-23.77	2.78

| Experiment | $-23.748(10) \quad 2.75(5)$ |
| :--- | :--- | :--- |

${ }^{3} S_{1}-{ }^{3} D_{1}$ - rank-III

$P_{d}, \%$	$a(\mathrm{fm})$	$r_{0}(\mathrm{fm})$	$E_{d}(\mathrm{MeV})$
4	5.419	1.780	2.2254
5	5.420	1.779	2.2254
6	5.421	1.778	2.2254
Experiment	5.424	1.759	2.2246

The 9th APCTP - BLTP JINR Joint Workshop, Almaty, Kazakhstan, July 2, 2015

Multirank covariant Graz-II kernels

The proton-neutron scattering phase shifts

The 9th APCTP - BLTP JINR Joint Workshop, Almaty, Kazakhstan, July 2, 2015

Preliminary results

Triton binding energy, $E_{t}(\mathrm{MeV})$

$P_{d}, \%$	4-channels ${ }^{1} S_{0},{ }^{3} S_{1}$	5-channels ${ }^{1} S_{0},{ }^{3} S_{1-}{ }^{3} D_{1}$	$\delta, \%$
4	8.70	8.72	0.23
5	8.29	8.31	0.24
6	7.89	7.91	0.25
Experiment	8.48		

The 9th APCTP - BLTP JINR Joint Workshop, Almaty, Kazakhstan, July 2, 2015

Conclusions

- The Bethe-Salpeter-Fedeev equations for the three-nucleons system are solved for the rank-one separable kernel of $N N$ interaction. The states with with orbital momentum $L=0\left({ }^{1} S_{0}\right.$ and $\left.{ }^{3} S_{1}\right)$ are taken into account. The binding energy and amplitudes for the accounting states are obtained.
- The partial-wave decomposition of the BSF equations is extended to multirank separable kernels and state with orbital momentum $L=2\left({ }^{3} D_{1}\right)$. The binding energy and amplitudes for all three partial-states $\left({ }^{1} S_{0},{ }^{3} S_{1}-{ }^{3} D_{1}\right)$ are obtained.
- The contribution of the ${ }^{3} D_{1}$ partial-state to the tritium bound energy is investigated. It is relatively small - about 0.2% but its contribution to the elastic electromagnetic form factors will be estimated further.

