% File: qft_gen.tex % Section: QFT % Title: QFT: General formulas % Last modified: 27.12.2006 % \documentclass[a4paper,12pt]{article} \usepackage{amsmath,amssymb} \textwidth 16cm \textheight 25cm \oddsidemargin 0cm \topmargin -1.5cm \pagestyle{empty} \begin{document} \begin{center} \large\textbf{QFT: GENERAL FORMULAS} \end{center} \vspace{.0cm} \begin{center} \large\textbf{Minkowski vs Euclidean} \end{center} \vspace{.1cm} In the flat Minkowski 4-space the Lorentz indices are handled as follows: \begin{gather} a_\mu b_\mu = a^\mu b_\mu = a_\mu b^\mu = a^\mu b^\mu = a_0 b_0 - \vec{a}\vec{b} = a_0 b_0 - a_1 b_1 - a_2 b_2 - a_3 b_3 \\ g_{\mu\nu} = \text{diag}\,(1, -1, -1, -1)\,, \ \ g_{\mu\nu}=g_{\nu\mu}\,, \ \ g_{\mu\nu}a_\mu = a_\nu\,, \ \ \ g_{\mu\mu} = 4\,, \ \ \ \partial_\mu x_\nu = g_{\mu\nu} \\ \partial_\mu = (\partial_0\,, \vec{\partial}) = (\tfrac{\partial}{\partial x_0}\,, -\tfrac{\partial}{\partial \vec x})\,, \ \ \ a_\mu\partial_\mu = a_0\partial_0 - \vec{a}\vec{\partial} = a_0\tfrac{\partial}{\partial x_0} + \vec{a}\tfrac{\partial}{\partial\vec x}\,. \end{gather} In the corresponding Euclidean space, 4th components replace 0th in a universal way, except for derivatives, \begin{equation} \label{} a_0 = -i a_4\,, \ \ \ a_\mu b_\mu = -a_i b_i\,, \ \ \ \partial_0 = i\partial_4 = i\tfrac{\partial}{\partial x_4}\,, \ \ \ \ \nabla_i = (\partial_4\,, -\vec{\partial}) = (\tfrac{\partial}{\partial x_4}\,, \tfrac{\partial}{\partial \vec x})\,, \end{equation} Kronecker's $\delta$-symbol replaces $g_{\mu\nu}$, \begin{equation} \label{} \delta_{ij} = \text{diag}\,(1, 1, 1, 1)\,, \ \ \delta_{ij}a_i = a_j\,, \ \ \nabla_i x_j = \delta_{ij}\,, \end{equation} while d'Alembertian in both cases means the same: \begin{equation} \label{} \Box = - \partial_\mu\partial_\mu = -\partial_0\partial_0 + \vec{\partial}\vec{\partial} = \nabla_i\nabla_i = \tfrac{\partial}{\partial x_i}\tfrac{\partial}{\partial x_i}\,. \end{equation} Relations between evolutionary operators as well as between the action functionals are obvious, \begin{gather} e^{-i t H} \leftrightarrow e^{-\tau H} \ \ (t=x_0\,,\tau=x_4)\,, \ \ \ \ \int\!d^4x_{\scriptscriptstyle M} = -i\!\!\int\!d^4x_{\scriptscriptstyle E}\,, \\ i S_M = i\!\!\int\!dx_{\scriptscriptstyle M}\, (\tfrac{1}{2}\partial_\mu\varphi\partial_\mu\varphi-\tfrac{m^2}{2}\varphi^2) \ \Leftrightarrow \ -\!\int\!dx_{\scriptscriptstyle E}\, (\tfrac{1}{2}\nabla_i\varphi\nabla_i\varphi+\tfrac{m^2}{2}\varphi^2) = -S_E \end{gather} whereas a sign before Euclidean momentum integrals stems from the `Wick rotation' being in agreement with causality (position of the poles of propagators in the Minkowski momentum space)\,: \begin{equation} \label{} p_0 = -i p_4\,, \ \ \ p_\mu q_\mu = -p_i q_i\,, \ \ \ \int\!d^4p_{\scriptscriptstyle M} = i\!\!\int\!d^4p_{\scriptscriptstyle E}\,. \end{equation} Here are the typical Fourier transform formulas in the $n$-dimensional Minkowski \begin{gather} \frac{1}{(2 \pi)^n}\!\int\frac{d^n\!p\,e^{-ipx}}{(p^2+i0)^\Delta} = \frac{i}{4^\Delta(-\pi)^{n/2}}\frac{\Gamma(\frac{n}{2}-\Delta)} {\Gamma(\Delta)}\frac{1}{(x^2-i0)^{\frac{n}{2}-\Delta}} \\ \int\frac{d^n\!x\,e^{ipx}}{(x^2-i0)^\Delta} = \frac{-i(2\pi)^n}{4^\Delta(-\pi)^{n/2}}\frac{\Gamma(\frac{n}{2}-\Delta)} {\Gamma(\Delta)}\frac{1}{(k^2+i0)^{\frac{n}{2}-\Delta}} \end{gather} and Euclidean \begin{gather} \frac{1}{(2 \pi)^n}\!\int\frac{d^n\!p\,e^{ipx}}{(p^2)^\Delta} = \frac{1}{4^\Delta\pi^{n/2}}\frac{\Gamma(\frac{n}{2}-\Delta)} {\Gamma(\Delta)}\frac{1}{(x^2)^{\frac{n}{2}-\Delta}} \\ \int\frac{d^n\!x\,e^{-ipx}}{(x^2)^\Delta} = \frac{(2\pi)^n}{4^\Delta\pi^{n/2}}\frac{\Gamma(\frac{n}{2}-\Delta)} {\Gamma(\Delta)}\frac{1}{(k^2)^{\frac{n}{2}-\Delta}} \end{gather} cases (note that $p^2_{\scriptscriptstyle M} = -p^2_{\scriptscriptstyle E}$, etc.)\,. \newpage \begin{center} \large\textbf{Gaussian continual integrals} \end{center} \vspace{.1cm} In Minkowski space, general representation of the generating functional in terms of continual integration is \begin{equation} \label{z(j)} Z(J) = \int\!\mathcal{D}\varphi\,e^{i\int dx(\mathcal{L}+\varphi J)}\,. \end{equation} In what follows, we omit the (space-time) integration symbol in the exponents. A generic Gaussian integration formula for real-like fields is \begin{equation} \label{real} \int\!\mathcal{D}\varphi\,e^{i(\varphi\frac{K}{2}\varphi+\varphi J)} = (\det K)^{-1/2}\,e^{-\frac{i}{2}JK^{-1}J} \end{equation} whereas in complex-like case (with independent variables $z,\bar z$) one has \begin{equation} \label{compl} \int\!\mathcal{D}z\mathcal{D}\bar{z}\, e^{i(\bar{z}Kz+\bar{z}\xi+\bar{\eta}z)} = (\det K)^{\mp 1}\,e^{-i\bar{\eta}K^{-1}\xi} \end{equation} ( - sign for bosons, + for fermions). Continual $\delta$-function: \begin{gather} \delta(\varphi) \doteq \int\!\mathcal{D}\lambda\,e^{i\lambda\varphi}\,, \ \ F(\varphi') = \int\!\mathcal{D}\varphi\,\delta(\varphi-\varphi')F(\varphi) \\ \int\!\mathcal{D}\varphi\,\delta(A\varphi) = (\det A)^{-1} = \int\!\mathcal{D}\lambda\,\mathcal{D}\varphi\,e^{i\lambda A\varphi}\,. \end{gather} For $K=\Box-m^2$ (scalar field) or $K=i\hat{\partial}-m$ (spinors) a free propagator is \begin{gather} _0\, = iK^{-1} \doteq -iD^c(x) = \frac{i}{(2\pi)^n}\!\int\frac{d^n\!p\,e^{-ipx}}{p^2-m^2+i0} \\ _0\, = iK^{-1} \doteq -iS^c(x) = \frac{i}{(2\pi)^n}\!\int\frac{d^n\!p\,e^{-ipx}(\hat{p}+m)}{p^2-m^2+i0} \end{gather} The corresponding formulas in Euclidean case are: \begin{gather} Z(J) = \int\!\mathcal{D}\varphi\,e^{-\int dx(H+\varphi J)} \\ \int\!\mathcal{D}\varphi\,e^{-(\varphi\frac{K}{2}\varphi+\varphi J)} = (\det K)^{-1/2}\,e^{\frac{1}{2}JK^{-1}J} \\ \int\!\mathcal{D}z\mathcal{D}\bar{z}\, e^{-(\bar{z}Kz+\bar{z}\xi+\bar{\eta}z)} = (\det K)^{\mp 1}\,e^{\bar{\eta}K^{-1}\xi} \\ \delta(\varphi) \doteq \int\!\mathcal{D}\lambda\,e^{i\lambda\varphi}, \ \ \ F(\varphi') = \int\!\mathcal{D}\varphi\,\delta(\varphi-\varphi')F(\varphi) \\ <\varphi(x)\varphi(0)>_0\, = K^{-1} = (-\Box+m^2)^{-1} \doteq S_2(x) = \frac{1}{(2\pi)^n}\!\int\frac{d^n\!p\,e^{ipx}}{p^2+m^2} \end{gather} \newpage \begin{center} \large\textbf{Generating functionals} \end{center} \vspace{.1cm} Main definitions (in Minkowski space)\,: \begin{gather} Z(J) \doteq \int\!\mathcal{D}\varphi\, \exp\Bigl[\,i\!\!\int dx(\mathcal{L}(\varphi)+\varphi(x)J(x))\Bigr] \equiv \int\!\mathcal{D}\varphi\,e^{i(\mathcal{L}+\varphi J)} \doteq e^{iW(J)}\,, \\ Z(J) = \sum_{n}\frac{1}{n!}\!\int\!dx_1\ldots dx_n\, G_n(x_1\ldots x_n)\,J(x_1)\ldots J(x_n) \ \ \ \ \ \ \ \text{all diagrams} \\ W(J) = \sum_{n}\frac{1}{n!}\!\int\!dx_1\ldots dx_n\, W_n(x_1\ldots x_n)\,J(x_1)\ldots J(x_n) \ \ \ \ \ \ \ \text{connected diagrams} \\ <\!F(\varphi)\!>_J \ =\int\!\mathcal{D}\varphi\,F(\varphi)\,e^{i(\mathcal{L}(\varphi)+\varphi J)} = F(-i\frac{\delta}{\delta J})Z(J) \\ \Phi(y) \doteq \frac{\delta W}{\delta J(y)} = \frac{1}{Z(J)}<\!\varphi(y)\!>_J \ \ \ \ \ \ \ \text{functional argument alternative to $J$} \end{gather} We choose either $\Phi = \Phi\,(J)$ or $J = J(\Phi)$ in accordance with the situation, and define \begin{gather} \Gamma(\Phi) \doteq W-J\Phi \equiv W(J(\Phi)) - \int\!dx\,J(\Phi(x))\,\Phi(x) \\ \Gamma(\Phi) = \sum_{n}\frac{1}{n!}\!\int\!dx_1\ldots dx_n\, \Gamma_n(x_1\ldots x_n)\,\Phi(x_1)\ldots \Phi(x_n) \ \ \ \ \ \ \text{1PI diagrams} \\ \frac{\delta\Gamma}{\delta\Phi} =\frac{\delta W}{\delta J}\,\frac{\delta J}{\delta\Phi} - \frac{\delta J}{\delta\Phi}\,\Phi - J = -J(\Phi) \end{gather} In brief, \ \ $\Phi(J) = W'(J)\,, \ \ J(\Phi) = -\Gamma'(\Phi)$\,. The functional derivatives are represented as follows, \begin{equation} \label{} \frac{\delta}{\delta J} = \int\!dx\,\frac{\delta\Phi(x)}{\delta J}\,\frac{\delta}{\delta\Phi(x)} = W''\frac{\delta}{\delta\Phi}\,, \ \ \ \frac{\delta}{\delta\Phi} = -\Gamma''\frac{\delta}{\delta J}\,, \end{equation} therefore, \begin{equation} \label{} \delta(x-y) = \frac{\delta\Phi(x)}{\delta\Phi(y)} = -\!\int\!dz\,\Gamma''(z,y)\,\frac{\delta\Phi(x)}{\delta J(z)} = -\!\int\!dz\,W''(x,z)\,\Gamma''(z,y)\,, \end{equation} i.e., \ $W''\,\Gamma''=-1$\,,\, and we find \begin{align} W''(x,y) &= W_2(x,y) \doteq D(x,y) \ \ \ \ \ \ \ &&\text{full (connected) propagator} \\ \Gamma''(x,y) &= \Gamma_2(x,y) = -D^{-1}(x,y) \ \ \ \ \ \ &&\text{inverse propagator} \end{align} \end{document}