% File: cft2_symm.tex % Section: CFT2 % Title: Conformal symmetry % Last modified: 19.10.2003 % \documentclass[a4paper,12pt]{article} \usepackage{amsmath,amssymb} \textwidth 16cm \textheight 25cm \oddsidemargin 0cm \topmargin -1.5cm \pagestyle{empty} \begin{document} \begin{center} \large\textbf{CONFORMAL SYMMETRY} \end{center} \vspace{.0cm} \begin{center} \large\textbf{Conformal group: $d>2$ vs $d=2$} \end{center} \vspace{.1cm} Consider a flat $d$-dimensional Euclidean space. Conformal transformations are those which at most scale the metric tensor $\delta_{\alpha\beta}$ by an arbitrary factor $\sigma(x)$\,: \begin{equation} \label{tra} \tilde{x}^\mu = x^\mu + \varepsilon^\mu(x) \ \ \ \ \ \Rightarrow \ \ \ \ h_{\mu\nu}(\tilde{x}) \equiv \frac{\partial x^\alpha}{\partial\tilde{x}^\mu} \frac{\partial x^\beta}{\partial\tilde{x}^\nu}\,\delta_{\alpha\beta} = \sigma(x)\,\delta_{\mu\nu}\,. \end{equation} This implies \begin{equation} \label{cond} \partial_\mu\varepsilon_\nu + \partial_\nu\varepsilon_\mu = (1-\sigma)\,\delta_{\mu\nu} \end{equation} or \begin{equation} \label{} \partial_\mu\varepsilon_\nu = p\,\delta_{\mu\nu} + \theta_{\mu\nu}\,, \ \ \ \ 2p(x) = 1-\sigma(x)\,, \ \ \ \ \theta_{\mu\nu}(x) = -\theta_{\nu\mu}(x) = \frac{1}{2}\, (\partial_\mu\varepsilon_\nu - \partial_\nu\varepsilon_\mu)\,. \end{equation} As a direct consequence, we obtain \begin{equation} \label{dde} \partial_\lambda\partial_\mu\varepsilon_\nu = \partial_\lambda p\,\delta_{\mu\nu} + \partial_\lambda\theta_{\mu\nu} = \partial_\mu p\,\delta_{\lambda\nu} + \partial_\mu\theta_{\lambda\nu}\,. \end{equation} First, we consider the case $d>2$ where at least 3 different values are allowed for all indices. It follows from (\ref{dde}) that for $\mu,\nu,\lambda$ being unequal to each other \begin{equation} \label{} \partial_\lambda\theta_{\mu\nu} = \partial_\mu\theta_{\lambda\nu} \,, \ \ \ \ \ \ \partial_\lambda p = \partial_\mu\theta_{\lambda\mu} \ \ \ \ \ \ \ \ \text{(no summation!)} \end{equation} The following calculations \begin{gather} \partial_1\theta_{23}=\partial_2\theta_{13}=-\partial_2\theta_{31} =-\partial_3\theta_{21}=\partial_3\theta_{12}=\partial_1\theta_{32} =-\partial_1\theta_{23}=0\,, \\ \partial_1\partial_2 p = \partial_1\partial_1\theta_{21} = \partial_1\partial_3\theta_{23} = 0\,, \\ \partial_1\partial_1 p = \partial_1\partial_2\theta_{12} = -\partial_2\partial_1\theta_{21} = - \partial_2\partial_2 p = \ldots = \partial_3\partial_3 p = \ldots = -\partial_1\partial_1 p = 0 \end{gather} enables one to conclude that \begin{equation} \label{} \partial_\mu\partial_\nu p = 0\,, \ \ \ \ \ \partial_\mu\partial_\nu\theta_{\alpha\beta} = 0\,, \end{equation} which means that $p\,(x)$ and $\theta_{\mu\nu}(x)$ are at most linear in $x$, and $\varepsilon_\mu(x)$ at most quadratic. Substituting an appropriate Ansatz into (\ref{cond}) yields the well known general form of conformal transformation, \begin{equation} \label{d>2} \varepsilon_\mu(x) = a_\mu + \omega_{\mu\nu}x_\nu + b\,x_\mu + c_\mu x^2 - 2(cx)\,x_\mu\,, \ \ \ \ \omega_{\mu\nu}=-\omega_{\nu\mu}\,, \end{equation} and so the dimensionality of conformal group proves to be $(d+1)(d+2)/2$ for $d>2$\,. For $d=2$, only two different values can be taken by indices, so we cannot freely use the third independent value to repeat the derivation given above. We remain with \begin{equation} \label{d=2} \partial_1\varepsilon_1 = \partial_2\varepsilon_2 = p\,, \ \ \ \ \partial_1\varepsilon_2 = -\partial_2\varepsilon_1 = \theta_{12}\,, \end{equation} and no additional relations for $p$ and $\theta$\,. But the first equalities in (\ref{d=2}) are exactly the Cauchy-Riemann conditions of analyticity of $\varepsilon_1 +i\varepsilon_2$. Therefore, conformal transformations in 2-dimensional space can be parametrized by arbitrary analytic functions, and the conformal group for $d=2$ becomes infinite dimensional. \newpage \begin{center} \large\textbf{Conformally flat metric in complex coordinates} \end{center} \vspace{.1cm} Consider a 2-dimensional space with `conformally Euclidean' metric \begin{equation} \label{} h_{\mu\nu} = \rho(x)\,\delta_{\mu\nu}\,, \ \ \ h^{\mu\nu} = \rho^{-1}\,\delta_{\mu\nu}\,, \ \ \ h = \text{det}(h_{\mu\nu})\,, \ \ \ \sqrt h = \rho\,, \ \ \ A_\mu = \rho A^\mu\,, \end{equation} with $x_\mu$ and $\rho$ real. Introduce (formally independent) complex coordinates $z,\,\bar{z}$\,: \begin{align} z &= x^1+ix^2 & x^1 &= \frac{1}{2}(z+\bar{z}) & \partial_z &= \frac{1}{2}(\partial_1-i\partial_2) & \partial_1 = \frac{\partial}{\partial x^1} &= \partial_z+\partial_{\bar z} \\ \bar{z} &= x^1-ix^2 & x^2 &= \frac{i}{2}(\bar{z}-z) & \partial_{\bar z} &= \frac{1}{2}(\partial_1+i\partial_2) & \partial_2 = \frac{\partial}{\partial x^2} &= i(\partial_z-\partial_{\bar z}) \end{align} These and similar formulas stem from \begin{equation} \label{} \tilde{A}_{\nu'}^{\mu'}(\tilde{x})= \frac{\partial\tilde{x}^{\mu'}}{\partial x^\mu} \frac{\partial x^\nu}{\partial\tilde{x}^{\nu'}}A_{\nu}^{\mu}(x)\,, \ \ \ \frac{\partial(z,\bar{z})}{\partial(x^1,x^2)} = \left(\begin{array}{rr} 1 & i \\ 1 & -i \end{array}\right)\,, \ \ \ \frac{\partial(x^1,x^2)}{\partial(z,\bar{z})} = \frac{1}{2} \left(\begin{array}{rr} 1 & 1 \\ -i & i \end{array}\right) \ \ \ \end{equation} and formal complex conjugation: \begin{align} A^z &= A^1+iA^2 & A^1 &= \frac{1}{2}\,(A^z+A^{\bar z}) & A_z &= \frac{1}{2}\,(A_1-iA_2) & A_1 &= A_z+A_{\bar z} \\ A^{\bar z} &= A^1-iA^2 & A^2 &= \frac{i}{2}\,(A^{\bar z}-A^z) & A_{\bar z} &= \frac{1}{2}\,(A_1+iA_2) & A_2 &= i(A_z-A_{\bar z}) \end{align} \begin{align} A_{zz} &= \frac{1}{4}\,[A_{11}-A_{22}-i(A_{12}+A_{21})] & A_{\bar z\bar z} &= A_{zz}^* \\ A_{z\bar z} &= \frac{1}{4}\,[A_{11}+A_{22}+i(A_{12}-A_{21})] & A_{\bar zz} &= A_{z\bar z}^* \end{align} For a symmetric tensor $T_{\mu\nu}=T_{\nu\mu}$ we have \begin{equation} \label{} T_{zz} = \frac{1}{4}\,(T_{11}-T_{22}-2iT_{12})\,, \ \ \ T_{z\bar z} = T_{\bar zz} = \frac{1}{4}\,(T_{11}+T_{22}) = \frac{1}{4}\,\text{tr}T\,. \end{equation} From \begin{equation} \label{} h_{zz}=h_{\bar z\bar z}=0\,, \ \ \ h_{z\bar z}=h_{\bar zz}=\rho/2\,, \ \ \ h^{zz}=h^{\bar z\bar z}=0\,, \ \ \ h^{z\bar z}=h^{\bar zz}=2\rho^{-1} \end{equation} one finds \begin{gather} A_z=\frac{\rho}{2}A^{\bar z}\,, \ \ \ A_{\bar z}=\frac{\rho}{2}A^z\,, \ \ \ A^z=2\rho^{-1}A_{\bar z}\,, \ \ \ A^{\bar z}=2\rho^{-1}A_z\,, \\ A^\mu B_\mu = A^zB_z + A^{\bar z}B_{\bar z}\,, \ \ \ \ \ \partial_\mu A^\mu = \partial_z A^z + \partial_{\bar z}A^{\bar z}\,. \end{gather} At last \begin{gather} ds^2 = \rho\,[(dx^1)^2 + (dx^2)^2] = \rho\,dz\,d\bar z = \rho\,|dz|^2\,, \\ d^2x = dx^1\,dx^2 = \Bigl|\frac{i}{2}\Bigr|dz\,d\bar z = \frac{1}{2}\,dz\,d\bar z\,. \end{gather} An infinite dimensional conformal transformation takes the form $(\varepsilon = \varepsilon_1 +i\varepsilon_2)$ \begin{equation} \label{} \,dz\,d\bar z \rightarrow (1+\partial_z\varepsilon) (1+\partial_{\bar z}\bar\varepsilon)\,dz\,d\bar z\,, \ \ \ \ \ \partial_{\bar z}\varepsilon = \partial_z\bar\varepsilon = 0\,. \end{equation} \newpage \begin{center} \large\textbf{Stress tensor and conformal symmetry} \end{center} \vspace{.1cm} Let $T_{\mu\nu}$ be a (symmetric) stress tensor of some field theory in a flat 2-dimensional Euclidean space. Then \begin{equation} \label{} \delta S = \int\!d^2\!x\,T_{\mu\nu}\,\partial_\mu\varepsilon_\nu(x) = \frac{1}{2}\int\!d^2\!x\,T_{\mu\nu}\,(\partial_\mu\varepsilon_\nu + \partial_\nu\varepsilon_\mu) \end{equation} and we see from (\ref{cond}) that $T_{\mu\mu}=0$ is an (off-shell) condition of conformal symmetry. In conformal theories stress tensor is traceless. In complex coordinates all this looks like \begin{equation} \label{vars} T_{z\bar z} = T_{\bar zz} = 0\,, \ \ \ \ \delta S = \int\!dzd\bar z\,(T_{zz}\partial_{\bar z}\varepsilon^z + T_{\bar z\bar z}\partial_z\varepsilon^{\bar z})\,. \end{equation} Conservation of $T_{\mu\nu}$ (on-shell) implies \begin{equation} \label{cons} \partial_{\bar z}\,T_{zz} = \partial_z\,T_{\bar z\bar z} = 0\,. \end{equation} From (\ref{cons}) one obtains $\partial_{\bar z}(T_{zz}\varepsilon^z)=0$ for analytic $\varepsilon^z = \varepsilon_1 + i\varepsilon_2$\,, which corresponds to infinite number of conserved quantities in 2-dimensional conformally invariant theory. In what follows, we will consider only `holomorphic' components $T_{zz}\doteq T(z)$ and $\varepsilon^z \doteq \varepsilon$\,. Integrating (\ref{vars}) by parts and renormalizing $T$ by the factor \,$-2\pi$\,, we obtain \begin{equation} \label{quant} \delta_{\varepsilon}S=\frac{-1}{2\pi i}\!\oint\!dz\,T(z)\,\varepsilon\ . \end{equation} Now, to constitute a stress tensor as a quantum generator of conformal symmetry, we consider the $\varepsilon$-transformation as a change of variables in a continual integral (with conformally invariant functional measure) of the type \begin{equation} \label{} \int\!\mathcal{D}\varphi\,e^{-S}\mathcal{O}_1\ldots\mathcal{O}_n \ \equiv \ <\mathcal{O}_1\ldots\mathcal{O}_n>\,, \end{equation} observe that $\delta_{\varepsilon}S$ should compensate for explicit variations of the operators $\mathcal{O}_k$\,, and, relying on (\ref{quant}), postulate \begin{equation} \label{ward} \frac{1}{2\pi i}\!\oint\!dz\,\varepsilon(z) \ = -\sum_{k=1}^{n}<\ldots\delta_\varepsilon\mathcal{O}_k\ldots> \end{equation} to be a quantum conformal action principle. Here $\varepsilon(z)$ is assumed to be analytic inside the contour, while $T(z)$ may exhibit singular (pole) behaviour near the locations (surrounded by the same contour) of other field operators. With $\mathcal{O}_k$ transforming as chiral primary fields of conformal weight $\Delta_k$\,, \begin{equation} \label{} \delta_{\varepsilon}\mathcal{O}_k(z) = -(\Delta_k\varepsilon'+\varepsilon\partial)\mathcal{O}_k(z)\,, \end{equation} we arrive at the main formula of CFT${}_2$\,: \begin{equation} \label{main} \ = \sum_{k=1}^{n}\left(\frac{\Delta_k}{(z-z_k)^2} +\frac{1}{z-z_k}\,\frac{\partial}{\partial z_k}\right) <\ldots\mathcal{O}_k(z_k)\ldots>\,. \end{equation} The Ward identity (\ref{ward}) is recovered from here by the contour integration with analytic function $\varepsilon(z)$\,. Both (\ref{ward}) and (\ref{main}) are equivalent to (and may be viewed as substantiation of) the OPE relations. This is shown, for example, by transforming the contour in the l.h.s. of (\ref{ward}) into several small contours around each $z_k$\,. \end{document}