% File: cft2-prod.tex % Section: CFT2 % Title: Operator products in CFT2 % Last modified: 07.11.2003 % \documentclass[a4paper,12pt]{article} \usepackage{amsmath,amssymb} \textwidth 16cm \textheight 25cm \oddsidemargin 0cm \topmargin -1.5cm \pagestyle{empty} \begin{document} \begin{center} \large\textbf{OPERATOR PRODUCTS IN CFT${}_2$} \end{center} \vspace{.1cm} \begin{center} \large\textbf{Algebras of chiral conformal fields} \end{center} Consider a typical set of local field operators in CFT${}_2$\,: a primary chiral field $\varphi(z)$ of conformal dimension $\Delta$, the $T_{zz}$\,-\,component (denoted by $T(z)$) of the energy-momentum tensor ($\Delta=2$), and a chiral current $J^a(z)$ with $\Delta=1$\,. The following operator-algebra relations are assumed to hold: \begin{align} T(z)\,T(w) &= \frac{c}{2(z-w)^4}+\frac{2}{(z-w)^2}\,T(w) +\frac{1}{z-w}\,\partial\, T(w) \label{1} \\ T(z)\,\varphi(w) &= \frac{\Delta}{(z-w)^2}\,\varphi(w)+\frac{1}{z-w}\, \partial \varphi(w) \label{2} \\ J^a(z)\,J^b(w) &= \frac{\varkappa^{ab}K}{(z-w)^2} +\frac{f_{c}^{ab}}{z-w}\,J^c(w) \label{3} \end{align} (regular terms are omitted). Here the radially-ordered operator product is meant: \begin{equation} \label{rad} A(z)B(w) = B(w)A(z) \equiv \mathcal{R}A(z)B(w) \doteq \begin{cases} A(z)B(w) & \qquad |z|>|w| \\ B(w)A(z) & \qquad |w|>|z| \end{cases} \end{equation} To permute operators in (\ref{2}), one uses (\ref{rad}) and then expands in $z-w$ discarding regular terms: \begin{equation} \label{} \varphi(z)\,T(w) = T(w)\,\varphi(z) = \frac{\Delta}{(z-w)^2}\,\varphi(w)+\frac{\Delta-1}{z-w}\, \partial \varphi(w) \end{equation} Now we define the corresponding modes (the contours surround zero): \begin{align} T(z) &= \sum_{n}^{} \frac{L_n}{z^{n+2}} & L_n &= \frac{1}{2\pi i}\oint dz\,z^{n+1}\,T(z) \\ \varphi(z) &= \sum_{n}^{}z^{-n-\Delta}\,\varphi_n & \varphi_n &= \frac{1}{2\pi i}\oint dz\,z^{n+\Delta-1}\,\varphi(z) \\ J^a(z) &= \sum_{n}^{} z^{-n-1}\,J_{n}^{a} & J_n^a &= \frac{1}{2\pi i}\oint dz\,z^n\,J^a(z) \end{align} Our aim is to derive the (centrally extended) Lie algebra relations for the modes \begin{align} [L_m,L_n] &= (m-n)L_{m+n}+\frac{c}{12}\,m(m^2-1)\,\delta_{n,-m}\label{vir}\\ [L_m,\varphi_n] &= (m(\Delta-1)-n)\,\varphi_{m+n}\label{lphi} \\ [L_m,J_n^a] &= -n\,J_{m+n}^a \\ [J_m^a,J_n^b] &= f_{c}^{ab}\,J_{m+n}^c + m\,\delta_{n,-m}\,\varkappa^{ab}K \end{align} and fields (currents) \begin{align} [T(z),\,T(w)] &= -\frac{c}{12}\,\delta'''(z-w)-2\delta'(z-w)\,T(w) + \delta(z-w)\,T'(w)\label{local1} \\ [J^a(z),\,J^b(w)] &= -\varkappa^{ab}K\,\delta'(z-w) +f_{c}^{ab}J^c(w)\,\delta(z-w)\label{local2} \end{align} from the operator product expansion (OPE) relations (\ref{1})--(\ref{3}). It's important to note that when in commutators (inside square brackets) an ordinary (not radially ordered!) product is assumed: \begin{equation} \label{} [A(z)\,,B(w)] \neq \mathcal{R}A(z)B(w)-\mathcal{R}B(w)A(z) \equiv 0\,. \end{equation} To begin with, let's perform the following computation. \begin{multline} \label{basic} [L_m,\,\varphi(z)\,] = \frac{1}{2\pi i}\left[\oint d\xi\,\xi^{m+1}\, T(\xi),\,\varphi(z)\right]\\ = \frac{1}{2\pi i}\left(\oint_{C_1} d\xi\,\xi^{m+1}\,T(\xi)\right)\,\varphi(z) - \frac{\varphi(z)}{2\pi i}\oint_{C_2} d\xi\,\xi^{m+1}\,T(\xi) \\ = \frac{1}{2\pi i}\left(\oint_{C_1} - \oint_{C_2}\right)d\xi\,\xi^{m+1} \,\mathcal{R}\,T(\xi)\,\varphi(z) \\ = \frac{1}{2\pi i}\oint_z d\xi\,\xi^{m+1}\, \left(\frac{\Delta}{(\xi-z)^2}\,\varphi(z) + \frac{1}{\xi-z}\,\partial\varphi(z)\right) \\ = (m+1)\Delta\,z^m\,\varphi(z) + z^{m+1}\,\partial\varphi(z) \end{multline} A point $z$ is assumed to be inside the contour $C_1$ but outside $C_2$ (and point 0 inside both). All contours are followed counterclockwise. Standard formulas like \begin{equation} \label{} \frac{1}{2\pi i}\oint_z \frac{d\xi f(\xi)}{(\xi-z)^{n+1}} = \frac{1}{n!}f^{(n)}(z) \end{equation} are widely used. Now it is straightforward to obtain a commutator of the corresponding modes: \begin{multline} [L_m,\varphi_n] = \frac{1}{2\pi i}\oint dz\,z^{n+\Delta-1}\,[L_m,\,\varphi(z)\,] \\ = \frac{1}{2\pi i}\oint dz\,z^{n+\Delta-1} \left((m+1)\Delta\,z^m + z^{m+1}\,\partial_z\right)\varphi(z) \\ = \frac{1}{2\pi i}\oint dz\,z^{n+\Delta-1}\, \sum_{k}^{}\left((m+1)\Delta-(k+\Delta)\right)\, z^{m-k-\Delta}\,\varphi_k \\ = \frac{1}{2\pi i}\oint dz\, \sum_{k}^{}z^{m+n-k-1}\,(m\Delta-k)\,\varphi_k = (m(\Delta-1)-n)\,\varphi_{m+n} \end{multline} The same result can be derived as follows: \begin{multline} \sum_{n}^{}z^{-n-\Delta}\,[L_m,\,\varphi_n] \equiv [L_m,\,\varphi(z)\,] =\left((m+1)\Delta\,z^m + z^{m+1}\,\partial_z\right) \sum_{n}^{}z^{-n-\Delta}\,\varphi_n \\ = \sum_{n}^{}\,[(m+1)\Delta-(n+\Delta)]\,z^{m-n-\Delta}\,\varphi_n = \sum_{n}^{}(m(\Delta-1)-n)\,z^{-n-\Delta}\,\varphi_{n+m}\,, \end{multline} and it remains to equate the coefficients of equal powers of $z$\,. Quite analogously, we obtain the Virasoro algebra (\ref{vir})\,: \begin{multline} \sum_{n}^{}z^{-n-2}\,[L_m,\,L_n] \equiv [L_m,\,T(z)] = \frac{1}{2\pi i}\left(\oint_{C_1} - \oint_{C_2}\right)d\xi \,\xi^{m+1}\,T(\xi)\,T(z) \\ = \frac{1}{2\pi i}\oint_z d\xi\,\xi^{m+1}\, \left(\frac{c}{2(\xi-z)^4}+\frac{2}{(\xi-z)^2}\,T(z) + \frac{1}{\xi-z}\,\partial T(z)\right) \\ = \frac{c}{12}\,m(m^2-1)\,z^{m-2}+2(m+1)\,z^m\,T(z) + z^{m+1}\,\partial_z T(z) \\ = \frac{c}{12}\,m(m^2-1)\,z^{m-2} + \sum_n(m-n)z^{-n-2}L_{m+n} \\ = \sum_n z^{-n-2}\,\left[(m-n)L_{m+n} + \frac{c}{12}\,m(m^2-1)\,\delta_{n,-m}\right] \end{multline} For illustration, the (affine Kac-Moody) algebra of the $J_m^a$ modes can be calculated directly from OPE: \begin{multline} \label{direct} [J_{m}^{a},\,J_n^b] = \frac{1}{(2\pi i)^2} \left(\oint_{C_1}dz J^a(z)\oint_{C_2}dw J^b(w) - \oint_{C_2}dw J^b(w)\oint_{C_1}dz J^a(z)\right)z^m\,w^n \\ = \frac{1}{(2\pi i)^2} \left(\oint_{C_1}dz\oint_{C_2}dw - \oint_{C_2}dw\oint_{C_1}dz\right)z^mw^n\mathcal{R}J^a(z)\,J^b(w) \\ = \frac{1}{2\pi i}\oint dw\,w^n\,\frac{1}{2\pi i}\oint_w dz\,z^m \left(\frac{\varkappa^{ab}K}{(z-w)^2} + \frac{f_{c}^{ab}}{z-w}\,J^c(w)\right) \\ = \frac{1}{2\pi i}\oint dw\,w^n\left(\varkappa^{ab}K\,m\,w^{m-1} + f_{c}^{ab}\,w^mJ^c(w)\right) = \varkappa^{ab}K\,m\,\delta_{n,-m} + f_{c}^{ab}\,J^c_{m+n} \end{multline} In first two lines, the left contour is in both cases supposed to embrace the right one. We see that the radial ordering of operators is transformed into a specific ordering of the integration contours. To derive the formulas for local field commutators (\ref{local1}),(\ref{local2}), it is very convenient to use the following representation of $\delta$-function (corresponding to a complete set of functions $z^n$ on a circle): \begin{equation} \label{delta} \delta(z-w) \doteq \frac{1}{w}\sum_{n}\left(\frac{z}{w}\right)^n = \ldots+\frac{z}{w^2}+\frac{1}{w}+\frac{1}{z}+\frac{w}{z^2}+\ldots = \delta(w-z) \end{equation} As usual, the principal relation with this $\delta$-function is \begin{equation} \label{main} \frac{1}{2\pi i}\oint dw\,f(w)\,\delta(z-w) = \frac{1}{2\pi i}\oint dw\,\sum_{mn}^{}f_m\,w^{m-n-1}z^{n} = \sum_n f_n\,z^n = f(z) \end{equation} (all integrations around zero). Some other useful relations are easily derived, for example, \begin{equation} \label{} f(z)\,\delta(z-w) = \sum_{mn}^{}f_m\,z^{m+n} w^{-n-1} = \sum_{mn}^{}f_m\,w^{m-n-1} z^{n} = f(w)\,\delta(z-w) \end{equation} \begin{equation} \label{} \delta'(z-w) = \frac{1}{zw}\sum_{n}n\left(\frac{z}{w}\right)^n\,, \qquad \delta''(z-w) = \frac{1}{z w^2}\sum_{n}n(n+1)\left(\frac{z}{w}\right)^n\,, \end{equation} \begin{equation} \label{} \delta'''(z-w) = \frac{1}{z^2w^2}\sum_{n}n(n^2-1)\left(\frac{z}{w}\right)^n\,, \qquad \frac{1}{2\pi i}\oint dw\,f(w)\,\delta'(z-w) = f'(z)\,. \end{equation} In a symbolic sense, the definition (\ref{delta}) may be formally represented as \begin{equation} \label{diff} \delta(z-w) = \left.\frac{1}{z-w}\,\right|_{|z|>|w|} - \left.\frac{1}{z-w}\,\right|_{|z|<|w|} \end{equation} which is `almost' the Cauchy formula \begin{equation} \label{} f(z) = \frac{1}{2\pi i} \oint_z\frac{dw\,f(w)}{w-z} = \frac{1}{2\pi i}\left(\oint_{C_1}-\oint_{C_2}\right)\frac{dw\,f(w)}{w-z} \end{equation} ($C_1$ surrounds $z$ and 0 while $C_2$ only 0). Differentiating (\ref{diff}), one obtains \begin{equation} \label{diffn} \frac{(-)^n}{n!}\delta^{(n)}(z-w) = \left.\frac{1}{(z-w)^{n+1}}\,\right|_{|z|>|w|} - \left.\frac{1}{(z-w)^{n+1}}\,\right|_{|z|<|w|} \end{equation} Now, with the use of $\delta$-function (\ref{delta}), we compute \begin{multline} \label{locj} [J^a(z),\,J^b(w)] = \sum_{mn}z^{-m-1}w^{-n-1}[J^a_m,\,J^b_n] \\ = \sum_{mn}z^{-m-1}w^{-n-1}(f_{c}^{ab}\,J_{m+n}^c + m\,\delta_{n,-m}\,\varkappa^{ab}K) \\ = -\varkappa^{ab}K\sum_n \frac{n}{zw}\left(\frac{z}{w}\right)^n + f_{c}^{ab}\sum_m z^{-m-1}w^m\sum_n w^{-m-n-1}J_{m+n}^{c} \\ = -\varkappa^{ab}K\,\delta'(z-w)+f_{c}^{ab}J^c(w)\,\delta(z-w)\,, \end{multline} \begin{multline} [T(z),\,T(w)] = \sum_{mn}z^{-m-2}w^{-n-2}[L_m,\,L_n] \\ = \sum_{mn}z^{-m-2}w^{-n-2}\left((m-n)L_{m+n} +\frac{c}{12}\,m(m^2-1)\,\delta_{n,-m}\right) \\ = -\frac{c}{12}\,\delta'''(z-w) + \sum_{mn}z^{-m-2}w^{-n-2}(2(m+1)-m-n-2)L_{m+n} \\ = -\frac{c}{12}\,\delta'''(z-w) +2\frac{1}{zw}\sum_m (m+1)\left(\frac{w}{z}\right)^{m+1} \sum_n w^{-m-n-2}L_{m+n} \\ -\frac{1}{z}\sum_m\left(\frac{w}{z}\right)^{m+1} \sum_n (m+n+2)w^{-m-n-3}L_{m+n} \\ = -\frac{c}{12}\,\delta'''(z-w)-2\delta'(z-w)\,T(w)+\delta(z-w)\,T'(w)\,. \end{multline} Such formulas are also `derived' by taking into account the following formal representation (similar to (\ref{diff}) for the local commutators \begin{align} [T(z),\,T(w)] &= \mathcal{R}T(z)T(w) \left(\bigl|_{|z|>|w|}\quad - \quad\bigr|_{|z|<|w|}\right) \\ [J^a(z),\,J^b(w)] &= \mathcal{R}J^a(z)J^b(w) \left(\bigl|_{|z|>|w|}\quad - \quad\bigr|_{|z|<|w|}\right) \end{align} and then transforming the differences into $\delta$-functions by eq. (\ref{diffn}). Due to (\ref{main}), the local field commutators similar to (\ref{local1}),(\ref{local2}) should be understood in the sense of integration over a closed contour. Really, if we define for some function $\varepsilon(z)$ the quantities \begin{equation} \label{} T_\varepsilon = \frac{1}{2\pi i}\oint d\xi\,\varepsilon(\xi)\,T(\xi) \qquad\qquad J^a_\varepsilon = \frac{1}{2\pi i}\oint d\xi\,\varepsilon(\xi)\,J^a(\xi) \end{equation} and then integrate (\ref{local1}) and (\ref{local2}) multiplied by $\varepsilon(z)$ over a closed contour, the following commutators are derived, \begin{align} [T_\varepsilon,\,T(z)] &= \frac{c}{12}\varepsilon'''(z) + 2\varepsilon'(z)T(z) + \varepsilon(z)T'(z) \label{teps} \\ [J^a_\varepsilon,\,J^b(z)] &= \varkappa^{ab}K\varepsilon'(z) + f_{c}^{ab}\varepsilon(z)J^c(z) \end{align} which can be also calculated directly, in complete analogy with the proof of (\ref{basic}). Here is an example of such a computation: \begin{multline} \label{} [T_\varepsilon,\,\varphi(z)\,] = \frac{1}{2\pi i}\left[\oint d\xi\,\varepsilon(\xi)\,T(\xi),\, \varphi(z)\right] = \frac{1}{2\pi i}\left(\oint_{C_1} - \oint_{C_2}\right) d\xi\,\varepsilon(\xi)\,T(\xi)\,\varphi(z) \\ = \frac{1}{2\pi i}\oint_z d\xi\,\varepsilon(\xi)\,T(\xi)\,\varphi(z) = \frac{1}{2\pi i}\oint_z d\xi\,\varepsilon(\xi)\, \left(\frac{\Delta}{(\xi-z)^2}\,\varphi(z) + \frac{1}{\xi-z}\,\partial\varphi(z)\right) \\ =\Delta\,\varepsilon'(z)\,\varphi(z)+\varepsilon(z)\,\partial\varphi(z) \end{multline} (as in (\ref{basic}), $z$ is inside $C_1$ but outside $C_2$). We see that $T_\varepsilon$ generates conformal transformations \begin{equation} \label{} z\rightarrow z' = z + \varepsilon(z)\,, \ \ \ \varphi'(z') = \left(\frac{dz'}{dz}\right)^{-\Delta}\,\varphi(z) \end{equation} because of \begin{equation} \label{} \delta_{\varepsilon}\varphi(z) \doteq \varphi'(z)-\varphi(z) = -(\Delta\varepsilon'+\varepsilon\partial)\varphi(z) = -[T_\varepsilon\,,\varphi(z)]\,. \end{equation} Variations $\delta_\varepsilon \doteq -\varepsilon\partial_z-\Delta\varepsilon'$ obey the Lie algebra \begin{equation} \label{} [\delta_{\varepsilon_1}\,,\delta_{\varepsilon_2}] = \delta_{[\varepsilon_1,\varepsilon_2]}\,, \ \ \ [\varepsilon_1\,,\varepsilon_2] \doteq \varepsilon_1'\varepsilon_2 - \varepsilon_1\varepsilon_2'\,. \end{equation} From (\ref{teps}) one sees that in case of $T_\varepsilon$ such algebra is centrally extended: \begin{equation} \label{} [T_{\varepsilon_1}\,,T_{\varepsilon_2}] = T_{[\varepsilon_1,\varepsilon_2]} + \frac{c}{24}\oint\frac{dz}{2\pi i} (\varepsilon_1'''\varepsilon_2 - \varepsilon_1\varepsilon_2''')\,. \end{equation} \newpage \begin{center} \large\textbf{Normal products} \end{center} In its full form, the operator product expansion looks like \begin{equation} \label{ope} A(z)B(w) \equiv \mathcal{R}A(z)B(w) \doteq \sum_n (z-w)^n (AB)_n(w)\,. \end{equation} Its singular part (which is the only part of OPE commonly written down) is given by \begin{equation} \label{sing} \underbrace{A(z)B(w})\, \doteq \sum_{n<\,0} (z-w)^n (AB)_n(w) = -\frac{1}{2\pi i} \oint_w\frac{dx}{x-z}A(x)B(w) \end{equation} ($z$ outside the contour)\,. However, the $n=0$ term in (\ref{ope}), a `normal product', \begin{equation} \label{norm} :\!A(w)B(w)\!:\ \equiv \ :\!AB\!:\!(w) \doteq (AB)_0(w) = \frac{1}{2\pi i} \oint_w\frac{dx}{x-w}A(x)B(w) \end{equation} is also widely used for building composite local operators. Such operators are also subject to OPE procedure due to `Wick formula' \begin{equation} \label{wick} \underbrace{A(z):\!\!BC\!:\!(w}) = \frac{1}{2\pi i} \oint_w\frac{dx}{x-w} \left(\underbrace{A(z)B(x})C(w) + B(x)\underbrace{A(z)C(w})\right)\,. \end{equation} The proof \begin{multline} \underbrace{A(z):\!\!BC\!:\!(w}) = -\frac{1}{(2\pi i)^2}\oint_{C_1}\frac{dy\,A(y)}{y-z} \oint_w\frac{dx}{x-w}B(x)C(w) \\ = -\frac{1}{(2\pi i)^2}\oint_w\frac{dx}{x-w}\oint_x\frac{dy\,A(y)B(x)}{y-z}C(w) -\frac{1}{(2\pi i)^2}\oint_w\frac{dx\,B(x)}{x-w}\oint_{C_2}\frac{dy\,A(y)C(w)}{y-z} \end{multline} reduces to deforming contour $C_1$ which is chosen to embrace (while $C_2$ is embraced by) another integration contour (around $w$); $z$ is outside all contours, and $w$ is inside both $C_1$ and $C_2$. As an example of implementing these techniques let's consider two primary fields $b(z)$ with $\Delta = \lambda$ and $c(z)$ with $\Delta = 1-\lambda$\,. A parameter $\nu$ is to distinguish the cases of $b$ and $c$ being fermions $(\nu=1)$ or bosons $(\nu=-1)$\,: $b(z)\,c(w)=-\nu c(w)\,b(z)$\,. Reparametrization ghosts in conformally invariant string theory correspond to $\lambda=2, \ \nu=1$\,. The following OPE relations are assumed to be our starting point: \begin{equation} \label{cb} c(z)\,b(w) = \frac{1}{z-w}\,, \ \ \ \ b(z)\,c(w) = \frac{\nu}{z-w}\,, \ \ \ \ c(z)\,c(w) = b(z)\,b(w) = 0 \end{equation} The corresponding mode expansions are chosen to be \begin{equation} \label{bcmode} b(z) = \sum_{n}z^{-n-\lambda}\,b_n\,, \ \ \ \ \ c(z) = \sum_{n}z^{-n-1+\lambda}\,c_n\,. \end{equation} Proceeding analogously to (\ref{direct}) we obtain \begin{equation} \label{cmbn} c_m b_n + \nu b_n c_m = \delta_{m,-n}\,, \ \ \ \ b_m b_n + \nu b_n b_m = c_m c_n + \nu c_n c_m = 0\,. \end{equation} Really, \begin{multline} \label{} c_m b_n + \nu b_n c_m = \frac{1}{(2\pi i)^2} \left(\oint_{C_1}dz\oint_{C_2}dw- \oint_{C_2}dw\oint_{C_1}dz\right) z^{m-\lambda} w^{n-1+\lambda} c(z) b(w) \\ = \frac{1}{2\pi i}\oint dw\,w^{n-1+\lambda}\, \frac{1}{2\pi i}\oint_w dz\,z^{m-\lambda}\frac{1}{z-w} = \frac{1}{2\pi i}\oint dw\,w^{n+m-1} = \delta_{n,-m} \end{multline} Now we introduce two composite operators build from $b$ and $c$ -- the `ghost stress tensor' $t$ (with $\Delta=2$) \begin{equation} \label{t} t(z) = \nu\lambda :\!\partial c\;b\!: +(1-\lambda):\!\partial b\;c\!: \ = -\lambda :\!b\,\partial c\!: +(1-\lambda):\!\partial b\;c\!: \ = \sum_{n}z^{-n-2}\,t_n \end{equation} and the ghost number current $j$ (with $\Delta=1$) \begin{equation} \label{j} j(z) = :\!bc\!: \ = \ -\nu:\!cb\!: \ = \ \sum_{n}z^{-n-1}\,j_n\,. \end{equation} The following OPE relations involving $t$ and $j$ can be obtained by the use of Wick's formula: \begin{align} t(z)\,b(w) &= \frac{\lambda}{(z-w)^2}\,b(w) + \frac{1}{z-w}\,\partial b(w) \label{tb} \\ t(z)\,c(w) &= \frac{1-\lambda}{(z-w)^2}\,c(w) + \frac{1}{z-w}\,\partial c(w) \label{tc} \\ t(z)\,j(w) &= \frac{\nu\,(2\lambda-1)}{(z-w)^3} + \frac{1}{(z-w)^2}\,j(w) + \frac{1}{z-w}\,\partial j(w) \label{tj} \\ t(z)\,t(w) &= \frac{-\nu\,(6\lambda^2-6\lambda+1)}{(z-w)^4} + \frac{2}{(z-w)^2}\,t(w) + \frac{1}{z-w}\,\partial t(w) \label{tt} \\ j(z)\,b(w) &= \frac{b(w)}{z-w} \label{jb} \\ j(z)\,c(w) &= \frac{-c(w)}{z-w} \label{jc} \\ j(z)\,j(w) &= \frac{\nu}{(z-w)^2} \label{jj}\,. \end{align} To prove (\ref{tb}) we begin with \begin{multline} \label{} t(w)\,b(z) = b(z)\,t(w) = \frac{1}{2\pi i} \oint_w\frac{dx}{x-w}\, [ -\lambda\underbrace{b(z)\,b(x})\,\partial c(w) \\ + (1-\lambda)\underbrace{b(z)\,\partial b(x})\,c(w) + \nu\lambda \,b(x)\underbrace{b(z)\,\partial c(w}) - \nu(1-\lambda)\,\partial b(x)\underbrace{b(z)\,c(w})\, ] \\ = \frac{1}{2\pi i} \oint_w\frac{dx}{x-w}\, [ \nu\lambda\, b(x)\,\partial_w\frac{\nu}{z-w} - \nu(1-\lambda)\,\partial b(x)\,\frac{\nu}{z-w}\, ] \\ = \frac{\lambda}{(z-w)^2}\,b(w) - \frac{1-\lambda}{z-w}\,\partial b(w)\,. \end{multline} Therefore, \begin{equation} \label{} t(z)\,b(w) = \frac{\lambda}{(z-w)^2}\,b(z) + \frac{1-\lambda}{z-w}\,\partial b(z) = \frac{\lambda}{(z-w)^2}\,b(w) + \frac{1}{z-w}\,\partial b(w)+\ldots\,. \end{equation} As another example, we derive (\ref{tj}). Note the use of the first terms of the expansion \begin{equation} \label{} b(x)\,c(w) = \frac{\nu}{x-w} + j(w) + f(w)(x-w) +\ldots\,. \end{equation} at intermediate stages of the calculation: \begin{multline} \label{} t(z)\,j(w) \equiv t(z)\,:\!bc\!:(w) = \frac{1}{2\pi i} \oint_w\frac{dx}{x-w}\, [ \underbrace{t(z)\,b(x})\,c(w) + b(x)\underbrace{t(z)\,c(w})\,] \\ = \frac{1}{2\pi i} \oint_w\frac{dx}{x-w}\, \left(\frac{\lambda}{(z-x)^2}b(x)\,c(w) + \frac{1}{z-x}\partial b(x)\,c(w) + \frac{1-\lambda}{(z-w)^2}b(x)\,c(w) \right. \\ + \left.\frac{1}{z-w}b(x)\,\partial c(w) \right) = \frac{1}{2\pi i} \oint_w\frac{dx}{x-w}\, \left(\frac{\nu\lambda}{(z-x)^2(x-w)} + \frac{\lambda j(w)}{(z-x)^2} - \frac{\nu}{(z-x)(x-w)^2} \right.\\ + \frac{f(w)}{z-x} + \left.\frac{\nu(1-\lambda)}{(z-w)^2(x-w)} + \frac{(1-\lambda)j(w)}{(z-w)^2} + \frac{\nu}{(z-w)(x-w)^2} + \frac{\partial j(w)}{z-w} - \frac{f(w)}{z-w}\right) \\ = \frac{2\nu\lambda}{(z-w)^3} + \frac{\lambda j(w)}{(z-w)^2} - \frac{\nu}{(z-w)^3} + \frac{(1-\lambda)j(w)}{(z-w)^2} + \frac{\partial j(w)}{z-w} \\ = \frac{\nu\,(2\lambda-1)}{(z-w)^3} + \frac{j(w)}{(z-w)^2} + \frac{\partial j(w)}{z-w}\,. \end{multline} We see from (\ref{tt}) that $t(z)$ is an honest stress tensor with \begin{equation} \label{} c = -2\nu\,(6\lambda^2-6\lambda+1) = \nu(1-3Q^2)\,, \ \ Q = \nu(2\lambda-1)\,, \end{equation} its local commutator given by (\ref{local1}). The correspondence principle (\ref{diffn}) readily yields any commutators of such a type, for example, \begin{align} [t(z),\,j(w)] &= \frac{Q}{2}\,\delta''(z-w)-\delta'(z-w)\,j(w) + \delta(z-w)\,j'(w)\,, \\ \label{jzjw} [j(z),\,j(w)] &= -\nu\,\delta'(z-w)\,. \end{align} Of course, these (and similar) formulas can also be derived from the corresponding commutators of modes, \begin{align} [t_n,b_m] &= (\lambda n-m-n)b_{m+n} \label{tnbm} \\ [t_n,c_m] &= -(\lambda n+m)c_{m+n} \label{tncm} \\ [t_n,j_m] &= -m\,j_{m+n} + \frac{Q}{2}\,n(n+1)\,\delta_{n,-m} \label{tnjm} \\ [t_n,t_m] &= (n-m)t_{m+n} - \frac{\nu}{6}\,(6\lambda^2-6\lambda+1)\,n(n^2-1)\,\delta_{n,-m} \label{tntm} \\ [j_n,b_m] &= b_{m+n} \label{jnbm} \\ [j_n,c_m] &= -c_{m+n} \label{jncm} \\ [j_n,j_m] &= \nu n\,\delta_{n,-m} \label{jnjm} \end{align} which are straightforwardly deduced from explicit expressions for $j_n$ and $t_n$: \begin{align} -j_n &= \nu\sum_{k<\,0}c_k b_{n-k} -\sum_{k\geqslant\,0}b_{n-k} c_k + \nu \lambda\,\delta_{n,0}\,\doteq\,\nu\sum_k:\!c_k b_{n-k}\!: + \nu\lambda\,\delta_{n,0}\,,\label{jn}\\ t_n &= \sum_k(\lambda n-k)\,:\!b_k c_{n-k}\!: - \frac{\nu}{2}\,\lambda(\lambda-1)\,\delta_{n,0}\,. \label{tn} \end{align} Here we present a sample evaluation of $j_n$: \begin{multline} \label{evaljn} -j_n = -\frac{1}{2\pi i}\oint dz\,z^n\,j(z) = \frac{\nu}{2\pi i}\oint dz\,z^n\,:\!cb\!:(z) = \frac{\nu}{(2\pi i)^2}\oint dz\,z^n\oint_z\frac{dw}{w-z}\,c(w)\,b(z) \\ = \frac{\nu}{(2\pi i)^2}\oint dz \oint dw\ \frac{z^n}{w-z}\,c(w)\,b(z) \left(\bigl|_{|z|<|w|}\quad - \quad\bigr|_{|z|>|w|}\right) \\ = \frac{\nu}{(2\pi i)^2}\oint dz\oint dw\sum_{k\geqslant 0}\, [\,z^{n+k}\,w^{-k-1}c(w)\,b(z) - \nu z^{n-k-1}\,w^k b(z)\,c(w)\,] \\ = \frac{\nu}{(2\pi i)^2}\oint dz\oint dw\sum_{k\geqslant 0}\sum_p\sum_q\, [\,z^{n+k-q-\lambda}\,w^{-k-p-2+\lambda}\,c_p\,b_q - \nu z^{n-k-q-1-\lambda}\,w^{k-p-1+\lambda}\,b_q\,c_p\,] \\ = \sum_{k\geqslant 0}\sum_p\sum_q\, [\,\nu\delta_{q,n+k+1-\lambda}\delta_{p,-k-1+\lambda}\,c_p\,b_q - \delta_{q,n-k-\lambda}\delta_{p,k+\lambda}\,b_q\,c_p\,] \\ = \sum_{k\geqslant 0}\,[\,\nu\,c_{-k-1+\lambda}\,b_{n+k+1-\lambda} - b_{n-k-\lambda}\,c_{k+\lambda}\,] \\ = \nu\sum_{k<0}c_k\,b_{n-k} - \sum_{k\geqslant 0}b_{n-k}\,c_k + \nu\lambda\,\delta_{n,0} \doteq \nu\sum_k\,:\!c_k b_{n-k}\!: + \nu\lambda\,\delta_{n,0}\,. \end{multline} During this calculation (the same is true for $t_n$) we assumed $\lambda$ to be integer to avoid non-integer indexed modes. However, the final result could be obtained without this reservation, by changing the definition of normal product as follows: \begin{equation} \label{} -j(z) = \nu\,:\!z^{-\lambda}c(z)\,z^{\lambda}b(z)\!:\ =\ \frac{\nu}{2\pi i}\oint_z\frac{dx}{x-z}x^{-\lambda}c(x)\,z^{\lambda}b(z) \end{equation} Generally, such modification shifts the result by a finite constant, which can be accounted for by the uncertainty in the definition of normal product, and therefore can be adjusted by hand to obtain a desired result (\ref{tnjm}). At last, we show how the commutators of modes are derived. For example, \begin{multline} \label{} [j_n\,,j_m] = -\nu\sum_{k<0}([j_n,c_k]b_{m-k} + c_k[j_n,b_{m-k}]) + \sum_{k\geqslant0}([j_n,b_{m-k}]c_k + b_{m-k}[j_n,c_k]) \\ = \nu\sum_{k<0}(c_{n+k}b_{m-k} - c_k b_{n+m-k}) - \sum_{k\geqslant0}(-b_{n+m-k}c_k + b_{m-k}c_{n+k}) \\ = \sum_{k=0}^{n-1}(\nu c_k b_{n+m-k} + b_{n+m-k}c_k) = \nu n\,\delta_{n,-m}\,. \end{multline} \newpage \begin{center} \large\textbf{Sugawara construction} \end{center} Here we prove the Sugawara formula which represents the energy-momentum tensor $T(z)$ as a normally ordered product of two currents, \begin{equation} \label{sug} T(z) = \frac{\bar{\varkappa}_{ab}}{1+2K}:\!J^a(z)J^b(z)\!:\ \doteq \frac{\bar{\varkappa}_{ab}}{1+2K}\ \frac{1}{2\pi i} \oint_z\frac{dw}{w-z}J^a(w)J^b(z) \end{equation} \begin{equation} \label{km-vir} L_n = \frac{\bar{\varkappa}_{ab}}{1+2K}:\!\sum_k J^a_k\,J^b_{n-k}:\ \doteq \frac{\bar{\varkappa}_{ab}}{1+2K}\, (\sum_{k<0} J^a_k\,J^b_{n-k}+\sum_{k\geqslant 0}J^b_{n-k} J^a_k) \end{equation} One uses the Wick formula to check OPE (\ref{1}) for $T$ and obtain, in agreement with (\ref{2}), \begin{equation} \label{} T(z)\,J^a(w) = \frac{J^a(w)}{(z-w)^2} + \frac{\partial J^a(w)}{z-w}\,. \end{equation} The calculations on the mode level are explicitly shown below. Let's fix the notation and remind some useful formulas involving the group structure constants. Let \begin{equation} \label{Killing} \varkappa^{ab} = f_{j}^{ai}f_{i}^{bj}\,,\qquad \varkappa^{ab}=\varkappa^{ba}\,,\qquad \bar{\varkappa}_{ac}\varkappa^{cb} = \delta^b_a\,,\qquad \bar{\varkappa}_{ab} = \bar{\varkappa}_{ba} \end{equation} be a (non-degenerate) Killing form and its inverse. Tensor $\varkappa^{ai}f_{a}^{jk}$ is known to be fully antisymmetric in $\{ijk\}$ (which is equivalent to the Ad-invariance of the Killing form), whence it is easily shown that \begin{equation} \label{} \bar{\varkappa}_{ia}f_{j}^{ak} = -\bar{\varkappa}_{ja}f_{i}^{ak}\,, \qquad \bar{\varkappa}_{jk}f_{i}^{aj}f_b^{ik} = \delta^a_b \end{equation} Let now \begin{equation} \label{} \bar{\varkappa}_{ab}:\!J^a(z)J^b(z)\!: \ \ = \sum_n z^{-n-2}\mathcal{L}_n \end{equation} Then we proceed in analogy with (\ref{evaljn})\,: \begin{multline} \label{ln} \mathcal{L}_n = \frac{\bar{\varkappa}_{ab}}{2\pi i} \oint dz\,z^{n+1}:\!J^a(z)J^b(z)\!: = \frac{\bar{\varkappa}_{ab}}{(2\pi i)^2}\oint dz\,z^{n+1} \oint_z\frac{dw}{w-z}J^a(w)J^b(z) \\ = \frac{\bar{\varkappa}_{ab}}{(2\pi i)^2}\oint dz \oint dw\ \sum_{k\geqslant 0}(\,z^{k+n+1}w^{-k-1}J^a(w)J^b(z) + z^{n-k}w^k J^b(z)J^a(w)\,) \\ = \bar{\varkappa}_{ab}\sum_{k\geqslant 0} (J^a_{-k-1}J^b_{k+n+1} + J^b_{n-k}J^a_k) = \bar{\varkappa}_{ab}:\!\sum_k J^a_k\,J^b_{n-k}: \end{multline} To compare the normalizations of $\mathcal{L}_n$ and $L_n$, one calculates \begin{multline} [\mathcal{L}_n,\,J^c_m] = \\ = \bar{\varkappa}_{ab}\left[\sum_{k<0}\left([J^a_k,\,J^c_m]\,J^b_{n-k} + J^a_k\,[J^b_{n-k},\,J^c_m]\right) + \sum_{k\geqslant 0}\left([J^b_{n-k},\,J^c_m]\,J^a_k + J^b_{n-k}\,[J^a_k,\,J^c_m]\right)\right] \\ = \bar{\varkappa}_{ab}\left[K\sum_k \left(\varkappa^{ac}k\delta_{k,-m}J^b_{n-k} + \varkappa^{bc}(n-k)\delta_{n-k,-m}J^a_k\right)\right. \\ \left. + f_{d}^{ac}\left(\sum_{k<0}J^d_{k+m}J^b_{n-k} + \sum_{k\geqslant 0}J^b_{n-k}J^d_{k+m}\right) + f_{d}^{bc}\left(\sum_{k<0}J^a_k J^d_{m+n-k} + \sum_{k\geqslant 0}J^d_{m+n-k}J^a_k\right)\right] \\ = -2K\,m\,J^c_{n+m} + \bar{\varkappa}_{ab}f_d^{ac} \left(\sum_{k<0}\left(J^d_{k+m}J^b_{n-k}-J^d_k J^b_{m+n-k}\right)\right.\\ + \left.\sum_{k\geqslant 0}\left(J^b_{n-k}J^d_{k+m} -J^b_{n+m-k}J^d_k\right)\right) = -2K\,m\,J^c_{n+m} + \bar{\varkappa}_{ab}f_d^{ac} \sum_{k=0}^{m-1}\,[J^d_k,\,J^b_{n+m-k}] \\ = -2K\,m\,J^c_{n+m} - m \bar{\varkappa}_{ab}f_d^{ca}f_e^{db}J^e_{m+n} = -(1+2K)\,m\,J^c_{n+m} \end{multline} Now it is prompting to identify $\mathcal{L}_n$ with $(1+2K)L_n$ and check the Virasoro algebra: \begin{multline} [L_n,\,L_m] = \frac{\bar{\varkappa}_{ab}}{1+2K} \left[L_n,\,:\!\sum_k J^a_k\,J^b_{m-k}:\,\right] \\ =\frac{\bar{\varkappa}_{ab}}{1+2K}\left[\sum_{k<0}\left( [L_n,\,J^a_k]\,J^b_{m-k} + J^a_k\,[L_n,\,J^b_{m-k}]\right) + \sum_{k\geqslant 0}\left([L_n,\,J^b_{m-k}]\,J^a_k + J^b_{m-k}\,[L_n,\,J^a_k]\right)\right] \\ = -\frac{\bar{\varkappa}_{ab}}{1+2K}\left[\sum_{k<0}\left( k\,J^a_{n+k}\,J^b_{m-k} + (m-k)\,J^a_k\,J^b_{n+m-k}\right)\right. \\ \left. + \sum_{k\geqslant 0}\left((m-k)\,J^b_{n+m-k}\,J^a_k + k\,J^b_{m-k}\,J^a_{n+k}\right)\right] = -\frac{\bar{\varkappa}_{ab}}{1+2K}\left[\sum_{k<0} k\,J^a_{n+k}\,J^b_{m-k}\right. \\ \left. + \sum_{k<-n}(m-n-k)\,J^a_{n+k}\,J^b_{m-k}+ \sum_{k\geqslant -n}(m-n-k)\,J^b_{m-k}\,J^a_{n+k} +\sum_{k\geqslant 0} k\,J^b_{m-k}\,J^a_{n+k}\right] \\ = \frac{\bar{\varkappa}_{ab}}{1+2K}\left[(n-m)\left( \sum_{k<-n}J^a_{n+k}\,J^b_{m-k} +\sum_{k\geqslant -n}J^b_{m-k}\,J^a_{n+k}\right) -\sum_{k=-n}^{-1}k\,[J^a_{n+k},\,J^b_{m-k}]\right] \\ = \frac{\bar{\varkappa}_{ab}}{1+2K}\left[ (n-m):\!\sum_k J^a_k\,J^b_{n+m-k}: - \varkappa^{ab}K\delta_{n,-m}\sum_{k=-n}^{-1}k(n+k)\right] \\ = (n-m)L_{n+m} + \frac{\delta^a_a K}{1+2K}\,\delta_{n,-m} \sum_{k=1}^n k(n-k) = (n-m)L_{n+m} + \frac{c}{12}\,n(n^2-1)\,\delta_{n,-m} \end{multline} where $c$ is now explicitly given in terms of $K$ and $d=\delta^a_a$\,: \begin{equation} \label{} c = \frac{2Kd}{1+2K} \end{equation} \newpage \begin{center} \large\textbf{Free scalar field} \end{center} On the classical level, free massless scalar theory in 2-dimensional Euclidean space is conformally invariant and characterized by the following Lagrangian, equations of motion, and stress tensor: \begin{gather} \mathcal{L} = \frac{1}{2}\,d^2x\,\partial_\mu\varphi\,\partial_\mu\varphi = dzd\bar{z}\,\partial_z\varphi\,\partial_{\bar z}\varphi\,, \\ \partial_z\partial_{\bar z}\varphi(z,\bar{z}) = 0 \ \ \ \ \ \Rightarrow \ \ \ \varphi(z,\bar{z})=\varphi(z)+\bar\varphi(\bar{z})\,, \ \ \ \partial_{\bar z}\varphi(z) = 0\,, \ \ \ \partial_z\bar\varphi(\bar{z}) = 0\,, \\ T_{\mu\nu} = \partial_\mu\varphi\,\partial_\nu\varphi -\frac{1}{2}\,\delta_{\mu\nu}\partial_\lambda\varphi\,\partial_\lambda\varphi \,, \ \ \ T_{z\bar z} = 0\,, \ \ \ T_{zz}=\partial_z\varphi\,\partial_z\varphi\,, \ \ \ \partial_{\bar z}T_{zz}=0\,. \end{gather} As a quantum field, $\varphi$ formally displays logarithmic behaviour of the two-point correlation function, \begin{equation} \label{} <\varphi(z,\bar{z})\,\varphi(w,\bar{w})> \ = \ (-4\partial_z\partial_{\bar z})^{-1} \ = \ \frac{-\ln\!|z-w|^2}{4\pi}\,, \end{equation} which violates positivity. However, its derivative $i\,\partial\varphi$ is a valid quantum field due to \begin{equation} \label{} <\partial_z\varphi(z)\,\partial_w\varphi(w)> \ = \ \frac{-1}{4\pi(z-w)^2}\,. \end{equation} This suggests the following quantum conformal theory of a free massless field \begin{equation} \label{a} a(z) = \sum_n\frac{a_n}{z^{n+1}} = 2i\sqrt\pi\partial_z\varphi \end{equation} with $T$ multiplied by \,$-2\pi$ (usual practice in Euclidean CFT${}_2$)\,: \begin{equation} \label{tfree} a(z)\,a(w) = \frac{1}{(z-w)^2}\,, \ \ \ \ \ \ \ T(z) = \frac{1}{2}:\!a\,a\!:\!(z)\,. \end{equation} Using the Wick formula, one readily cheks (\ref{1}),\,(\ref{2}) and establishes that $a(z)$ is a primary field with $\Delta=1$ and $T(z)$ a genuine stress tensor with $c=1$\,. Quite analogously to (\ref{jzjw}), (\ref{jnjm}) and (\ref{ln}) we deduce \begin{equation} \label{} [a(z),\,a(w)] = -\delta'(z-w)\,, \ \ \ \ \ [a_n,\,a_m] = n\,\delta_{m,-n}\,, \ \ \ \ \ T_n = \frac{1}{2}\sum_{k}\,:\!a_k a_{n-k}\!: \end{equation} and verify eq.\,(\ref{lphi})\,:\ \ $[T_n,\,a_m] = -m\,a_{n+m}$\,. It's interesting to observe that if we define, instead of (\ref{tfree}), \begin{equation} \label{tlam} t(z) = \frac{1}{2}:\!a\,a\!:\!(z) \,+\, (\frac{1}{2}-\lambda)\,\partial a(z) \end{equation} we also obtain a stress tensor whose OPE properties exactly coincide with those of (\ref{t}), whereas $a(z)$ plays the role of the current $j$ (\ref{j}), and $\nu$ is set to $1$\,. This fact allows one to treat the free-field conformal theory just described as a bosonized version of the generalized ghost model. Note that for $\lambda\neq \frac{1}{2}$\,, both $a(z)$ and $j(z)$ (\ref{j}) are not primary fields due to (\ref{tj})\,. Let us now study the properties of so-called \emph{vertex operators} \begin{equation} \label{Vz} V^\alpha(z) = \ :\!e^{2i\alpha\sqrt{\pi}\varphi(z)}\!: \ = Y^\alpha \exp(-\alpha\sum_{n<0}\frac{a_n}{nz^n}) \ z^{\alpha a_0}\, \exp(-\alpha\sum_{n>0}\frac{a_n}{nz^n})\,, \end{equation} where $\varphi$ is written in the form prompted by (\ref{a})\,, \begin{equation} \label{iphi} 2i\sqrt{\pi}\varphi(z) = \ln Y + a_0\ln z - \sum_{n\neq0}\frac{a_n}{nz^n}\,, \end{equation} and $Y$ is an invertible operator specified by \begin{equation} \label{Ja} a_n Y = Y a_n \ \ (n\neq0)\,, \ \ \ [a_0,\,\ln Y] = 1 \ \ \ \ \ \Longrightarrow \ \ \ \ [a_0,Y] = Y, \end{equation} so it is natural to treat $\ln Y$ as a creation operator. Using \begin{equation} \label{} [a(z),\,\frac{a_n}{nw^n}] = -\frac{z^{n-1}}{w^n}\,, \ \ \ \ \ \ [a(z),\,\ln Y] = \frac{1}{z}\,, \end{equation} one obtains \begin{equation} \label{[aV]} [a(z),\,V^\alpha(w)] = \alpha V^\alpha(w)\left(\frac{1}{z} + \sum_{n<0}\frac{z^{n-1}}{w^n} + \sum_{n>0}\frac{z^{n-1}}{w^n}\right) = \alpha V^\alpha(w)\,\delta(z-w)\,, \end{equation} which implies the following OPE\,: \begin{equation} \label{aV} a(z)\,V^\alpha(w) = \frac{\alpha V^\alpha(w)}{z-w}\,, \ \ \ \ \ \ V^\alpha(z)\,a(w) = -\frac{\alpha V^\alpha(w)}{z-w}\,. \end{equation} To deduce similar relations for the stress tensor $T(z)$\,, we need some normal products. First of all, differentiating (\ref{Vz}) gives \begin{equation} \label{:aV:} :\!a(z)V^\alpha(z)\!: \ = \ \frac{1}{\alpha}\,\partial_z V^\alpha(z)\,. \end{equation} Then \begin{equation} \label{:Va:} :\!V^\alpha(z)\,a(z)\!: \ = \ (\frac{1}{\alpha}-\alpha)\,\partial_z V^\alpha(z)\,, \end{equation} as is shown by the following calculation: \begin{multline*} :\!V^\alpha(z)a(z)\!: \ = \frac{1}{2\pi i}\oint_z\frac{dx}{x-z}V^\alpha(x)\,a(z) = \frac{1}{2\pi i}\oint_z\frac{dx}{x-z}\,a(z)V^\alpha(x) \\ = \frac{1}{2\pi i}\oint_z\frac{dx}{x-z}\left(\frac{\alpha V^\alpha(x)}{z-x} + :\!aV^\alpha\!:\!(x) + \ldots\right) \\ = \frac{1}{2\pi i}\oint_z\frac{dx}{x-z}\left[\frac{\alpha}{z-x} (V^\alpha(z) + (x-z)\partial V^\alpha(z)) + :\!aV^\alpha\!:\!(z)\right] = \ :\!aV^\alpha\!:\!(z) - \alpha\partial V^\alpha(z)\,. \\ \end{multline*} Now we can compute \begin{multline} \label{VT} V^\alpha(z)\,T(w) = \frac{1}{4\pi i}\oint_w\frac{dx}{x-w} (\underbrace{V^\alpha(z)\,a(x})a(w) + a(x)\underbrace{V^\alpha(z)a(w})) \\ = -\frac{\alpha}{4\pi i}\oint_w\frac{dx}{x-w} \left(\frac{V^\alpha(x)a(w)}{z-x} + \frac{a(x)V^\alpha(w)}{z-w}\right) \\ = -\frac{\alpha}{4\pi i}\oint_w\frac{dx}{x-w} \left(\frac{-\alpha V^\alpha(w)}{(z-x)(x-w)} + (\frac{1}{\alpha} - \alpha)\frac{\partial V^\alpha(w)}{z-x} + \frac{\alpha V^\alpha(w)}{(z-w)(x-w)} + \frac{1}{\alpha} \frac{\partial V^\alpha(w)}{z-w}\right) \\ = \frac{\alpha^2}{2}\frac{V^\alpha(w)}{(z-w)^2} + (\frac{\alpha^2}{2} - 1)\frac{\partial V^\alpha(w)}{z-w}\,, \end{multline} whence \begin{equation} \label{TV} T(z)\,V^\alpha(w) = \frac{\alpha^2}{2}\frac{V^\alpha(w)}{(z-w)^2} + \frac{\partial V^\alpha(w)}{z-w}\,. \end{equation} We see that vertex operator $V^\alpha(z)$ is a primary field of conformal dimension $\Delta=\alpha^2/2$\,. Note that using a generalized stress tensor (\ref{tlam}) results in $\Delta=\alpha^2/2+\alpha(\lambda-1/2)$\,. This is evident from \begin{equation} \label{} [\partial a(z),\,V^\alpha(w)] = \alpha V^\alpha(w)\,\delta'(z-w)\,, \ \ \ \ \ \partial a(z)\,V^\alpha(w) = -\frac{\alpha V^\alpha(w)}{(z-w)^2}\,. \end{equation} To evaluate (ordinary) products of vertex operators, we use the relations \begin{gather*} z^{\alpha a_0} Y^\beta = z^{\alpha\beta} Y^\beta z^{\alpha a_0}\,, \ \ \ \ \ \ \left[\sum_{n>0}\frac{a_n}{nz^n}\,, \ \sum_{m<0}\frac{a_m}{mw^m}\right] = -\sum_{n>0}\frac{w^n}{nz^n} = \ln(1-\frac{w}{z})\,, \\ \exp(-\alpha\sum_{n>0}\frac{a_n}{nz^n})\exp(-\beta\sum_{m<0}\frac{a_m}{mw^m}) = \left(\frac{z-w}{z}\right)^{\alpha\beta}\! \exp(-\beta\sum_{m<0}\frac{a_m}{mw^m})\exp(-\alpha\sum_{n>0}\frac{a_n}{nz^n}) \end{gather*} and come to general formula \begin{equation} \label{VV} V^\alpha(z)V^\beta(w) = (z-w)^{\alpha\beta}:\!V^\alpha(z)V^\beta(w)\!: \end{equation} which has very interesting particular cases. For instance, operators $\psi^{\pm}(z)\doteq V^{\pm 1}(z)$ behave like fermionic fields: \begin{equation} \label{V1} [\psi^+(z),\psi^+(w)]_+ = [\psi^-(z),\psi^-(w)]_+ = 0\,, \ \ \ \ \ [\psi^+(z),\psi^-(w)]_+ = \delta(z-w) \end{equation} (eq.\,(\ref{diff}) is useful in deriving the last relation)\,. They have conformal weight $1/2$ (however, $\Delta(\psi^+)=\lambda, \ \Delta(\psi^-)=1-\lambda$ \ for the general case $\lambda\neq \frac{1}{2}$)\,, and develop the following OPE\,: \begin{equation} \label{psipsi} \psi^+(z)\,\psi^+(w) = \psi^-(z)\,\psi^-(w) = 0\,, \ \ \ \ \ \ \psi^+(z)\,\psi^-(w) = \psi^-(z)\,\psi^+(w) = \frac{1}{z-w}\,. \end{equation} Thus, vertex operators $V^{\pm 1}(z)$ \,(\ref{Vz}) provide an explicit \emph{bosonization} of the (conformal) theory of free fermions. Another remarkable example is produced by a triple of fields (with $\Delta=1$) \begin{equation} \label{three} J^0(z) \doteq \frac{a(z)}{\sqrt{2}}\,, \ \ \ \ \ \ J^{\pm}(z) \doteq V^{\pm\sqrt{2}}(z)\,. \end{equation} Using eq.\,(\ref{diffn}) for $n=1$ and expanding in $z\!-\!w$ inside $:\!J^+(z)J^-(w)\!:$ and $:\!J^-(w)J^+(z)\!:$ leads to \begin{equation} \label{[JJ]} [J^+(z),\,J^-(w)] = -\delta'(z-w) + 2J^0(w)\delta(z-w)\,. \end{equation} Together with (\ref{aV})\,, this corresponds to the (centrally extended) \,$\text{sl}_2$ OPE algebra: \begin{equation} \label{sl2} J^+(z)\,J^-(w) = \frac{1}{(z-w)^2} + \frac{2J^0(w)}{z-w}\,, \ \ \ \ \ J^0(z)\,J^{\pm}(w) = \frac{\pm J^{\pm}(w)}{z-w}\,. \end{equation} \end{document}