\documentstyle[12pt]{article} \textwidth 6.1in \textheight 9in \oddsidemargin .3in \evensidemargin .3in \begin{document} \thispagestyle{empty} \begin{flushright} JINR preprint E2-93-159 \\ hep-th/9305048 \end{flushright} \begin{center} \Large{A CLOSED EXPRESSION\\FOR THE UNIVERSAL $\cal R$-MATRIX\\ IN A NON-STANDARD QUANTUM DOUBLE} \end{center} \vspace{.5cm} \begin{center} \large{A.A.VLADIMIROV}${}^{\,*\,\diamond}$ \end{center} \begin{center} \large{Laboratory of Theoretical Physics, \\ Joint Institute for Nuclear Research, \\ Dubna, Moscow region, 141980, Russia} \end{center} \vspace{1cm} \begin{center} ABSTRACT \end{center} In recent papers of the author, a method was developed for constructing quasitriangular Hopf algebras (quantum groups) of the quantum-double type. As a by-product, a novel non-standard example of the quantum double has been found. In the present paper, a closed expression (in terms of elementary functions) for the corresponding universal $\cal R$-matrix is obtained. In reduced form, when the number of generators becomes two instead of four, this quantum group can be interpreted as a deformation of the Lie algebra $[x,h]=2h$ in the context of Drinfeld's quantization program. \vspace{4cm} ${}^*$ Work supported in part by the Russian Foundation of Fundamental Research (grant 93-02-3827) \vspace{.3cm} ${}^\diamond$ E-mail: alvladim@theor.jinrc.dubna.su \pagebreak In papers~\cite{Vl1,Vl2} we have modified the recipes of~\cite{FRT,Ma} and developed a regular method for constructing a quantum double out of any invertible constant matrix solution $R$ of the quantum Yang-Baxter equation (QYBE) \begin{equation} R_{12}R_{13}R_{23}=R_{23}R_{13}R_{12}\,. \label{1} \end{equation} To illustrate the efficiency of the method, an $R$-matrix from the two-parameter class \begin{equation} \left( \begin{array}{cccc}1&p&-p&pq\\0&1&0&q\\0&0&1&-q\\0&0&0&1 \end{array} \right) \label{2} \end{equation} discovered by D.Gurevich (cited in~\cite{Ly}) and studied also in [6 --12], has been taken as an input (actually, with $p=q=1$). The result~\cite{Vl2} is a new non-standard quantum double with four generators $\{b,g,v,h\}$ obeying the following relations: $$ [g,b]=[h,b]=2\sinh g\,,\ \ \ [g,v]=[h,v]=-2\sinh h\,, $$ $$ [b,v]=2(\cosh g)v+2(\cosh h)b\,,\ \ \ \ [g,h]=0\,, $$ \begin{equation} \Delta(b)=e^g\otimes b+b\otimes e^{-g}\,,\ \ \ \Delta(v)=e^h\otimes v+v\otimes e^{-h}\,, \label{3} \end{equation} $$ \Delta(g)=g\otimes 1+1\otimes g\,,\ \Delta(h)=h\otimes 1+1\otimes h\,,\ S^{\pm1}(g)=-g\,, $$ $$ S^{\pm1}(h)=-h\,,\ S^{\pm1}(b)=-b\pm2\sinh g\,,\ S^{\pm1}(v)=-v\mp2\sinh h\,. $$ A month later, Burdik and Hellinger~\cite{BH} introduced a quantum double also related to $R$-matrix (\ref{2}) in terms of generators $\{\tau ,\pi ,T,P\}$ and a parameter $\gamma $. It is not difficult to verify that their double is isomorphic to (\ref{3}) due to the following identification: \begin{equation} \tau =e^g\,b\,,\ \ \pi =\frac{1-e^{-2g}}{\gamma}\,,\ \ T=h\,,\ \ P=\frac{\gamma }{2}\,e^h\,v\,. \label{4} \end{equation} The universal $\cal R$-matrix of the quantum double (\ref{3}) is displayed in~\cite{Vl2} as several terms of its power expansion in $g$ and $h$ (in~\cite{BH} -- as a power series in appropriately chosen combinations of generators). The main result of the present paper is an explicit formula for $\cal R$: \begin{equation} {\cal R}=\exp\left\{\frac{g\otimes 1+1\otimes h} {\sinh(g\otimes 1+1\otimes h)}(\sinh g\otimes v+b\otimes \sinh h) \right\}\,. \label{5} \end{equation} This has been guessed with the use of computer (namely, the symbolic manipulation program FORM~\cite{Ve}) and then proved by hand. I believe that expanding (\ref{5}) and taking (\ref{4}) into account should eventually yield the power-series expression for $\cal R$ given in \cite{BH}. The key property of $\cal R$ to be proved is quasicocommutativity~\cite{Dr2}. For example, the $\cal R$-matrix (\ref{5}) must obey \begin{equation} {\cal R}(e^h\otimes v+v\otimes e^{-h}){\cal R}^{-1}= e^{-h}\otimes v+v\otimes e^h\,. \label{6} \end{equation} Denoting ${\cal R}=\exp A$ we come to \begin{equation} 2(v\otimes \sinh h-\sinh h\otimes v)=[A,\Delta(v)]+ \frac{1}{2}[A,[A,\Delta(v)]]+\ldots \,, \label{7} \end{equation} as it follows from the Hadamard formula. Denoting also \begin{equation} \Phi=\frac{z}{\sinh z}\,,\ \ \Phi'=\frac{d}{dz}\,\frac{z}{\sinh z}\ \ \ \ {\rm with} \ \ \ z=g\otimes 1+1\otimes h\,, \label{8} \end{equation} we find \begin{equation} [A,\Delta(v)]=2(v\otimes \sinh h-\sinh h\otimes v)- 2(\Phi+\Phi')D\,, \label{9} \end{equation} $$D=\sinh(g\otimes 1+1\otimes h)\,(v\otimes \sinh h-\sinh h\otimes v)$$ \begin{equation} +\sinh(h\otimes 1+1\otimes h)\,(\sinh g\otimes v+b\otimes \sinh h)\,. \label{10} \end{equation} From the relations \begin{equation} [g\otimes 1+1\otimes h\,,\sinh g\otimes v+b\otimes \sinh h]=0\,, \label{11} \end{equation} \begin{equation} [g\otimes 1+1\otimes h\,,\sinh h\otimes v-v\otimes \sinh h]=0\,, \label{12} \end{equation} \begin{equation} [g\otimes 1+1\otimes h\,,D]=0\,, \label{13} \end{equation} \begin{equation} [\sinh g\otimes v+b\otimes \sinh h\,,D]=2\sinh(g\otimes 1+1\otimes h)D \,, \label{14} \end{equation} we deduce \begin{equation} [A,\Phi]=[A,\Phi']=[D,\Phi]=[D,\Phi']=0\,, \label{15} \end{equation} \begin{equation} [A\,,v\otimes \sinh h-\sinh h\otimes v]=2\Phi D\,, \label{16} \end{equation} \begin{equation} [A,D]=2(g\otimes 1+1\otimes h)D\,. \label{17} \end{equation} The last equality enables us to keep multiple commutators in (\ref{7}) under control and sum them up, with a desired result. There is no need of a special proof of the other requirements on $\cal R$~\cite{Dr2}, because an iterative solution of (\ref{6}) is unique in the Hopf algebra (\ref{3}). Therefore, the universal $\cal R$-matrix (\ref{5}) obeys QYBE. \vspace{.5cm} It is also interesting to consider the reduced version of (\ref{3}), that is the Hopf algebra with generators $\{v,h\}$ and relations $$ [v,h]=2\sinh h\,, $$ \begin{equation} \Delta(v)=e^h\otimes v+v\otimes e^{-h}\,,\ \ \ \Delta(h)=h\otimes 1+1\otimes h\,, \label{18} \end{equation} $$ S^{\pm1}(h)=-h\,,\ \ \ S^{\pm1}(v)=-v\mp2\sinh h\,. $$ Algebra (\ref{18}) is a subalgebra of (\ref{3}) and, at the same time, the quotient algebra with respect to the centre of (\ref{3}). The latter is generated by the elements \begin{equation} \{\ \ h\!-\!g\,,\ \ (\sinh g)v+(\sinh h)b\ \ \}\,. \label{21} \end{equation} Simply speaking, (\ref{3}) reduces to (\ref{18}) by means of a substitution \begin{equation} g=h\,,\ \ \ \ \ b=-v\,. \label{19} \end{equation} Another way to get (\ref{18}) is to begin with the $R$-matrix (\ref{2}) and use the original Majid's procedure~\cite{Ma}, instead of the above one~\cite{Vl1,Vl2}, to build a quasitriangular Hopf algebra. Recall \cite{Vl1} that Majid's approach is based on the $=R^{\pm}$ duality whereas we proceed from $=R^{-1}$. In the $U_qsl_2$ case both procedures lead to the same result~\cite{Vl1,Ma}, but in the case (\ref{2}), due to $R^+\equiv R_{12}=R_{21}^{-1}\equiv R^-$, the resulting Hopf algebras are substantially different. By construction, the Hopf algebra (\ref{18}) is quasitriangular (but is not a quantum double, of course). Its universal $\cal R$-matrix is obtained by substituting (\ref{19}) into (\ref{5}) and looks like \begin{equation} {\cal R}=\exp\left\{\Delta\!\left(\frac{h}{\sinh h}\right) (\sinh h\otimes v-v\otimes \sinh h)\right\}\,. \label{20} \end{equation} By the way, to prove (\ref{20}) directly is easier than (\ref{5}) because $[A,[A,\Delta(v)]]$ in eq. (\ref{7}) vanishes in this case. It is worth mentioning that the standard matrix format for an algebra (\ref{18}) admits, analogously to \cite{EOW} and [15 --17], an exact exponential parametrization: \begin{equation} \left( \begin{array}{cc}e^h&v\\0&e^{-h} \end{array}\right)= \exp\left( \begin{array}{cc}h&y\\0&-h \end{array}\right)\,,\ \ \ [y,h]=2h\,, \label{22} \end{equation} where \begin{equation} v=\frac{\sinh h}{h}y+\cosh h-\sinh h-\frac{\sinh h}{h}\,. \label{23} \end{equation} A similar reparametrization, \begin{equation} v=\frac{\sinh h}{h}x\,, \label{30} \end{equation} transforms (\ref{18}) into a Hopf algebra \begin{equation} [x,h]=2h\,, \label{24} \end{equation} \begin{equation} \Delta(h)=h\otimes 1+1\otimes h\,, \label{25} \end{equation} \begin{equation} \Delta(x)=\Delta\!\left(\frac{h}{\sinh h}\right)\left(e^h\otimes \frac{\sinh h}{h}x+\frac{\sinh h}{h}x\otimes e^{-h}\right)\,, \label{26} \end{equation} \begin{equation} S^{\pm1}(h)=-h\,,\ \ \ S^{\pm1}(x)=-x+2\left(h\frac{e^{\mp h}}{\sinh h} -1\right)\,, \label{27} \end{equation} which can be viewed as a deformation of the universal enveloping algebra of (\ref{24}) treated as a (trivial) Hopf algebra \begin{equation} [x,h]=2h\,,\ \ \Delta_0(h)=h\otimes 1+1\otimes h\,,\ \ \Delta_0(x)=x\otimes 1+1\otimes x\,, \label{28} \end{equation} \begin{equation} S_0(h)=-h\,,\ \ \ \ S_0(x)=-x\,. \label{29} \end{equation} The universal $\cal R$-matrix takes the form $$ {\cal R}=\exp\left\{\Delta\!\left(\frac{h}{\sinh h}\right) \left(\frac{\sinh h}{h}\otimes \frac{\sinh h}{h}\right) (h\otimes x-x\otimes h)\right\} $$ \begin{equation} =1\otimes 1+h\otimes x-x\otimes h+{\cal O}(h^2)\,. \label{31} \end{equation} According to Drinfeld~\cite{Dr3}, this can be interpreted as the quantization (with $\hbar=1$) of the classical $r$-matrix \begin{equation} r=h\otimes x-x\otimes h\,. \label{32} \end{equation} It is proved in~\cite{Dr3} that such a quantization exists and is unique. Our relations (\ref{26}), (\ref{27}) and (\ref{31}) produce it in an explicit form. Universal $\cal R$-matrix (\ref{31}) obeys QYBE (\ref{1}) in an abstract algebra (\ref{24}) as well as in all its representations. For instance, to recover the $R$-matrix (\ref{2}) with $p=q=1$, one has to substitute into (\ref{31}) the $2\times2$-matrices \begin{equation} x=\left(\begin{array}{cc}1&0\\0&-1 \end{array}\right)\,,\ \ \ \ \ h=\left(\begin{array}{cc}0&-1\\0&0 \end{array}\right)\,. \label{33} \end{equation} In conclusion we should remark that in~\cite{Oh}, where the problem of quantizing (\ref{24}) was also studied, an explicit formula has been written for an invertible element $\cal F$ which, according to~\cite{Dr3}, deforms the coproduct, \begin{equation} \Delta(x)={\cal F}\Delta_0(x){\cal F}^{-1}\,, \label{34} \end{equation} and is related to universal $\cal R$-matrix by \begin{equation} {\cal R}_{12}={\cal F}_{21}{\cal F}_{12}^{-1}\,. \label{35} \end{equation} However, a straightforward calculation shows that the r.h.s. of (\ref{35}) with $\cal F$ given in~\cite{Oh} neither coincides with (\ref{31}) nor obeys QYBE (\ref{1}). An open question is whether $\cal R$ (\ref{31}) (and maybe also $\cal F$ in closed form) can be obtained by the very interesting direct method recently proposed~\cite{FM} for evaluating quantum objects like $\cal R$ and $\cal F$ as functionals of the corresponding classical $r$-matrix. \vspace{.5cm} \noindent {\bf Acknowledgments} \vspace{.3cm} \noindent I wish to thank I.Aref'eva, L.Avdeev, L.Faddeev, A.Isaev, P.Kulish, V.Lyakhovsky, V.Priezzhev, P.Pyatov and V.Tolstoy for helpful discussions. \begin{thebibliography}{99} \bibitem{Vl1} A. A. Vladimirov, JINR preprint E2-92-506; to appear in {\em MPLA}. \bibitem{Vl2} A. A. Vladimirov, JINR preprint E2-93-34; to appear in {\em Z. Phys. C} . \bibitem{FRT} L. D. Faddeev, N. Yu. Reshetikhin and L. A. Takhtajan, {\em Algebra i Analiz} {\bf 1}, Vol. 1, 178 (1989); English transl. in {\em Leningrad Math. J.} {\bf 1}, 193 (1990). \bibitem{Ma} S. Majid, {\em Int. J. Mod. Phys.} {\bf A5}, 1 (1990). \bibitem{Ly} V. V. Lyubashenko, {\em Usp. Mat. Nauk}\, {\bf 41}, Vol. 5, 185 (1986). \bibitem{DMMZ} E. E. Demidov, Yu. I. Manin, E. E. Mukhin and D. V. Zhdanovich, {\em Progr. Theor. Phys. Suppl.} {\bf 102}, 203 (1990). \bibitem{Za} S. Zakrzewski, {\em Lett. Math. Phys.} {\bf 22}, 287 (1991). \bibitem{EOW} H. Ewen, O. Ogievetsky and J. Wess, {\em Lett. Math. Phys.} {\bf 22}, 297 (1991). \bibitem{Hl} L. Hlavaty, {\em J. Phys.} {\bf A25}, L63 (1992). \bibitem{Hi} J. Hietarinta, {\em Phys. Lett.} {\bf A165}, 245 (1992). \bibitem{Oh} C. Ohn, {\em Lett. Math. Phys.} {\bf 25}, 85 (1992). \bibitem{BH} \v{C}. Burdik and P. Hellinger, Charles Univ. preprint PRA-HEP-93/2. \bibitem{Ve} J. A. M. Vermaseren, {\em Symbolic manipulation with FORM} (Amsterdam, 1991). \bibitem{Dr2} V. G. Drinfeld, {\em Algebra i Analiz} {\bf 1}, Vol. 2, 30 (1989); English transl. in {\em Leningrad Math. J.} {\bf 1}, 321 (1990). \bibitem{VZW} S. P. Vokos, B. Zumino and J. Wess, {\em Z. Phys.} {\bf C48}, 65 (1990). \bibitem{Co} E. Corrigan, D. B. Fairlie, P. Fletcher and R. Sasaki, {\em J. Math. Phys.} {\bf 31}, 776 (1990). \bibitem{OW} O. Ogievetsky and J. Wess, {\em Z. Phys.} {\bf C50}, 123 (1991). \bibitem{Dr3} V. G. Drinfeld, {\em DAN SSSR} {\bf 273}, 531 (1983); English transl. in {\em Sov. Math. Dokl.} {\bf 28}, 667 (1983). \bibitem{FM} L. Freidel and J. M. Maillet, ENS Lyon preprint ENSLAPP 399/92. \end{thebibliography} \end{document}