\documentstyle[12pt]{article} \textwidth 6.1in \textheight 9in \oddsidemargin .3in \evensidemargin .3in \begin{document} \thispagestyle{empty} \begin{flushright} JINR preprint E2-94-39 \\ hep-th/9402067 \end{flushright} \begin{center} \Large{ COADDITIVE DIFFERENTIAL COMPLEXES \\ ON QUANTUM GROUPS AND QUANTUM SPACES} \end{center} \vspace{.5cm} \begin{center} \large{A.A.VLADIMIROV}${}^{\,*}{}^{\,\diamond}$ \end{center} \begin{center} \large{Bogolubov Laboratory of Theoretical Physics, \\ Joint Institute for Nuclear Research, \\ Dubna, Moscow region 141980, Russia} \end{center} \vspace{1cm} \begin{center} ABSTRACT \end{center} A regular way to define an additive coproduct (or {\em coaddition}) on the $q$-deformed differential complexes is proposed for quantum groups and quantum spaces related to the Hecke-type $R$-matrices. Several examples of braided coadditive differential bialgebras (Hopf algebras) are presented. \vspace{6cm} ${}^*$ E-mail: alvladim@thsun1.jinr.dubna.su \vspace{.3cm} ${}^\diamond$ Work supported in part by the Russian Foundation of Fundamental Research (grant No. 93-02-3827). \pagebreak {\bf 1.} Recently, an additive version of coproduct (or rather {\em coaddition}) has been observed in various quantum ($q$-deformed) algebras~\cite{Maj-add,Mey,Maj-coa}. While in the ordinary Lie algebras this additional algebraic structure is quite natural and almost trivial, in a $q$-deformed situation it requires nontrivial braiding rules~\cite{Maj-kit}, thus making the corresponding quantum algebras the {\em braided coadditive bialgebras} (actually, Hopf algebras). A related and very interesting question is a possible bialgebra structure of differential complexes, i.e., a concept of {\em differential bialgebras}~\cite{Mal,Man}. Brzezinski~\cite{Br} has shown that the existence of a bialgebra of this type implies the {\em bicovariance} of the corresponding differential calculus~\cite{Wo,Ju,AC}. Therefore, ones interest in the braided coaddition in differential complexes could be at least threefold: -- it is interesting by itself, as an additional algebraic structure; -- it can provide us with a purely Hopf-algebraic criterion for selecting $q$-deformed differential calculi; -- it might play a role of a ``shift'' in the physical interpretation of the corresponding quantum space. In~\cite{IV}, among other examples, several coadditive differential bialgebras have been obtained. The aim of the present paper is to give a systematic approach to this problem for quantum algebras generated by the $R$-matrices of the Hecke type (for instance, the $GL_q(N)$ ones~\cite{FRT}). Proceeding in this way, we recover the results of~\cite{IV}, describe a regular (and very simple) method to prove consistency (associativity) of the relevant braiding relations, and find a braided coadditive differential Hopf-algebra structure on the corresponding quantum group. This paper has developed from my attempts to interpret eqs.(\ref{48}),(\ref{49}) (see below) found by A.Isaev~\cite{IV}. I appreciate this contribution of his to the present work. \vspace{.3cm} {\bf 2.} Principal ideas of this paper can be best explained by considering the well accustomed quantum hyperplane \begin{equation} R_{12}\,x_1\,x_2=q\,x_2\,x_1\,. \label{1} \end{equation} We adopt the following notation~\cite{IP,IV}: \begin{equation} P_{12}R_{12}\equiv\hat{R}_{12}\equiv R\,, \ \ \ \hat{R}_{23}\equiv R'\,, \ \ \ R^{-1}\equiv\overline{R}\,, \ \ \ q^{-1}\equiv \bar{q}\,, \ \ \ q-\bar{q}\equiv \lambda \,, \label{2} \end{equation} and also, for any $a$, \begin{equation} a_1\equiv a\,, \ \ \ a_2\equiv a'\,,\ \ \ a_3\equiv a''\,,\ \ \ a\otimes 1\equiv a\,,\ \ \ 1\otimes a\equiv \tilde{a}\,. \label{3} \end{equation} For instance, the Yang-Baxter equation and the Hecke condition for the $R$-matrix look now, respectively, \begin{equation} R\,R'\,R=R'\,R\,R' \label{4} \end{equation} and \begin{equation} R-\overline{R}=\lambda \ \ \ \ {\rm or} \ \ \ \ R^2=1+\lambda R\,. \label{5} \end{equation} Our aim is to suppress explicit numerical indices (numbers of the corresponding auxiliary spaces) in formulae like (\ref{1}) in order not to mix them with others that we shall need very soon. Really, the whole differential complex~\cite{WZ} on the quantum hyperplane (\ref{1}) is defined by \begin{equation} \label{6} \left\{ \begin{array}{l} R\,x\,x'=q\,x\,x'\,, \\ R\,dx\,x'=\bar{q}\,x\,dx'\,, \\ R\,dx\,dx'=-\bar{q}\,dx\,dx'\,. \end{array} \right. \end{equation} Adding formally to this set of equations an extra one, \begin{equation} dx\,x'=q\,\overline{R}\,x\,dx'-\lambda \,q\,dx\,x'\,, \label{7} \end{equation} which trivially follows from the second line in (\ref{6}), one can recast (\ref{6}),(\ref{7}) into the matrix form \begin{equation} \chi _2\,\chi _1'=Y_{12}\,\chi _1\,\chi _2'\,, \label{8} \end{equation} where \begin{equation} \chi =\left( \begin{array}{c} x \\ dx \end{array} \right)\,, \ \ \ Y_{12}=q \left( \begin{array}{cccc} \overline{R}&\cdot&\cdot&\cdot \\ \cdot&\overline{R}&-\lambda &\cdot \\ \cdot&\cdot&R&\cdot \\ \cdot& \cdot&\cdot&-R \end{array} \right)\,, \label{9} \end{equation} dots are zeros, and the meaning of numerical indices in (\ref{8}) is, of course, not the same as in (\ref{1}). It should be noted that the explicit form (\ref{9}) chosen here for $Y_{12}$ is by no means unique. Now we are to employ the matrix representation (\ref{8}) for demonstrating that the differential complex (\ref{6}) admits coaddition of the form \begin{equation} \Delta(x)=x\otimes 1+1\otimes x\equiv x+\tilde{x}\,, \ \ \ \ \Delta(dx)=dx+d\tilde{x}\,, \label{10} \end{equation} or, in short notation, \begin{equation} \Delta(\chi )=\chi +\tilde{\chi}\,. \label{11} \end{equation} From earlier papers on the subject~\cite{Maj-add,IV}, we learn that this can be only possible when a nontrivial braiding map $\Psi: \tilde{\Omega }\otimes \Omega\rightarrow \Omega\otimes \tilde{\Omega}$ is used to commute elements with and without a tilde from two independent copies of our differential complex $\Omega$. Explicitly, \begin{equation} (1\otimes a)\,(b\otimes 1)\equiv \tilde{a}\,b=\Psi(a\otimes b)\,. \label{12} \end{equation} In the case (\ref{8}), a natural Ansatz for the braiding is \begin{equation} \tilde{\chi }_2\,\chi _1'=Z_{12}\,\chi _1\,\tilde{\chi }_2'\,, \label{13} \end{equation} where $Z$ is a $4\!\times\!4$-matrix whose elements may themselves depend on $R$. The first restriction on $Z$ is caused by the graded nature of the differential complex (\ref{6}). This leads to \begin{equation} Z_{12}=\left( \begin{array}{cccc} \alpha &\cdot &\cdot&\cdot \\ \cdot&\gamma &\delta &\cdot \\ \cdot&\mu &\beta &\cdot \\ \cdot&\cdot&\cdot&\nu \end{array} \right)\,. \label{14} \end{equation} Further, the result of external differentiation of (\ref{13}) must be consistent with (\ref{13}) itself. Taking into account $d^2=0$ and the graded Leibnitz rule, we come to \begin{equation} \alpha =\beta +\delta \,, \ \ \ \gamma =\delta -\nu \,, \ \ \ \mu =\beta +\nu \,. \label{15} \end{equation} The next step is to ensure the key property of $\Delta$, i.e. \begin{equation} \Delta(\chi _2)\,\Delta(\chi _1')=Y_{12}\,\Delta(\chi _1)\,\Delta(\chi _2')\,. \label{16} \end{equation} This boils down to verification of \begin{equation} \tilde{\chi }_2\,\chi _1'+\chi _2\,\tilde{\chi }_1'=Y_{12}\, \tilde{\chi }_1\,\chi _2'+Y_{12}\,\chi _1\,\tilde{\chi }_2'\,, \label{17} \end{equation} which, with the help of (\ref{13}), transforms to \begin{equation} \ [Y_{12}\,Z_{21}+(Y_{12}-Z_{12})P_{12}-{\bf 1}]\,\chi _2\, \tilde{\chi }_1'=0\,. \label{18} \end{equation} We have to put the expression in square brackets to zero. This results in the following new constraints: \begin{equation} \beta =(\delta +1)\,q\,R\,, \ \ \ \ (\nu +1)(R+\bar{q})=0\,. \label{19} \end{equation} At last, we must guarantee that our braiding (\ref{13}) obeys so-called hexagon identities~\cite{Maj-rev} or, equivalently, that our commutation rules for elements with and without a tilde are associative. To do this, we perform a reordering \begin{equation} \tilde{\chi }_3\,\chi _2'\,\chi _1''\rightarrow \chi _1\,\chi _2'\, \tilde{\chi }_3'' \label{20} \end{equation} in two different ways, using (\ref{8}), (\ref{13}) and \begin{equation} \chi _2'\,\chi _1''=Y'_{12}\,\chi _1'\,\chi _2''\,, \ \ \ \ \ \tilde{\chi }_2'\,\chi _1''=Z'_{12}\,\chi _1'\,\tilde{\chi }_2''\,, \label{21} \end{equation} where $Y'$ and $Z'$ mean that a substitution $R\rightarrow R'$ in the corresponding elements of $Y$ and $Z$ has to be carried out. Following this strategy, we finally obtain \begin{equation} Y'_{12}\,Z_{13}\,Z'_{23}=Z_{23}\,Z'_{13}\,Y_{12}\,. \label{22} \end{equation} (A similar relation for $Y$, \begin{equation} Y'_{12}\,Y_{13}\,Y'_{23}=Y_{23}\,Y'_{13}\,Y_{12}\,, \label{23} \end{equation} which expresses the associativity of the original algebra (\ref{6}), is of course readily verified). Rewriting the matrix relations (\ref{22}) in the component form, we immediately encounter \begin{equation} R'\,(\beta +\nu )\,\delta '=\delta\,(\beta '+\nu ')\,\overline{R}=0\,. \label{24} \end{equation} The only way out is to nullify $\delta $ or $\beta +\nu $. Let us first consider the latter possibility. Then, due to (\ref{19}), \begin{equation} \nu =-\beta \,, \ \ \ \ (\beta -1)(R+\bar{q})=0\,, \ \ \ \ \beta +\delta =\bar{q}\,\overline{R}\,, \label{25} \end{equation} and the matrix $Z_{12}$ becomes \begin{equation} Z_{12}=\left( \begin{array}{cccc} \bar{q}\overline{R}&\cdot &\cdot&\cdot \\ \cdot&\bar{q}\overline{R}& \bar{q}\overline{R}-\beta &\cdot \\ \cdot&\cdot &\beta &\cdot \\ \cdot&\cdot&\cdot&-\beta \end{array} \right)\,. \label{26} \end{equation} The remaining relations hidden in (\ref{22}) yield \begin{equation} \beta \,\overline{R}'\,\overline{R}=\overline{R}'\,\overline{R}\, \beta '\,, \ \ \ \ \beta \,\beta '\,R=R'\,\beta \,\beta '\,. \label{27} \end{equation} The first of these is identically true whereas the second, together with (\ref{25}), produces two solutions for $\beta $, \begin{equation} \beta =\bar{q}R \ \ \ {\rm or} \ \ \beta =q\overline{R}\,, \label{28} \end{equation} and, consequently, two possibilities for $Z$, \begin{equation} Z_{12}^{(1)}=\bar{q} \left( \begin{array}{cccc} \overline{R}&\cdot &\cdot&\cdot \\ \cdot&\overline{R}& -\lambda &\cdot \\ \cdot&\cdot &R &\cdot \\ \cdot&\cdot&\cdot&-R \end{array} \right), \ \ \ \ Z_{12}^{(2)}=\overline{R} \left( \begin{array}{cccc} \bar{q}&\cdot &\cdot&\cdot \\ \cdot&\bar{q}& -\lambda &\cdot \\ \cdot&\cdot &q &\cdot \\ \cdot&\cdot&\cdot&-q \end{array} \right)\,. \label{29} \end{equation} In the explicit form this reads: \begin{equation} \label{30} \left\{ \begin{array}{l} \tilde{x}\,x'=\bar{q}\,\overline{R}\,x\,\tilde{x}'\,, \\ d\tilde{x}\,x'=\bar{q}\,\overline{R}\,x\,d\tilde{x}' -\lambda \,\bar{q}\,dx\,\tilde{x}'\,, \\ \tilde{x}\,dx'=\bar{q}\,R\,dx\,\tilde{x}'\,, \\ d\tilde{x}\,dx'=-\bar{q}\,R\,dx\,d\tilde{x}'\,; \end{array} \right. \end{equation} \vspace{.3cm} \begin{equation} \label{31} \left\{ \begin{array}{l} \tilde{x}\,x'=\bar{q}\,\overline{R}\,x\,\tilde{x}'\,, \\ d\tilde{x}\,x'=\bar{q}\,\overline{R}\,x\,d\tilde{x}' -\lambda \,\overline{R}\,dx\,\tilde{x}'\,, \\ \tilde{x}\,dx'=q\,\overline{R}\,dx\,\tilde{x}'\,, \\ d\tilde{x}\,dx'=-q\,\overline{R}\,dx\,d\tilde{x}'\,. \end{array} \right. \end{equation} The other solution of (\ref{24}), $\delta =0$, produces matrices $\overline{Z}_{21}^{(1)}$ and $\overline{Z}_{21}^{(2)}$ instead of (\ref{29}). This evidently corresponds to changing the position of a tilde ($\tilde{\chi }\leftrightarrow \chi , \tilde{x}\leftrightarrow x$) in (\ref{13}), (\ref{30}) and (\ref{31}), i.e., to the inverse braiding transformation $\Psi^{-1}$. We thus recover the results of~\cite{IV} and, moreover, prove that they exhaust all the allowed braiding relations within the homogeneous Ansatz (\ref{13}). It should be also stressed that the representations like (\ref{8}) and (\ref{13}) are extremely convenient for proving associativity (resp. consistency) of appropriate multiplication or braiding relations. \vspace{.3cm} {\bf 3}. Now we proceed to the case of the braided matrix algebra $BM_q(N)$~\cite{KS,Maj-ex} with the generators $\{1,u^i_j\}$, forming the $N\!\times\!N$-matrix $u$, and relations \begin{equation} R_{21}\,u_2\,R_{12}\,u_1=u_1\,R_{21}\,u_2\,R_{12}\,. \label{32} \end{equation} The corresponding differential complex is described in~\cite{OSWZ,AKR}. In our conventions (note $u_1\equiv u$) it reads \begin{equation} \label{33} \left\{ \begin{array}{l} R\,u\,R\,u=u\,R\,u\,R\,, \\ R\,u\,R\,du=du\,R\,u\,\overline{R}\,, \\ R\,du\,R\,du=-du\,R\,du\,\overline{R} \end{array} \right. \end{equation} (unlike (\ref{6}), there are no primes in these equations). The appropriate coaddition is also known (see~\cite{Mey} for the $BM_q(N)$ itself and~\cite{IV} for (\ref{33}) as a whole). Here we wish to reproduce the results of~\cite{IV} through the matrix formalism developed in the previous section. Let us rewrite(\ref{33}) in the form \begin{equation} \varphi _2\,R\,\varphi _1=V_{12}\,\varphi _1\,R\,\varphi _2\,R\,, \label{34} \end{equation} where \begin{equation} \label{35} \varphi =\left( \begin{array}{c} u \\ du \end{array} \right), \ \ \ \ V_{12}= \left( \begin{array}{cccc} \overline{R}&\cdot &\cdot&\cdot \\ \cdot&R& \cdot &\cdot \\ \cdot&-\lambda &\overline{R} &\cdot \\ \cdot&\cdot&\cdot&-R \end{array} \right), \end{equation} and try to introduce the braiding relations \begin{equation} \tilde{\varphi} _2\,R\,\varphi _1=W_{12}\,\varphi _1\,R\, \tilde{\varphi _2}\,R\,, \label{36} \end{equation} which make \begin{equation} \Delta(\varphi )=\varphi +\tilde{\varphi } \label{37} \end{equation} a consistent coproduct. From (\ref{34}) and (\ref{36}) we deduce \begin{equation} W_{12}\,\varphi _1\,R\,\tilde{\varphi }_2\,R+\varphi _2\,R\,\tilde {\varphi }_1=V_{12}\,W_{21}\,\varphi _2\,R\,\tilde{\varphi }_1\,R^2 +V_{12}\,\varphi _1\,R\,\tilde{\varphi }_2\,R\,. \label{38} \end{equation} With the help of the Hecke condition (\ref{5}) we get \begin{equation} (V_{12}\,W_{21}-{\bf 1})\,\varphi _2\,R\,\tilde{\varphi }_1+[\lambda V_{12}\,W_{21}+(V_{12}-W_{12})P_{12}]\,\varphi _2\,R\,\tilde{\varphi }_1\,R=0\,. \label{39} \end{equation} A solution is \begin{equation} W_{12}=\overline{V}_{21}= \left( \begin{array}{cccc} R&\cdot &\cdot&\cdot \\ \cdot&R& \lambda &\cdot \\ \cdot&\cdot &\overline{R} &\cdot \\ \cdot&\cdot&\cdot&-\overline{R} \end{array} \right)\,. \label{40} \end{equation} Another possible braiding is \begin{equation} \tilde{\varphi} _2\,R\,\varphi _1=V_{12}\,\varphi _1\,R\, \tilde{\varphi _2}\,\overline{R}\,, \label{41} \end{equation} inspired by the following equivalent version of (\ref{34}): \begin{equation} \varphi _2\,R\,\varphi _1=\overline{V}_{21}\,\varphi _1\,R\,\varphi _2\,\overline{R}\,. \label{42} \end{equation} Of course, this corresponds to the inverse braiding map with respect to (\ref{36}),(\ref{40}). Another pair of mutually inverse solutions can be obtained if one represents (\ref{33}) as \begin{equation} \eta _2\,R\,\eta _1=R\,\eta _1\,R\,\eta _2\,V_{12}^{T}= \overline{R}\,\eta _1\,R\,\eta _2\,\overline{V}_{21}^{T}\,, \label{43} \end{equation} where $\eta $ is now a row instead of a column: \begin{equation} \eta =(u\;,\;du)\,, \ \ \ \ \ V_{12}^T= \left( \begin{array}{cccc} \overline{R}&\cdot &\cdot&\cdot \\ \cdot&R& -\lambda &\cdot \\ \cdot&\cdot &\overline{R} &\cdot \\ \cdot&\cdot&\cdot&-R \end{array} \right)\,. \label{44} \end{equation} In this case, both \begin{equation} \tilde{\eta}_2\,R\,\eta _1=R\,\eta _1\,R\,\tilde{\eta}_2\, \overline{V}_{21}^{T} \label{45} \end{equation} and \begin{equation} \tilde{\eta}_2\,R\,\eta _1=\overline{R}\,\eta _1\,R\,\tilde{\eta}_2\, V_{12}^{T} \label{46} \end{equation} are consistent braiding relations. Associativity of (\ref{36}),(\ref{41}),(\ref{45}) and (\ref{46}) (i.e. the identities like $W_{12}\,W'_{13}\,V_{23}=V'_{23}\,W_{13}\,W'_{12}$) and their compatibility with the Leibnitz rule are easily confirmed. In the component form, (\ref{36}) and (\ref{45}) look, respectively, as \begin{equation} \label{48} \left\{ \begin{array}{l} \tilde{u}\,R\,u=R\,u\,R\,\tilde{u}\,R\,, \\ d\tilde{u}\,R\,u=R\,u\,R\,d\tilde{u}\,R+\lambda \,du\,R\,\tilde{u}\,R\,, \\ \tilde{u}\,R\,du=\overline{R}\,du\,R\,\tilde{u}\,R\,, \\ d\tilde{u}\,R\,du=-\overline{R}\,du\,R\,d\tilde{u}\,R\,; \end{array} \right. \end{equation} \vspace{.3cm} \begin{equation} \label{49} \left\{ \begin{array}{l} \tilde{u}\,R\,u=R\,u\,R\,\tilde{u}\,R\,, \\ d\tilde{u}\,R\,u=R\,u\,R\,d\tilde{u}\,R+\lambda \,R \,du\,R\,\tilde{u}\,, \\ \tilde{u}\,R\,du=R\,du\,R\,\tilde{u}\,\overline{R}\,, \\ d\tilde{u}\,R\,du=-R\,du\,R\,d\tilde{u}\,\overline{R}\,; \end{array} \right. \end{equation} eqs. (\ref{41}) and (\ref{46}) being obtained from these via $u\leftrightarrow \tilde{u}$. We recover the corresponding results given in~\cite{IV}. \vspace{.3cm} {\bf 4}. Consider at last the familiar matrix quantum group \begin{equation} R_{12}\,T_1\,T_2=T_2\,T_1\,R_{12}\,, \label{50} \end{equation} which also has a braided coaddition~\cite{Maj-coa}. Its differential complex is known too~\cite{Su}. In the notation (\ref{2}),(\ref{3}) it looks like \begin{equation} \label{51} \left\{ \begin{array}{l} R\,T\,T'=T\,T'\,R\,, \\ R\,dT\,T'=T\,dT'\,\overline{R}\,, \\ R\,dT\,dT'=-dT\,dT'\,\overline{R}\,. \end{array} \right. \end{equation} Let us show that the algebra (\ref{51}) as a whole admits a coaddition \begin{equation} \Delta(\theta )=\theta +\tilde{\theta }\,, \ \ \ \ \ \theta \equiv \left( \begin{array}{c}T \\ dT \end{array} \right)\,. \label{52} \end{equation} Really, eq.(\ref{51}) is easily rewritten as \begin{equation} \theta _2\,\theta _1'=N_{12}\,\theta _1\,\theta _2'\,R\,, \ \ \ \ \ N_{12}= \left( \begin{array}{cccc} \overline{R}&\cdot &\cdot&\cdot \\ \cdot&\overline{R}& -\lambda &\cdot \\ \cdot&\cdot &R &\cdot \\ \cdot&\cdot&\cdot&-R \end{array} \right)\,. \label{53} \end{equation} In complete analogy with the preceding section, one finds that the mutually inverse braiding relations \begin{equation} \tilde{\theta}_2\,\theta _1'=\overline{N}_{21}\,\theta _1\, \tilde{\theta }_2'\,R\,, \label{54} \end{equation} \begin{equation} \tilde{\theta}_2\,\theta _1'=N_{12}\,\theta _1\, \tilde{\theta }_2'\,\overline{R} \label{55} \end{equation} satisfy all the requirements. If, otherwise, eq.(\ref{51}) is recast into the form \begin{equation} \xi _2\,\xi _1'=R\,\xi _1\,\xi _2'\,N_{12}^{T} \label{56} \end{equation} with $\xi $ being a row, $\xi =(T\;,\;dT)$, then the following pair of mutually inverse braidings is produced: \begin{equation} \tilde{\xi}_2\,\xi _1'=R\,\xi _1\,\tilde{\xi}_2'\, \overline{N}_{21}^{T}\,, \label{57} \end{equation} \begin{equation} \tilde{\xi}_2\,\xi _1'=\overline{R}\,\xi _1\,\tilde{\xi}_2'\, N_{12}^{T}\,. \label{58} \end{equation} In the component form: \begin{equation} \label{59} \left\{ \begin{array}{l} \tilde{T}\,T'=R\,T\,\tilde{T}'\,R\,, \\ d\tilde{T}\,T'=\overline{R}\,T\,d\tilde{T}'\,R\,, \\ \tilde{T}\,dT'=R\,dT\,\tilde{T}'\,R+\lambda \,T\,d\tilde{T}'\,R\,, \\ d\tilde{T}\,dT'=-\overline{R}\,dT\,d\tilde{T}'\,R\,; \end{array} \right. \end{equation} \vspace{.3cm} \begin{equation} \label{60} \left\{ \begin{array}{l} \tilde{T}\,T'=R\,T\,\tilde{T}'\,R\,, \\ d\tilde{T}\,T'=R\,T\,d\tilde{T}'\,\overline{R}\,, \\ \tilde{T}\,dT'=R\,dT\,\tilde{T}'\,R+\lambda \,R \,T\,d\tilde{T}'\,, \\ d\tilde{T}\,dT'=-R\,dT\,d\tilde{T}'\,\overline{R}\,; \end{array} \right. \end{equation} two other sets are obtained from these by $\tilde{T} \leftrightarrow T$. All the above examples lead us to the conclusion that the braided coaddition appears to be a quite natural algebraic structure for the differential complexes on the quadratic quantum algebras generated by the Hecke-type $R$-matrices. The corresponding (braided) counit obeys $\varepsilon (1)=1$ and equals zero on other generators. Moreover, a braided antipode is easily introduced: \begin{equation} S(1)=1\,, \ \ \ S(a)=-a\,, \ \ \ S(da)=-da \ \ \ \ \ \ (a=x\,,u\,,T). \label{61} \end{equation} Consequently, all the braided coadditive differential bialgebras considered in this paper are, in fact, braided Hopf algebras. \begin{thebibliography}{99} \bibitem{Maj-add} S.Majid, J.Math.Phys. 34 (1993) 2045. \bibitem{Mey} U.Meyer, Preprint DAMTP/93-45, 1993. \bibitem{Maj-coa} S.Majid, Preprint DAMTP/93-57, 1993. \bibitem{Maj-kit} S.Majid, Beyond supersymmetry and quantum symmetry (an introduction to braided groups and braided matrices), in: M.-L. Ge and H.J. de Vega, editors, Quantum Groups, Integrable Statistical Models and Knot Theory, pp. 231-282, World.Sci., 1993. \bibitem{Mal} G.Maltsiniotis, C.R.Acad.Sci.Paris 331 (1990) 831; Comm.Math.Phys. 151 (1993) 275. \bibitem{Man} Yu.I.Manin, Teor.Mat.Fiz. 92 (1992) 425. \bibitem{Br} T.Brzezinski, Lett.Math.Phys. 27 (1993) 287. \bibitem{Wo} S.L.Woronowicz, Comm.Math.Phys. 122 (1989) 125. \bibitem{Ju} B.Jur\v{c}o, Lett.Math.Phys. 22 (1991) 177. \bibitem{AC} P.Aschieri and L.Castellani, Int.J.Mod.Phys. A8 (1993) 1667. \bibitem{IV} A.P.Isaev and A.A.Vladimirov, JINR preprint E2-94-32, Dubna, 1994 \\ (hep-th/9402024). \bibitem{FRT} L.D.Faddeev, N.Yu.Reshetikhin and L.A Takhtajan, Algebra i Analiz 1 Vol.1 (1989) 178; English transl: Leningr.Math.J. 1 (1990) 193. \bibitem{IP} A.P.Isaev and P.N.Pyatov, JINR preprint E2-93-416, Dubna, 1993 \\ (hep-th/9311112). \bibitem{WZ} J.Wess and B.Zumino, Nucl.Phys. B (Proc.Suppl.) 18B (1990) 302. \bibitem{Maj-rev} S.Majid, Int.J.Mod.Phys. A 5 (1990) 1. \bibitem{KS} P.P.Kulish and E.K.Sklyanin, J.Phys. A 25 (1992) 5963; P.P.Kulish and R.Sasaki, Progr.Theor.Phys. 89 (1993) 741. \bibitem{Maj-ex} S.Majid, J.Math.Phys. 32 (1991) 3246; ibid. 34 (1993) 1176. \bibitem{OSWZ} O.Ogievetsky, W.B.Schmidke, J.Wess and B.Zumino, Comm.Math.Phys. 150 (1992) 495. \bibitem{AKR} J.A. de Azcarraga, P.P.Kulish and F.Rodenas, Valencia University preprint FTUV 93-36, 1993; P.P.Kulish, Valencia University preprint FTUV 93-54, 1993. \bibitem{Su} A.Sudbery, Phys.Lett. 284B (1992) 61. \end{thebibliography} \end{document}