\documentstyle[12pt]{article} \textwidth 6.1in \textheight 9in \oddsidemargin .3in \evensidemargin .3in \pagestyle{empty} \begin{document} \begin{center} \Large{ON QUASITRIANGULAR HOPF ALGEBRAS \\ RELATED TO THE BOREL SUBALGEBRA OF $sl_2$} \end{center} \vspace{.5cm} \begin{center} \large{A.A.VLADIMIROV} \end{center} \begin{center} {\em Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, \\ Dubna, Moscow region, 141980, Russia} \end{center} \begin{center} {\em E-mail:} \ alvladim@thsun1.jinr.dubna.su \end{center} \vspace{.5cm} \begin{center} ABSTRACT \end{center} Explicit isomorphism is established between quasitriangular Hopf algebras studied recently in papers~\cite{Vl3} and~\cite{Og}. \vspace{1.5cm} In my recent papers~\cite{Vl1,Vl2} a regular method has been proposed for constructing quasitriangular Hopf algebras (actually, quantum doubles) out of invertible matrix solutions $R$ of the quantum Yang-Baxter equation \begin{equation} R_{12}R_{13}R_{23}=R_{23}R_{13}R_{12}\,. \label{1} \end{equation} As an illustration, the $R$-matrix of Jordanian type~\cite{Ly,DMMZ} \begin{equation} \left( \begin{array}{cccc}1&1&-1&1\\0&1&0&1\\0&0&1&-1\\0&0&0&1 \end{array} \right) \label{2} \end{equation} has been shown~\cite{Vl2,Vl3} to produce, among others, a quasitriangular Hopf algebra with generators $\{v,h\}$ obeying the relations $$ [v,h]=2\sinh h\,, $$ \begin{equation} \Delta(v)=e^h\otimes v+v\otimes e^{-h}\,,\ \ \ \Delta(h)=h\otimes 1+1\otimes h\,, \label{3} \end{equation} $$ S^{\pm1}(h)=-h\,,\ \ \ S^{\pm1}(v)=-v\mp2\sinh h\,. $$ Its universal ${\cal R}$-matrix is found~\cite{Vl3} to be \begin{equation} {\cal R}=\exp\left\{\frac{h\otimes 1+1\otimes h} {\sinh(h\otimes 1+1\otimes h)}(\sinh h\otimes v-v\otimes \sinh h) \right\}\,. \label{4} \end{equation} After submitting the paper~\cite{Vl3} I have learned from O.Ogievetsky that in paper~\cite{Og}, using quite different approach (which allows classification of all Hopf structures on the Lie algebra $[x,h]=2h$), he obtained a quasitriangular Hopf algebra $\{\tau ,\sigma \}$ defined by $$ [\tau ,\sigma ]=2(1-e^\sigma )\,, $$ \begin{equation} \Delta(\tau )=\tau \otimes e^\sigma +1\otimes \tau \,, \ \ \ \ \Delta(\sigma )=\sigma \otimes 1+1\otimes \sigma \,, \label{5} \end{equation} $$ S(\tau )=-\tau e^{-\sigma }, \ \ S^{-1}(\tau )=-\tau e^{-\sigma } +2(1-e^{-\sigma }), \ \ S^{\pm 1}(\sigma )=-\sigma , $$ with universal ${\cal R}$-matrix \begin{equation} {\cal R}=\exp(\frac{\sigma }{2}\otimes \tau )\,\exp(-\tau \otimes \frac{\sigma }{2})\,. \label{6} \end{equation} Since the Hopf algebra (\ref{3}), due to a reparametrization \begin{equation} v=\frac{\sinh h}{h}x \ \ \ \ \Longrightarrow \ \ \ \ [x,h]=2h\,, \label{7} \end{equation} evidently belongs to the class considered by Ogievetsky, it is only natural to look for an isomorphism between the Hopf algebras (\ref{3}) and (\ref{5}). Such an isomorphism really exists and can be fixed by \begin{equation} \tau =-e^{-h}v\,, \ \ \ \ \ \sigma =-2h\,. \label{8} \end{equation} Relations (\ref{5}) are readily obtained from (\ref{3}) and (\ref{8}). As a by-product, we come to an alternative form of the $\cal R$-matrix (\ref{4}): \begin{equation} {\cal R}=\exp(h\otimes e^{-h}v)\,\exp(-e^{-h}v\otimes h)\,.\label{4.1} \end{equation} In~\cite{Vl2,Vl3} (see also~\cite{BH}), the following quasitriangular Hopf algebra $\{b,g,v,h\}$ (the quantum double of $\{v,h\}$) was also considered: $$ [g,b]=[h,b]=2\sinh g\,,\ \ \ [g,v]=[h,v]=-2\sinh h\,, $$ $$ [b,v]=2(\cosh g)v+2(\cosh h)b\,,\ \ \ \ [g,h]=0\,, $$ \begin{equation} \Delta(b)=e^g\otimes b+b\otimes e^{-g}\,,\ \ \ \Delta(v)=e^h\otimes v+v\otimes e^{-h}\,, \label{9} \end{equation} $$ \Delta(g)=g\otimes 1+1\otimes g\,,\ \Delta(h)=h\otimes 1+1\otimes h\,,\ S^{\pm1}(g)=-g\,, $$ $$ S^{\pm1}(h)=-h\,,\ S^{\pm1}(b)=-b\pm2\sinh g\,,\ S^{\pm1}(v)=-v\mp2\sinh h\,. $$ The (anti)duality relations between $\{b,g\}$ and $\{v,h\}$ are: $$ <1,b>=<1,g>===0\,, $$ \begin{equation} <1,1>===1\,, \label{10} \end{equation} $$ =-1\,, \ \ \ \ =0\,. $$ Universal $\cal R$-matrix looks like~\cite{Vl3} \begin{equation} {\cal R}=\exp\left\{\frac{g\otimes 1+1\otimes h} {\sinh(g\otimes 1+1\otimes h)}(\sinh g\otimes v+b\otimes \sinh h) \right\}\,. \label{11} \end{equation} In terms of $\{\tau ,\sigma \}$ and their antiduals $\{\mu ,\nu \}$ the same quantum double is characterized by the relations $$ [\tau ,\sigma ]=[\tau ,\nu ]=2(1-e^\sigma )\,, \ \ [\mu ,\sigma ]=[\mu ,\nu ]=2(1-e^\nu )\,, $$ $$ [\tau ,\mu ]=2(\mu -\tau )\,, \ \ \ \ \ [\sigma ,\nu ]=0\,, $$ $$ \Delta(\tau )=\tau \otimes e^\sigma +1\otimes \tau \,, \ \ \Delta(\sigma )=\sigma \otimes 1+1\otimes \sigma \,, $$ \begin{equation} \Delta(\mu )=\mu \otimes e^\nu +1\otimes \mu \,, \ \ \Delta(\nu )=\nu \otimes 1+1\otimes \nu \,, \label{12} \end{equation} $$ S(\tau )=-\tau e^{-\sigma }\,, \ \ S^{-1}(\tau )=-\tau e^{-\sigma } +2(1-e^{-\sigma })\,, $$ $$ S(\mu )=-\mu e^{-\nu }\,, \ \ S^{-1}(\mu )=-\mu e^{-\nu } +2(1-e^{-\nu })\,, $$ $$ S^{\pm 1}(\sigma )=-\sigma \,, \ \ \ \ \ S^{\pm 1}(\nu )=-\nu $$ with antiduality conditions $$ <1,\mu >=<1,\nu >=<\tau ,1>=<\sigma ,1>=0\,, $$ \begin{equation} <1,1>=1\,, \ \ \ <\tau ,\nu >=2\,, \ \ \ <\sigma ,\mu >=-2\,,\label{13} \end{equation} $$ <\tau ,\mu >=<\sigma ,\nu >=0 $$ and universal $\cal R$-matrix~\cite{Og} \begin{equation} {\cal R}=\exp(\frac{\nu }{2}\otimes \tau )\,\exp(-\mu \otimes \frac{\sigma }{2})\,. \label{14} \end{equation} Apparent similarity of (\ref{14}) and (\ref{6}), as well as (\ref{11}) and (\ref{4}), is due to 'selfduality'~\cite{Vl3,Og} of both $\{\tau ,\sigma \}$- and $\{v,h\}$-algebras. Hopf algebras (\ref{9}) and (\ref{12}) are isomorphic by \begin{equation} \mu =e^{-g}b\,, \ \ \nu =-2g\,, \ \ \tau =-e^{-h}v\,, \ \ \sigma =-2h\,. \label{15} \end{equation} In particular, this produces an alternative representation for $\cal R$ (\ref{11}): \begin{equation} {\cal R}=\exp(g\otimes e^{-h}v)\,\exp(e^{-g}b\otimes h)\,. \label{11.1} \end{equation} Surprisingly, it appears problematic to derive (\ref{11}) directly from (\ref{11.1}) by the mere use of Baker-Campbell-Hausdorff formula. \vspace{.5cm} \noindent {\bf Acknowledgments} \vspace{.3cm} The present work was supported by the Heisenberg-Landau program, 1993. \vspace{.3cm} I am very grateful to Prof. J.Wess for organizing my visit to Munich where this research was carried out. I appreciate stimulating discussions with O.Ogievetsky, A.Kempf, M.Pillin and R.Engeldinger. \begin{thebibliography}{99} \bibitem{Vl1} A.A.\,Vladimirov, Mod.\,Phys.\,Lett.\,A 8 (1993) 1315. \bibitem{Vl2} A.A.\,Vladimirov, Z.\,Phys.\,C 58 (1993) 659. \bibitem{Ly} V.V.\,Lyubashenko, Usp.\,Mat.\,Nauk 41 Vol.\,5 (1986) 185; \\ Engl.\,transl.: Russ.\,Math.\,Surveys 41 (1988) 153. \bibitem{DMMZ} E.E.\,Demidov, Yu.I.\,Manin, E.E.\,Mukhin and D.V.\,Zhdanovich, \\ Progr.\,Theor.\,Phys. Suppl. 102 (1990) 203. \bibitem{Vl3} A.A.\,Vladimirov, Mod.\,Phys.\,Lett.\,A 8 (1993) 2573. \bibitem{Og} O.\,Ogievetsky, Max-Planck-Institut preprint MPI-Ph/92-99. \bibitem{BH} \v{C}.\,Burdik and P.\,Hellinger, Charles Univ. preprint PRA-HEP-93/2. \end{thebibliography} \end{document}