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Introduction

We present the comprehensive derivation of the fluctuation-dissipation
theorem for soft fermion fluctuations in a hot non-Abelian plasma
being in a thermal equilibrium. A distinctive characteristic of the
problem under consideration, is the fact that an external perturbation
described by a Hamiltonian Ĥ1

t , changes the number of particles and
antiparticles in the system, i.e., in other words, an operator of the total
number of particles N̂ (more precisely, the difference between the
number of particles and antiparticles) does not commute with the Ĥ1

t

(but it commutes with a Hamiltonian of the many-particle system Ĥ0).

Such a case has already been discussed in the general statement in
textbook materials, but as far as we know, any specific physical
situation, where this circumstance would play crucial role, has not
been considered. As a consequence of this fact, a concrete expression
for the fluctuation-dissipation theorem in which this noncommutativity
could be manifested by obvious fashion, has not been given anywhere.



Callen-Velton fluctuation-dissipation theorem (1951). Boson case

Let F̂a(t,x), a = 1, 2, . . . be quantities describing behaviour of the system under
certain external forces. The latter are described by the functions fa(t,x). The inte-
raction energy operator has the form

Ĥ1
t = −

∑
a

∫
dx fa(t,x)F̂a(t,x), Ĥ1

t

∣∣∣
t=−∞

= 0.

Let us denote the mean values of the quantities F̂a(t,x), which are linear functio-
nals of the forces fa(t,x), by F̄a(t,x). In terms of Fourier components we write

F̄a(ω,k) =
∑
b

κab(ω,k)fb(ω,k),

where κab(ω,k) are the generalized (complex) susceptibilities of the system under
consideration relating with F̂a by the Kubo formula:

κab(ω,k) =
i

~

∞∫
0

dt eiωt
+∞∫
−∞

dx e−ik·x
〈[
F̂a(t,x), F̂b(0,0)

]〉
.



Callen-Velton fluctuation-dissipation theorem (1951). The FDT-relation

Further we introduce a correlation function of the fluctuating quantities F̂a:

Φab ≡
1

2

〈{
F̂a(t,x), F̂b(0,0)

}〉
,

the Fourier-image of which is denoted by (FaFb)ωk. Then the fluctuation-dissipa-
tion theorem states

(FaFb)ωk = − i~
2

(
κab(ω,k)− κ∗ba(ω,k)

)
coth

(
~ω

2kBT

)
.

The FDT-theorem relates characteristics of the dissipative process to spectral
density of equilibrium fluctuations in the system.

Thus, it expresses nonequilibrium properties through equilibrium ones.
In the case of electromagnetic field in a medium the interaction energy is

Ĥ1
t = −1

c

3∑
µ=0

∫
dx jµext(t,x)Âµ(t,x).

Identification is fa(t,x)→jµ(t,x), F̂a(t,x)→Âµ(t,x), κab(ω,k)→−D
(R)
µν (ω,k)

~c2 .



FDT for soft Bose-fluctuations

Let us introduce a spectral density for soft bosonic fluctuation by means of
the relation〈

A∗aµ (k)Abν(k′)
〉

= (A∗aµ A
b
ν)ωk δ

(4)(k − k′), k = (ω,k). (1)

The spectrum of soft gluonic modes in an equilibrium plasma can be defined
through the (quantum) fluctuation-dissipation theorem:

(A∗aµ A
b
ν)ωk = − 1

(2π)4
iδab

(
ΘB(ω, T )

ω

){
D(R)
µν (k)− (D(R)

νµ (k))∗
}
, (2)

where

ΘB(ω, T ) =
~ω
2

coth

(
~ω

2kBT

)
is the mean energy of a quantum boson oscillator.



FDT for soft Bose-fluctuations. Semiclassical limit

In the semiclassical limit the photon (gluon) retarded Green’s function has
the form:

∗D(R)
µν (k) = −Pµν(k) ∗∆t(k)−Qµν(k) ∗∆l(k) + . . . .

In the covariant gauge the longitudinal projector Qµν(k) in the rest frame of
a heat bath is equal to

Qµν(k) = − 1

k2

(
k2 ωk

ωk ω2 k⊗ k

k2

)
; P 2 = P, Q2 = Q, PQ = QP = 0.

In the limit ~→ 0 the FDT-relation (2) reduces to

(A∗aµ A
b
ν)ωk =

1

(2π)4
δab
(

2kBT

ω

)
Im(∗D(R)

µν (k)) =
1

(2π)4
δab
(

2kBT

ω

)
×

(3)
×
{
Pµν(k) Im(∗∆−1 t(k))∗ |∗∆t(k)| 2 +Qµν(k) Im(∗∆−1 l(k))∗ |∗∆l(k)| 2

}
.



FDT for soft Bose-fluctuations. Classical model

Let us calculate the spectral density for bosonic fluctuations in the hot
non-Abelian plasma within the classical model suggested by Ulrich Heinz
(1983) and compare the obtained expression for spectral density with a
similar expression resulting from the FDT for fluctuations of a gauge field.

According to this classical model, the soft gauge field Aaµ induced by a hard
test particle (which is centered at the position x0) in the momentum
representa- tion is

Aaµ(k) = − ∗D(R)
µν (k)jaν(k;x0), k = (ω,k), (4)

where in turn,

jaν(k;x0) =
g

(2π)3
vνQaδ(v · k) e−ik·x0 , v = (1,v) (5)

is the current of the hard color-charged particle. Here, v and Qa are the
velocity and classical color charge of the hard particle, respectively.



FDT for soft Bose-fluctuations. Correlation function

The correlation function of soft Bose-fluctuations within the framework of
the classical model can be written as follows〈

A∗aµ (k)Abν(k′)
〉

= 2
g2

(2π)6

∑
ζ= Q, Q̄,G

∫
dQQaQb

∫
dx0 ei(k−k

′)·x0 (6)

×
∫
p2f

(ζ)
|p|

d|p|
2π2

(
∗D(R)

µµ′ (k)
)∗ (∗D(R)

νν′ (k
′)
)∫ dΩv

4π
vµ

′
vν

′
δ(v · k)δ(v · k′).

It was shown that the bosonic spectral density from the above expression
exactly reproduces spectral density (3) if in the averaging procedure we
replace the classical statistical factor in (6) by the quantum one by the rule:

∫
p2f

(ζ)
|p|

d|p|
2π2

⇒


∫
p2f

(G)
|p|

(
1 + f

(G)
|p|

) d|p|
2π2

, ζ = G,

Nf

∫
p2f

(Q, Q̄)
|p|

(
1− f (Q, Q̄)

|p|

) d|p|
2π2

, ζ = Q, Q̄,



FDT for soft Bose-fluctuations. Color charge average

and we choose the quark and gluon quadratic Casimirs in the average with
respect to the color charges in the following form∫

dQQaQb=

(
C

(ζ)
2

dA

)
δab,

C
(Q,Q̄)
2 ≡ tr(tata) = TFdA, C

(G)
2 ≡ tr(T aT a) = CAdA,

where dA = N2
c − 1 is dimension of the gauge group SU(Nc); TF ≡ 1/2

and CA ≡ Nc are the group invariants.

The formula of averaging over the direction of velocity is∫
dΩv

4π
vµvνδ(v · k) = atP

µν(k) + alQ
µν(k) + . . . ,

where

al ≡ Qµν(k)

∫
dΩv

4π
vµvν δ(v · k) = − k2

|k|3
θ(k2 − ω2)

and the coefficient function at can be found similarly.



FDT for soft Fermi-fluctuations. Pseudoclassical model

Soft spinor field ψiα induced by a test spin-1/2 particle is

ψiα(q) = − ∗S(R)
αβ (q) ηiβ(q;x0), q = (ω,q), (7)

where a color source ηiβ has the form

ηiβ(q;x0) =
g

(2π)3
θiχβ δ(v · q) e−iq·x0 (8)

and, respectively, the propagator for the ψ-field is

∗S(R)(q) = h+(q̂) ∗4+(q) + h−(q̂) ∗4−(q),

where the matrix functions h±(q̂) = (γ0 ∓ q̂ · γ)/2 with q̂ ≡ q/|q|, are the
spinor projectors onto eigenstates of helicity, and

∗4±(q) = − 1

q0 ∓ [ |q|+ δΣ±(q)]
.



FDT for soft Fermi-fluctuations. Correlation function

Evaluation of correlation function of soft Fermi-excitations within the limits
of pseudoclassical model is written in the form

〈
ψiα(q)ψ̄jβ(−q′)

〉
= − g2

(2π)6

∑
ζ= Q, Q̄

∫
dθdθ† θ†iθj

∫
p2
[
f

(ζ)
|p| + f

(G)
|p|

]d|p|
2π2
×

×
∫
dx0 ei(q−q

′)·x0

∫
dΩv

4π
(∗S(q)χ)α

(
χ̄ ∗S(−q′)

)
β
δ(v · q) δ(v · q′).

The Grassmann color charge integration measure is

dθdθ† ≡

(
Nc∏
i=1

dθidθ†i

)
f(θ†θ), θ†θ ≡

Nc∑
i=1

θ†iθi,

f(θ†θ) =
1

Nc!

{(
C

(ζ)
θ

)Nc+
(
C

(ζ)
θ

)Nc−1
θ†θ+ . . . +C

(ζ)
θ (θ†θ)Nc−1 +(θ†θ)Nc

}
.

In particulary,
∫
dθdθ† θ†iθj = (C

(ζ)
θ /Nc)δ

ij .



FDT for soft Fermi-fluctuations. Spectral density

Within the limits of the suggested model expression for the correlation
function of the spinor field fluctuations has the form〈

ψiα(q)ψ̄jβ(−q′)
〉

= (ψiαψ̄
j
β)ωq δ

(4)(q − q′),

where

(ψiαψ̄
j
β)ωq = δij

1

2(2π)3

ω2
0

2|q|
θ(q2 − ω2)× (9)

×
[(

1− ω

|q|

)
(h+(q̂))αβ |∗4+(q)|2 +

(
1+

ω

|q|

)
(h−(q̂))αβ |∗4−(q)|2

]
is the spectral density for soft quark fluctuations, and

ω2
0 = − g2

4π2

∑
ζ= Q, Q̄

(
C

(ζ)
θ

Nc

)∫
|p|
[
f

(ζ)
|p| + f

(G)
|p|

]
d|p|

is the plasma frequency of the quark sector of plasma excitations and

C
(ζ)
θ ≡ −CFNc.



FDT for soft Fermi-fluctuations. Exact quantum expression

Our many-body system is described by the following Hamiltonian
Ĥ(t) = Ĥ0 + Ĥ1

t with the interaction term (in the Schrödinger picture)

Ĥ1
t =

∫
dx
[
η̄iα, ext(x, t)ψ̂

i
α(x) + ˆ̄ψiα(x)ηiα, ext(x, t)

]
, Ĥ1

t

∣∣∣
t=−∞

= 0.

Here, η̄iα, ext(x, t) and ηiα, ext(x, t) play a role of the generalized Grassmann
external forces. We introduce the double-time Green’s functions for soft
ψ-fields as follows

S
(R,A) ij
αβ (x− x′) = ± 1

i~
θ(±(t− t′)) Sp

(
ρ̂0

{
ψ̂iα(x, t), ˆ̄ψjβ(x′, t′)

})
. (10)

Here, the average is taken over the Gibbs large canonical distribution for a
system consisting of the medium and the radiation of soft fermionic excita-
tions, being at thermal equilibrium with the medium

ρ̂
∣∣
t=−∞ ≡ ρ̂0 = exp{Ω− β(Ĥ0 − µN̂)}, β = 1/kBT.

The correlation function for soft Fermi-fluctuations is

Ξijαβ(x− x′) ≡ 1

2
Sp
(
ρ̂0

[
ψ̂iα(x, t), ˆ̄ψjβ(x′, t′)

])
. (11)



FDT for soft Fermi-fluctuations. Exact quantum expression

The quantum FDT-relation for soft Fermi-excitations in terms of Fourier
components reads

(ψiαψ̄
j
β)ωq = − 1

(2π)4
i~ δij

ΘF (ω, µ, T )

(~ω − µ)

{
S

(R)
αβ (q, ω)− S(A)

αβ (q, ω)
}
,

where

ΘF (ω, µ, T ) = −1

2
(~ω − µ) tanh

(
~ω − µ
2kBT

)
is mean energy of a quantum fermionic oscillator. In the bosonic case we
have

(A∗aµ A
b
ν)ωk = − 1

(2π)4
iδab

(
ΘB(ω, T )

ω

){
D(R)
µν (k)− (D(R)

νµ (k))∗
}
,

where, in turn,

ΘB(ω, T ) =
~ω
2

coth

(
~ω

2kBT

)
.



FDT for soft Fermi-fluctuations. Semiclassical approximation

FDT-relation for soft Fermi-fluctuations in the semiclassical limits ~→ 0

S (R,A)(q)→ 1

~
∗S (R,A)(q),

where the retarded Green’s function ∗S (R) is
∗S(R)(q) = h+(q̂) ∗4+(q) + h−(q̂) ∗4−(q),

takes the following form

(ψiαψ̄
j
β)ωq =

1

2(2π)3
δij tanh

(1

2
βµ
) ω2

0

2 |q|
θ(q2 − ω2)× (12)

×
{(

1− ω

|q|

)
(h+(q̂))αβ| ∗4+(q)|2 +

(
1 +

ω

|q|

)
(h−(q̂))αβ| ∗4−(q)|2

}
.

Comparing the expression (12) with that for the spectral density (9) obtai-
ned within our simple model, we see that they differ from each other by the
tanh(βµ/2) factor. Since the derivation of expression (12) is more funda-
mental, it is natural, therefore, to assume that we have overlooked
something in deriving (9).



FDT for soft Fermi-fluctuations. Improvement of the model

In the procedure of average when doing the calculation of the correlator〈
ψiα(q)ψ̄jβ(−q′)

〉
the following simple fact has not been taken into account,

namely, the system under consideration is that with a varying number of
particles and antiparticles. In our case a baryon number N that for massless
thermal quarks and antiquarks can be presented as

N = NfNc

∫
d3p

(2π)3

{
1

eβ(ε− µ) + 1
− 1

eβ(ε+ µ) + 1

}
, ε = |p|.

The spectral density (9) was generally calculated at some fixed N .
In the procedure of average it is necessary to introduce the weighting factor
aNe−βµ|N |. The weighting factor accounts for different probabilities of
different numbers of particles and antiparticles in the system. In our case the
baryon number runs not only over all positive values, but also over all
negative values by virtue of exchange of the fermion number between the
hard and soft fermion subsystems of a quark-gluon plasma. Further, a
careful distinction must be made between even and odd number of fermions.
This is achieved by introducing the fermion number operator (−1)F̂ (the
factor (−1)N in our case), which is identified with the aN coefficient.



FDT for soft Fermi-fluctuations. Improvement of the model

Taking into account the above mentioned, we get:〈
ψiα(q)ψ̄jβ(−q′)

〉
=

− g2

(2π)6

+∞∑
N=−∞

(−1)Ne−βµ|N |
∑

ζ= Q, Q̄

∫
dθdθ† θ†iθj

∫
p2
[
f

(ζ)
|p| + f

(G)
|p|

]d|p|
2π2
×

×
∫
dx0 ei(q−q

′)·x0

∫
dΩv

4π
(∗S(q)χ)α

(
χ̄ ∗S(−q′)

)
β
δ(v · q) δ(v · q′),

where the sum equals

+∞∑
N=−∞

(−1)Ne−βµ|N | = 1 + 2

+∞∑
N=1

(−1)Ne−βµN = tanh
(1

2
βµ
)
, µ > 0,

This results in an identical coincidence between the spectral densities (9)
and (12).



Conclusion

We have proved two ways of deriving the fluctuation-dissipation theorem
(FDT) for soft fermion excitations in a hot non-Abelian plasma being in a
thermal equilibrium.

The first of them is based on the extended (pseudo)classical model in
describing a quark-gluon plasma suggested by us, while the second one rests
on the standard technique of calculation of the FDT for thermodynamically
equilibrium systems.

We have shown that full accounting all subtleties that are common to the
fermion system under consideration, results in perfect coincidence of thus
obtained FDTs. This provides a rather strong argument for the validity of
the pseudoclassical model suggested.
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