SKYRMIONS WITH VECTOR MESONS IN HIDDEN LOCAL SYMMETRY

Yongseok Oh (Kyungpook National University)

2013.7.14 - 7.19
THE 7TH BLTP JINR - APCTP JOINT WORKSHOP
"MODERN PROBLEMS IN NUCLEAR AND ELEMENTARY PARTICLE
PHYSICS"
BOLSHIYE KOTY, RUSSIA

CONTENTS

- * Motivation
- * Approaches in the Skyrme model
 - Conventional approaches
 - HLS with hQCD
 - Lagrangian up to $O(p^4)$
 - Role of vector mesons (ρ vs. ω)
- * Outlook

Yong-Liang Ma

Collaborators:

Hyun Kyu Lee

Rung-Yoon Pork

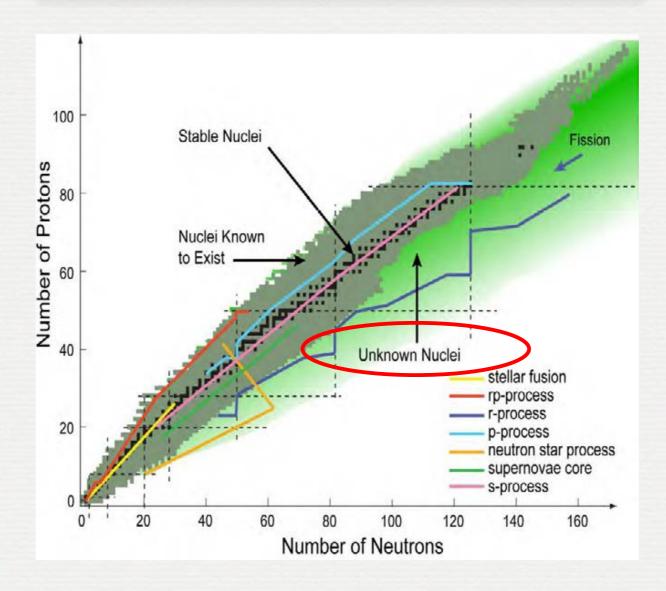
References:

Y.-L. Ma, Y. Oh, G.-S. Yang, W. Harada, H.K. Lee, B.-Y. Park, and M. Rho, Hidden local symmetry and infinite tower of vector mesons for baryons, Payer vector (2012)

Y.-L. Ma, G.-S. Yang, Y. Oh, and M. Harada, Skyrmions with vector mesons in the hidden local symmetry approach, Phys. Rev. D87, 034023 (2013)

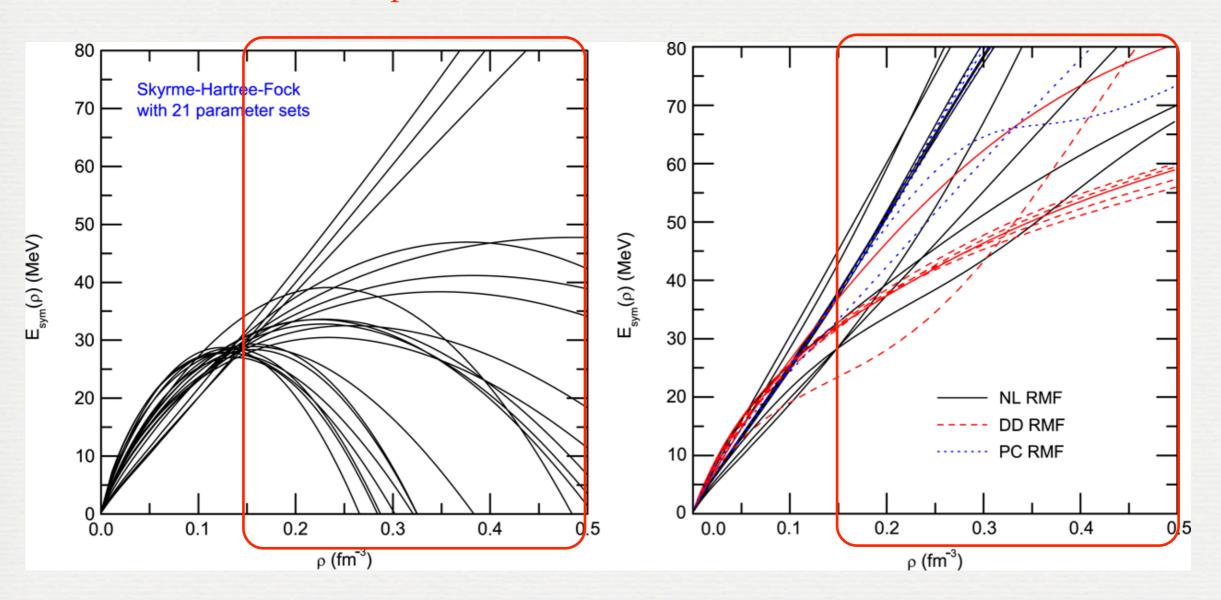
Y.-L. Ma, M. Harada, H.K. Lee, Y. Oh, B.-Y. Park, and M. Rho, Dense baryonic matter in hidden local symmetry approach: Half-Skyrmions and nucleon mass, arXiv:1304.5638 (Phys. Rev. D, in print)

MOTIVATION

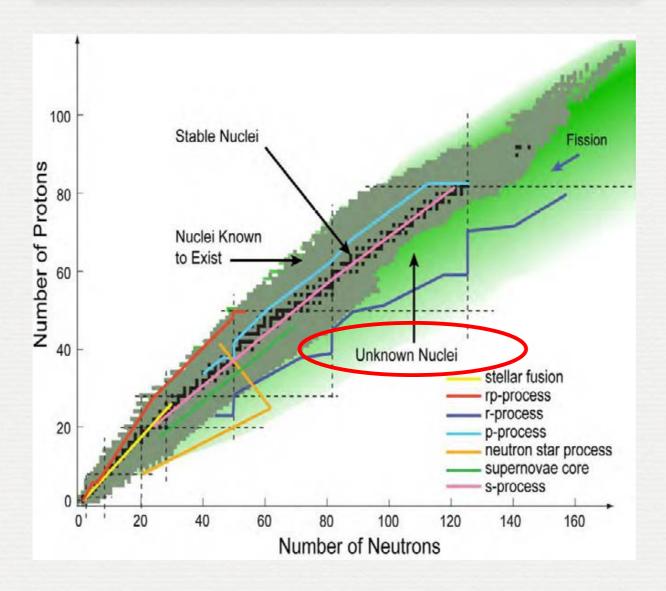


Nuclear Physics → Hadron Physics → Nuclear Physics (Effective Theories of QCD)

extrapolation



MOTIVATION



Nuclear Physics → Hadron Physics → Nuclear Physics (Effective Theories of QCD)

SKYRME MODEL

1960s: T.H.R. Skyrme

Baryons are topological solitons within a nonlinear theory of pions.

$$\mathcal{L} = \frac{f_{\pi}^{2}}{4} \operatorname{Tr} \left(\partial_{\mu} U^{\dagger} \partial^{\mu} U \right) + \frac{1}{32e^{2}} \operatorname{Tr} \left[U^{\dagger} \partial_{\mu} U, U^{\dagger} \partial_{\nu} U \right]^{2}$$

 f_{π} : pion decay constant

e: Skyrme parameter

Topological soliton winding number = baryon number

$$B_{\mu} = \frac{1}{24\pi^2} \epsilon_{\mu\nu\alpha\beta} \operatorname{Tr} \left(U^{\dagger} \partial_{\nu} U U^{\dagger} \partial_{\alpha} U U^{\dagger} \partial_{\beta} U \right)$$

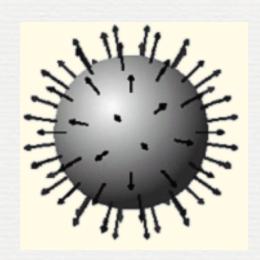
T.H.R. Skyrme: Proc. Roy. Soc. (London) 260, 127 (1961), Nucl. Phys. 31, 556 (1962)

REVIVAL

In large N_c , QCD ~ effective field theory of mesons and baryons may emerge as solitons in this theory.

E. Witten, 1980s

HEDGEHOG SOLUTION



$$U = \exp\left(iF(r)\boldsymbol{\tau}\cdot\hat{\boldsymbol{r}}\right)$$

$$R \sim 1 \text{ fm}$$

$$U = \exp(iF(r)\boldsymbol{\tau} \cdot \hat{\boldsymbol{r}}) \qquad M_{\rm sol} \sim 146|B| \left(\frac{f_{\pi}}{2e}\right) \sim 1.2 \text{ GeV}$$

for
$$B = 1$$

$$M_{\rm sol} \sim 1.23 \times 12\pi^2 |B| > 12\pi^2 |B|$$

in the Skyrme unit: $f_{\pi}/(2e)$

Bogomolny bound

BARYON MASSES

- To give correct quantum numbers
 - SU(2) collective coordinate quantization

$$U(t) = A(t)U_0A^{\dagger}(t)$$

■ Mass formula: infinite tower of I = J

$$M = M_{
m sol} + rac{1}{2\mathcal{I}}I(I+1)$$
 $\mathcal{I}: ext{moment of inertia}$ $M_N = M_{
m sol} + rac{3}{8\mathcal{T}},$ $M_\Delta = M_{
m sol} + rac{15}{8\mathcal{T}}$

■ Adjust f_{π} and e to reproduce the nucleon and Delta masses

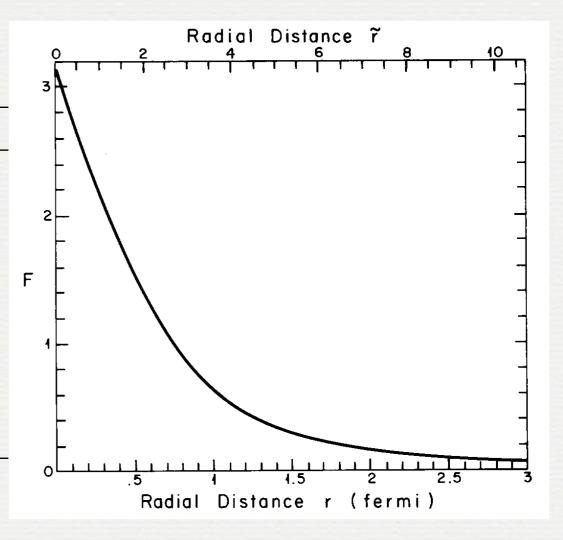
$$f_{\pi} = 64.5 \text{ MeV}, e = 5.45$$

Empirically, $f_{\pi} = 93 \text{ MeV}, e = 5.85(?)$

Skyrme model: results

Best-fitted results

Quantity	Prediction	Expt
M_N	input	939 MeV
M_{Δ}	input	$1232~\mathrm{MeV}$
$\langle r^2 \rangle_{I=0}^{1/2}$	$0.59~\mathrm{fm}$	$0.72~\mathrm{fm}$
$\langle r^2 \rangle_{M,I=0}^{1/2}$	$0.92~\mathrm{fm}$	$0.81~\mathrm{fm}$
μ_{p}	1.87	2.79
μ_n	-1.31	-1.91
$ \mu_p/\mu_n $	1.43	1.46



G.S. Adkins, C.R. Nappi, and E. Witten, Nucl. Phys. B228, 552 (1983)

A.D. Jackson and M. Rho, Phys. Rev. Lett. 51, 751 (1983)

SEVERAL RESULTS FROM THE SKYRME MODEL

SKYRME MODEL (BOUND STATE MODEL)

Best-fitted results based on the derived mass formula

Particle	Prediction (MeV)	Expt
N	939*	N(939)
Δ	1232*	$\Delta(1232)$
$\Lambda(1/2^+)$	1116*	$\Lambda(1116)$
$\Lambda(1/2^{-})$	1405*	$\Lambda(1405)$
$\Sigma(1/2^+)$	1164	$\Sigma(1193)$
$\Sigma(3/2^+)$	1385	$\Sigma(1385)$
$\Sigma(1/2^-)$	1475	$\Sigma(1480)$?
$\Sigma(3/2^-)$	1663	$\Sigma(1670)$
$\Xi(1/2^+)$	1318*	$\Xi(1318)$
$\Xi(3/2^+)$	1539	$\Xi(1530)$
$\Xi(1/2^{-})$	1658 (1660)	$\Xi(1690)$?
$\Xi(1/2^{-})$	$1616 \ (1614)$	$\Xi(1620)$?
$\Xi(3/2^{-})$	1820	$\Xi(1820)$
$\Xi(1/2^+)$	1932	$\Xi(1950)$?
$\Xi(3/2^+)$	2120*	$\Xi(2120)$
$\Omega(3/2^+)$	1694	$\Omega(1672)$
$\Omega(1/2^{-})$	1837	
$\Omega(3/2^-)$	1978	
$\Omega(1/2^+)$	2140	
$\Omega(3/2^+)$	2282	$\Omega(2250)$?
$\Omega(3/2^-)$	2604	

Recently confirmed by COSY *PRL* **96** (2006)

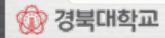
BaBar: the spin-parity of E(1690) is 1/2⁻ PRD 78 (2008) NRQM predicts 1/2⁺

puzzle in QM

Unique prediction of this model. The $\Xi(1620)$ should be there. still one-star resonance

 Ω 's would be discovered in future.

YO, PRD 75 (2007)



SKYRME MODEL (BOUND STATE MODEL)

- Mass sum rules
 - modification to GMO and equal spacing rule

$$3\Lambda + \Sigma - 2(N + \Xi) = \Sigma^* - \Delta - (\Omega - \Xi^*)$$
$$(\Omega - \Xi^*) - (\Xi^* - \Sigma^*) = (\Xi^* - \Sigma^*) - (\Sigma^* - \Delta)$$

hyperfine relation

$$\Sigma^* - \Sigma + \frac{3}{2}(\Sigma - \Lambda) = \Delta - N$$

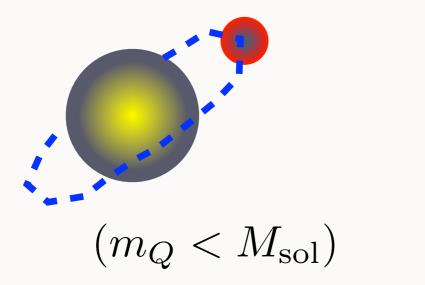
The same relations hold for

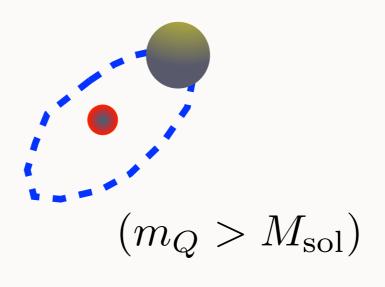
$$\Lambda(1/2^-), \Sigma(1/2^-), \Sigma(3/2^-), \Xi(1/2^+), \Xi(3/2^+), \Omega(3/2^-)$$

HEAVY QUARK BARYONS

- Replace the strangeness by the heavy-flavor
- $\blacksquare m_D/m_\pi \gg m_K/m_\pi$
- A dog wagging a tail?

large N_c vs. large m_Q





The two approaches converge only when both $N_c \to \infty$ and $m_Q \to \infty$

Heavy quark symmetry

HEAVY QUARK BARYONS

Soliton-fixed frame

$\omega - m_a(MeV)$ -100-200 -300-400-500-6001/2* o m_K 5 m_B m_a(GeV)

FIG. 4. Binding energies $\omega - m_{\Phi}$ of the bound states with k^{π} as functions of the heavy-meson mass. Solid (dashed) lines denote the positive (negative) parity states.

Heavy-meson-fixed frame

Table 2. Numerical results on the bound states. Energies are given in MeV unit

(n, k_ℓ^π)	Set I	Set II	Set III	Set IV	Exp.
(0, 0+)	-287	-461	-366	-588	−610
$(1,0^+)$	-12	-62	-15	-79	–
$(0,1^{-})$	-89	-196	-113	-250	-320
$(0, 1^+)^a$	-17	-54	-21	-69	_

a Bound state of soliton to antifiavored heavy meson

300 MeV

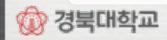
YO, B.Y. Park, ZPA 359, 83 (1997)

fewer bound states

Heavy pentaquark in the large Nc and m_Q limit B.E. = 210 MeV

YO, B.Y. Park, D.-P. Min, PLB 331, 362 (1994)

YO, B.Y. Park, PRD **51**, 5016 (1995)



NUCLEI

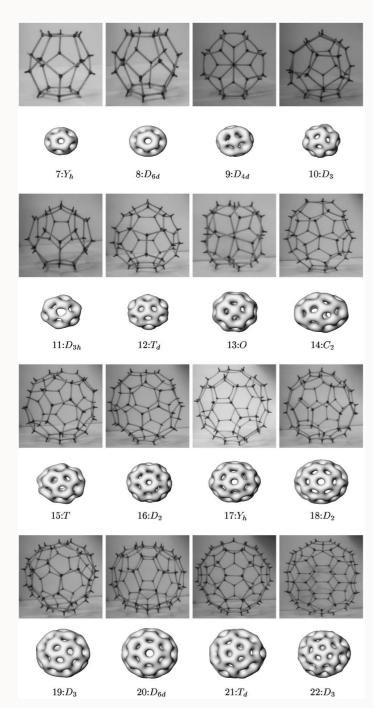
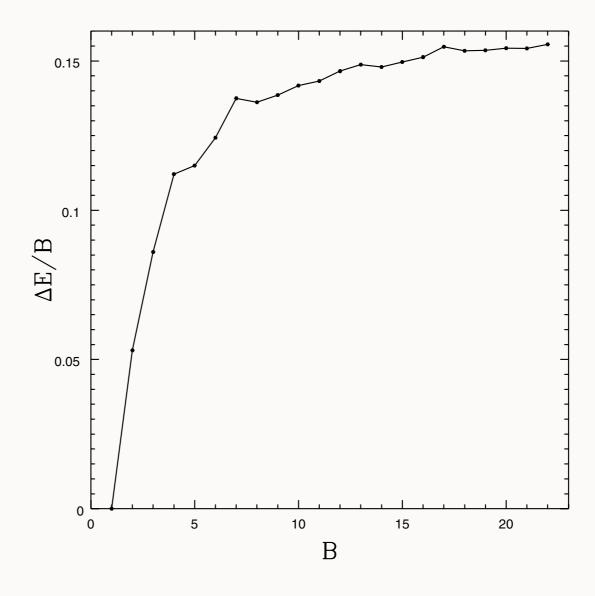
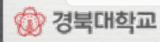


FIG. 1. The baryon density isosurfaces for the solutions which we have identified as the minima for $7 \le B \le 22$, and the associated polyhedral models. The isosurfaces correspond to $\mathcal{B}=0.035$ and are presented to scale, whereas the polyhedra are not to scale.

multi--baryon-number Skyrmion



Battye, Sutcliffe, PRL 86 (2001) 3989



IN THIS PROJECT ...

Skyrme model for Nuclear Physics

Single Baryon

Improvement of the model

- more degrees of freedom (mesons)
- ullet Corrections in the next orders in $1/N_c$
- ChPT

Extension to other hadrons

- SU(3) extension to hyperons
- Heavy-quark baryons
- Hypernuclei & Exotic baryons

Nuclear Matter

Topics

- In-medium properties of single baryon
- Equation of State
- Phase transition
- Application to nuclei

Approaches

- Modified Effective
- Lagrangian
- Skyrmion Crystal
- Winding number *n* solutions

Still there are many works to do

Why vector mesons?

- \bigcirc Witten: QCD ~ weakly interacting mesons in large N_c
 - The lightest meson is the pion
 - The next low-lying mesons are vector mesons (ω and ρ)
- O Stability of the soliton

$$\mathcal{L} = \frac{f_{\pi}^{2}}{4} \operatorname{Tr} \left(\partial_{\mu} U^{\dagger} \partial^{\mu} U \right) + \frac{1}{32e^{2}} \operatorname{Tr} \left[U^{\dagger} \partial_{\mu} U, U^{\dagger} \partial_{\nu} U \right]^{2}$$

Skyrme terms

- Without the Skyrme term, the soliton collapses. Derrick's Theorem
- Vector mesons can stabilize the soliton without the Skyrme term.

Early Attempts to include VM

Including ω meson

$$\mathcal{L} = \mathcal{L}_{\text{pion}} + \mathcal{L}_{\omega} + \mathcal{L}_{\text{int}}$$

$$\mathcal{L}_{\text{pion}} = \frac{f_{\pi}^{2}}{4} \text{Tr}(\partial_{\mu} U \partial^{\mu} U^{\dagger}) + \frac{f_{\pi}^{2}}{2} m_{\pi}^{2} \left(\text{Tr}(U) - 2 \right),$$

$$\mathcal{L}_{\omega} = \frac{m_{\omega}^{2}}{2} \omega_{\mu} \omega^{\mu} - \frac{1}{4} \omega_{\mu\nu} \omega^{\mu\nu}, \qquad \mathcal{L}_{\text{int}} = \beta \omega_{\mu} B^{\mu}$$

G.S. Adkins and C.R. Nappi, Phys. Lett. B137, 251 (1984)

Including ρ meson

$$\mathcal{L} = \mathcal{L}_{pion} + \mathcal{L}_{\rho} + \mathcal{L}_{int}$$

$$\mathcal{L}_{int} = \alpha \text{Tr}(\rho_{\mu\nu} \partial^{\mu} U^{\dagger} U \partial^{\nu} U^{\dagger}) \quad \rho \pi \pi \text{ interaction}$$

G.S. Adkins, Phys. Rev. D33, 193 (1986)

Early Attempts: results

0	C1			T4
Quantity	Skyrme	ω	ho	Expt
	(massive pion)			
$\overline{M_N}$	input	input	input	939 MeV
M_{Δ}	input	input	input	$1232~{ m MeV}$
f_{π}	54 MeV	62 MeV	$52.4~\mathrm{MeV}$	93 MeV
$\langle r^2 \rangle_{I=0}^{1/2}$	$0.68~\mathrm{fm}$	$0.74~\mathrm{fm}$	$0.70~\mathrm{fm}$	$0.72~\mathrm{fm}$
$\langle r^2 \rangle_{I=1}^{1/2}$	$1.04~\mathrm{fm}$	$1.06~\mathrm{fm}$	$1.08~\mathrm{fm}$	$0.88~\mathrm{fm}$
$\langle r^2 \rangle_{M,I=0}^{1/2}$	$0.95~\mathrm{fm}$	$0.92~\mathrm{fm}$	$0.98~\mathrm{fm}$	$0.81~\mathrm{fm}$
$\langle r^2 \rangle_{M,I=1}^{1/2}$	$1.04~\mathrm{fm}$	$1.02~\mathrm{fm}$	$1.06~\mathrm{fm}$	$0.80~\mathrm{fm}$
μ_p	1.97	2.34	2.16	2.79
μ_n	-1.24	-1.46	-1.38	-1.91
$ \mu_p/\mu_n $	1.59	1.60	1.56	1.46
$\mu_{I=0}$	0.365	0.44	0.39	0.44
$\mu_{I=1}$	1.605	1.9	1.77	2.35

Vector Mesons

- Systematic way to include vector mesons
 - Massive Yang-Mills approach

Syracuse group

• Hidden Local Symmetry

Nagoya group

- Equivalence of the two approaches
- Skyrmions in the HLS
 - ρ meson stabilized model
 - Y. Igarashi et al., Nucl. Phys. B259, 721 (1985)
 - ρ and ω meson stabilized model

U.-G. Meissner, N. Kaiser, and W. Weise, Nucl. Phys. A466, 685 (1987)

• ρ , ω and a_1 meson stabilized model

N. Kaiser and U.-G. Meissner, Nucl. Phys. A519, 671 (1990)

L. Zhang and N.C. Mukhopadhyay, Phys. Rev. D50, 4668 (1994)

- Reviews
 - I. Zahed and G.E. Brown, Phys. Rep. 142, 1 (1986)
 - •U.-G. Meissner, Phys. Rep. 161, 213 (1994)

Recent Works for Skyrmions with Vector Mesons

Holographic QCD: infinite tower of vector mesons Solitons in hQCD

D.K. Hong, M. Rho, H.-U. Yee, and P. Yi, Phys. Rev. D76, 061901 (2007); JHEP 0709, 063 (2007) H. Hata, T. Sakai, S. Sugimoto, and S. Tamato, Prog. Theor. Phys. 117, 1157 (2007)

HLS Lagrangian

 $O(p^4)$ terms: M. Tanabashi, Phys. Lett. B316, 534 (1993)

 $O(p^4)$ terms & hQCD: M. Harada and K. Yamawaki, Phys. Rep. 381, 1 (2003)

Skyrmions in HLS with ρ meson up to $O(p^4)$ terms with hQCD

K. Nawa, H. Suganuma, and T. Kojo, Phys. Rev. D75, 086003 (2007)

K. Nawa, A. Hosaka, and H. Suganuma, Phys. Rev. D79, 126005 (2009)

Earlier works

$O(p^2)$ Lagrangian with HLS

$$\mathcal{L}_{\sigma} = \frac{f_{\pi}^2}{4} \text{Tr}(\partial_{\mu} U \partial^{\mu} U^{\dagger}) \quad \text{with } U = \xi_L^{\dagger} \xi_R$$

Hidden Symmetry

$$\xi_{L,R}(x) \to h(x)\xi_{L,R}(x), \quad h \in SU(2)$$

$$V_{\mu}(x) \to ih(x)\partial_{\mu}h^{\dagger}(x) + h(x)V_{\mu}(x)h^{\dagger}(x)$$

Covariant derivative: $D_{\mu}\xi_{L,R} = \partial_{\mu}\xi_{L,R} - iV_{\mu}\xi_{L,R}$

$$\hat{\alpha}_{\mu\parallel} = \frac{1}{2i} (D_{\mu} \xi_L \xi_L^{\dagger} + D_{\mu} \xi_R \xi_R^{\dagger})$$

$$\hat{\alpha}_{\mu\perp} = \frac{1}{2i} (D_{\mu} \xi_L \xi_L^{\dagger} - D_{\mu} \xi_R \xi_R^{\dagger})$$

Unitary gauge: $\xi_L^{\dagger} = \xi_R = \xi$

HLS Lagrangian

$$\mathcal{L} = \mathcal{L}_A + a\mathcal{L}_V + \mathcal{L}_{kin}$$

$$\mathcal{L}_A = f_\pi^2 \operatorname{Tr}(\hat{\alpha}_{\mu\perp}^2) = \mathcal{L}_\sigma, \quad \mathcal{L}_V = f_\pi^2 \operatorname{Tr}(\hat{\alpha}_{\mu\parallel}^2)$$

$$\mathcal{L}_{kin} = -\frac{1}{2g^2} \operatorname{Tr}(F_{\mu\nu}^2)$$

$$m_V^2 = ag^2 f_\pi^2$$
$$g_{\rho\pi\pi} = \frac{1}{2}ag$$

a=2 gives KSRF relation and the universality of ρ coupling

M. Bando, T. Kugo, and K. Yamawaki, Phys. Rep. 164, 217 (1988)

p meson and the Skyrme term

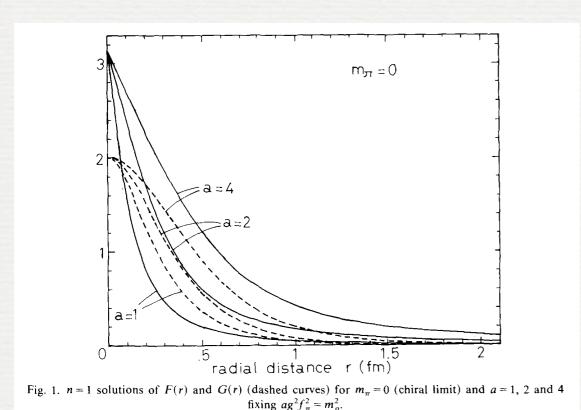
As
$$a \to \infty$$
, i.e., as $m_V \to \infty$

$$\mathcal{L}_V \propto (\alpha_{\mu\parallel} - V_{\mu})^2 = 0$$
where $\alpha_{\mu\parallel} = \frac{1}{2i} (\partial_{\mu} \xi_L \xi_L^{\dagger} + \partial_{\mu} \xi_R \xi_R^{\dagger})$

$$\Rightarrow$$

$$\mathcal{L}_{\text{kin}} \to \frac{1}{32g^2} \text{Tr} \left[\partial_{\mu} U U^{\dagger}, \partial_{\nu} U U^{\dagger} \right]^2 = \mathcal{L}_{\text{Skyrme}}$$

Skyrmion in the HUS with the ρ meson



$$M_{\rm sol} = (667 \sim 1575) \; {\rm MeV}$$

for $1 \le a \le 4$

$$M_{\rm sol} = 1045 \text{ MeV}$$
 for $a = 2$

Y. Igarashi, M. Johmura, A. Kobayashi, H. Otsu, T. Sato, and S. Sawada, Nucl. Phys. B259, 721 (1985)

ρ and ω mesons

ω meson: introduced through HGS like the ρ meson

Anomalous Lagrangian: source of the ω meson

$$\mathcal{L}_{\rm an} = \frac{3}{8}gN_c(c_1 - c_2 - c_3)\omega_{\mu}B^{\mu}$$

$$-\frac{g^3N_c}{32\pi^2}(c_1 + c_2)\varepsilon^{\mu\nu\alpha\beta}\omega_{\mu}\operatorname{tr}\left(a_{\nu}\bar{\rho}_{\alpha}\bar{\rho}_{\beta}\right)$$

$$-\frac{gN_c}{8\pi^2}c_3\varepsilon^{\mu\nu\alpha\beta}\left\{-\omega_{\mu}\operatorname{tr}\left(a_{\nu}v_{\alpha}v_{\beta}\right) + \frac{ig}{4}\partial_{\mu}\omega_{\nu}\operatorname{tr}\left(a_{\alpha}\rho_{\beta} - \rho_{\alpha}a_{\beta}\right) - \frac{ig}{4}\omega_{\mu}\operatorname{tr}\left(\rho_{\nu\alpha}a_{\beta}\right)\right\},$$

Determination of parameters

T. Fujiwara, T. Kugo, H. Terao, S. Uehara, K. Yamawaki, Prog. Theor. Phys., 73, 926 (1985)

$$\begin{array}{ll} \text{Minimal model:} & c_1=\frac{2}{3}, c_2=-\frac{2}{3}, c_3=0 & \omega^\mu B_\mu \ \textit{term only} \\ \text{Vector Dominance:} & c_1=1, c_2=0, c_3=1 & \textit{No } \omega \pi^3 \ \textit{term} \end{array}$$

Or fit them to known phenomenology

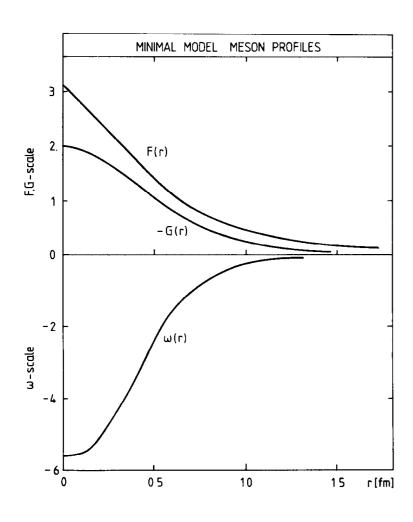
See, for example, P. Jain, U.-G. Meissner, N. Kaiser, H. Weigel, N.C. Mukhopadhyay, etc

U.-G. Meissner, N. Kaiser and W. Weise, Nucl. Phys. A466, 685 (1987)

ρ and ω mesons

minimal model results with a = 2, $f_{\pi} = 93$ MeV, g = 5.85

$$M_{sol} = 1475 \text{ MeV}$$



U.-G. Meissner et al. / Nucleons as Skyrme solitons

TABLE 1
Properties of the Skyrme soliton resulting from the lagrangians (2.11) or (2.19) with π , ρ and ω mesons

	Minimal model	Complete model	Following ref. 17)
M _H [MeV]	1474	1465	1057
$r_{\rm H}$ [fm]	0.50	0.48	0.27

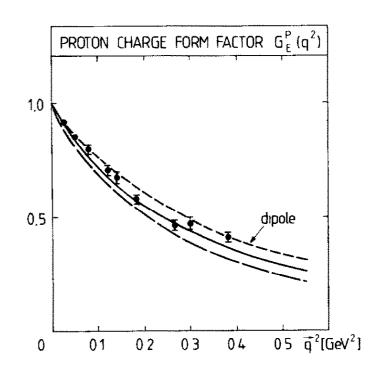
For comparison, the results of the model of ref. ¹⁷) including pions and ρ mesons are also given. The parameters used are $m_{\pi} = 139$ MeV, $f_{\pi} = 93$ MeV, and g = 5.85. Here $M_{\rm H}$ is the static soliton mass, and $r_{\rm H}$ the baryonic r.m.s. radius.

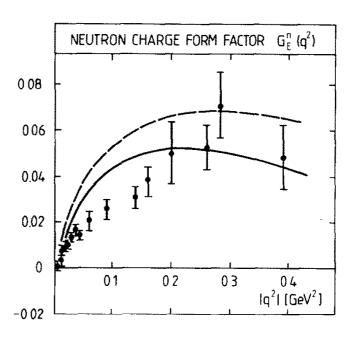
ρ and ω mesons

U.-G. Meissner et al. / Nucleons as Skyrme solitons

TABLE 2
Baryon properties; parameters as in table 1

	Minimal model	Complete model	Experiment
Θ[fm]	0.82	0.68	
$M_{\Delta} - M_{N} [\text{MeV}]$	359	437	293
$M_{\rm N}[{ m MeV}]$	1564	1575	939
$r_{\rm H} \equiv \langle r_{\rm B}^2 \rangle^{1/2} [\rm fm]$	0.50	0.48	
$(r_{\rm E}^2)_{\rm p}^{1/2}$ [fm]	0.92	0.98	0.86 ± 0.01
$\langle r_{\rm E}^2 \rangle_{\rm n} [\rm fm^2]$	-0.22	-0.25	-0.119 ± 0.004
$\langle r_{\rm M}^2 \rangle_{\rm p}^{1/2} [\rm fm]$	0.84	0.94	0.86 ± 0.06
$\langle r_{\rm M}^2 \rangle_{\rm n}^{1/2} [{ m fm}]$	0.85	0.93	0.88 ± 0.07
$\mu_{\rm p}$ [n.m.]	3.36	2.77	2.79
$\mu_{\rm n}$ [n.m.]	-2.57	-1.84	-1.91
$ \mu_{ m p}/\mu_{ m n} $	1.31	1.51	1.46





U.-G. Meissner, N. Kaiser and W. Weise, Nucl. Phys. A466, 685 (1987)

ρ , ω , and a_1 mesons

Axial vector meson

$$U(x) = \xi_L^{\dagger}(x)\xi_M(x)\xi_R(x)$$

N. Kaiser and U.-G. Meissner, Nucl. Phys. A519, 671 (1990) L. Zhang and N.C. Mukhopadhyay, Phys. Rev. D50, 4668 (1994)

■ 14 anomalous terms

cf. 6 independent terms in the $\pi\rho\omega$ system

Hard to control the parameters

Results with a = 2, $f_{\pi} = 93$ MeV, $g = g_{\omega}/1.5 = 5.85$, $m_{V} = 770$ MeV

 $M_{sol} = 1002 \text{ MeV}$

H. Forkel et al. / Skyrmions with vector mesons

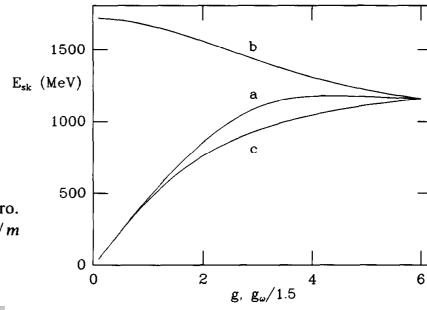


Fig. 1. The behaviour of the skyrmion energy as the vector meson couplings and the masses go to zero. (a) $g = g_{\omega}/1.5 \rightarrow 0$, (b) $g \rightarrow 0$, $g_{\omega}/1.5 = 5.85$ (fixed), (c) $g_{\omega} \rightarrow 0$, g = 5.85 (fixed). In all cases the ratios g/m and $g_{\omega}/1.5m$ are kept constant at 5.85/770 MeV.

H. Forkel, A.D. Jackson, and C. Weiss, Nucl. Phys. A526, 453 (1991)

ρ , ω , and a_1 mesons

The results are sensitive to the parameters.

TABLE VI. Nucleon observables in the $\pi\rho\omega a_1(f_1)$ chiral soliton model without the ϕ decay constraints (with all the energies in MeV). Here h_2 is calculated through Eq. (59) with $S_{\omega} > 0$.

Model	M_H	g _A	$g_{\pi NN}$	$\sigma_{\pi N}$
$(1) h_1 = 0.10, c'_i = 0, i = 2, \dots, 6, 8, Z = 0.9$	1403	0.70	10.56	29.8
(2) $h_1 = -0.10,$ $c'_i = 0, i = 2,, 6, 8, Z = 1.0$	1578	1.00	16.97	50.7
(3) $h_1 = -0.30$, $c'_i = 0, i = 2, \dots, 6, 8, Z = 1.0$	1725	1.25	23.19	70.6
(4) $h_1 = 0.10$, $c'_2 = -0.0020$, $c'_8 = -0.13$, $c'_i = 0$, $i = 3, \dots, 6$, $Z = 1.0$	1503	0.85	13.77	38.1
(5) $h_1 = 0.10, c'_2 = -0.012,$ $c'_3 = 0.29, c'_4 = -0.42, c'_5 = 0.13,$ $c'_6 = -0.015, c'_8 = -0.021, Z = 1.0$	1579	1.12	19.01	58.7
(6) $h_1 = 0.51, c_2' = -0.019,$ $c_3' = -0.0022, c_4' = -0.029, c_5' = 0.53,$ $c_6' = -1.2, c_8' = -0.094, Z = 1.0$	1379	0.90	13.30	43.5
The $\pi \rho \omega$ model ^a	1462	0.91	14.28	41.6
Expt.	939 ±0	1.26 ± 0.01	$13.45 \\ \pm 0.05$	45 ±10

*Reference [6].

TABLE III. Nucleon observables in the $\pi \rho \omega a_1(f_1)$ chiral soliton model with the ϕ decay constraints [Eq. (66)] put in (with all the energies in MeV).

Model	M_H	g_A	$g_{\pi NN}$	$\sigma_{\pi N}$
(Set A) $c'_2 = c'_3 = c'_4 = c'_5$, $c'_6 = c'_8 = 0$, $Z = 0$	704	0.18	1.38	3.4
$(ext{Set B}) \ c_2' pprox 0.053, c_3' pprox -0.029, \ c_4' pprox 0.071, c_5' pprox 0.72, \ c_6' pprox -0.42, c_8' pprox -0.24, \ Z = 0.4$	1070	0.59	6.74	23.0
The $\pi \rho \omega$ model ^a	1462	0.91	14.28	41.6
Expt.	939	1.26	13.45	45
	±0	± 0.01	± 0.05	±10

^aReference [6].

L. Zhang and N.C. Mukhopadhyay, Phys. Rev. D50, 4668 (1994)

Summary of the earlier works

1. a dependence

• ambiguity in the value of *a* results in a large uncertainty in the soliton mass

(in free space, $a \sim 2$ and at high temperature / density $a \sim 1$)

2. Higher order terms

- $O(p^4)$ etc are at $O(N_c)$ like the $O(p^2)$ terms
- More complicated form of the Lagrangian
- Uncontrollably large number of low energy constants

E.g. 6 anomalous terms for the ω meson at $O(p^2)$ 14 anomalous terms for the axial vector mesons at $O(p^2)$

3. In this work,

- $O(p^4)$ with ρ and ω mesons
- Fix the couplings by using hQCD

HLS Lagrangian up to O(p4)

$$\mathcal{L}_{HGS} = \mathcal{L}_{(2)} + \mathcal{L}_{(4)} + \mathcal{L}_{anom}$$

$$\mathcal{L}_{(2)} = f_{\pi}^{2} \operatorname{Tr} \left(\hat{a}_{\perp \mu} \hat{a}_{\perp}^{\mu} \right) + a f_{\pi}^{2} \operatorname{Tr} \left(\hat{a}_{\parallel \mu} \hat{a}_{\parallel}^{\mu} \right) - \frac{1}{2g^{2}} \operatorname{Tr} \left(V_{\mu \nu} V^{\mu \nu} \right),$$

$$\mathcal{L}_{(4)} = \mathcal{L}_{(4)y} + \mathcal{L}_{(4)z},$$

where

$$\mathcal{L}_{(4)y} = y_{1} \operatorname{Tr} \left[\hat{\alpha}_{\perp \mu} \hat{\alpha}_{\perp}^{\mu} \hat{\alpha}_{\perp \nu} \hat{\alpha}_{\perp}^{\nu} \right] + y_{2} \operatorname{Tr} \left[\hat{\alpha}_{\perp \mu} \hat{\alpha}_{\perp \nu} \hat{\alpha}_{\perp}^{\mu} \hat{\alpha}_{\perp}^{\nu} \right] + y_{3} \operatorname{Tr} \left[\hat{\alpha}_{\parallel \mu} \hat{\alpha}_{\parallel \nu}^{\mu} \hat{\alpha}_{\parallel}^{\nu} \right] + y_{4} \operatorname{Tr} \left[\hat{\alpha}_{\parallel \mu} \hat{\alpha}_{\parallel \nu}^{\mu} \hat{\alpha}_{\parallel}^{\nu} \right] + y_{5} \operatorname{Tr} \left[\hat{\alpha}_{\perp \mu} \hat{\alpha}_{\perp \nu}^{\mu} \hat{\alpha}_{\parallel}^{\nu} \right] + y_{7} \operatorname{Tr} \left[\hat{\alpha}_{\perp \mu} \hat{\alpha}_{\perp \nu} \hat{\alpha}_{\parallel}^{\mu} \hat{\alpha}_{\parallel}^{\nu} \right] + y_{7} \operatorname{Tr} \left[\hat{\alpha}_{\perp \mu} \hat{\alpha}_{\perp \nu} \hat{\alpha}_{\parallel}^{\mu} \hat{\alpha}_{\parallel}^{\nu} \right] + y_{7} \operatorname{Tr} \left[\hat{\alpha}_{\perp \mu} \hat{\alpha}_{\perp \nu} \hat{\alpha}_{\parallel}^{\mu} \hat{\alpha}_{\parallel}^{\nu} \right] + y_{7} \operatorname{Tr} \left[\hat{\alpha}_{\perp \mu} \hat{\alpha}_{\perp \nu} \hat{\alpha}_{\parallel}^{\mu} \hat{\alpha}_{\parallel}^{\nu} \right] + y_{7} \operatorname{Tr} \left[\hat{\alpha}_{\perp \mu} \hat{\alpha}_{\perp \nu} \hat{\alpha}_{\parallel}^{\mu} \hat{\alpha}_{\parallel}^{\nu} \right] + y_{7} \operatorname{Tr} \left[\hat{\alpha}_{\perp \mu} \hat{\alpha}_{\perp \nu} \hat{\alpha}_{\parallel}^{\mu} \hat{\alpha}_{\parallel}^{\nu} \right] + y_{7} \operatorname{Tr} \left[\hat{\alpha}_{\perp \mu} \hat{\alpha}_{\perp \nu} \hat{\alpha}_{\parallel}^{\mu} \hat{\alpha}_{\parallel}^{\nu} \right] + y_{7} \operatorname{Tr} \left[\hat{\alpha}_{\perp \mu} \hat{\alpha}_{\perp \nu} \hat{\alpha}_{\parallel}^{\mu} \hat{\alpha}_{\parallel}^{\nu} \right] + y_{7} \operatorname{Tr} \left[\hat{\alpha}_{\perp \mu} \hat{\alpha}_{\perp \nu} \hat{\alpha}_{\parallel}^{\mu} \hat{\alpha}_{\parallel}^{\nu} \right] + y_{7} \operatorname{Tr} \left[\hat{\alpha}_{\perp \mu} \hat{\alpha}_{\perp \nu} \hat{\alpha}_{\parallel}^{\mu} \hat{\alpha}_{\parallel}^{\nu} \right] + y_{7} \operatorname{Tr} \left[\hat{\alpha}_{\perp \mu} \hat{\alpha}_{\perp \nu} \hat{\alpha}_{\parallel}^{\mu} \hat{\alpha}_{\parallel}^{\nu} \right] + y_{7} \operatorname{Tr} \left[\hat{\alpha}_{\perp \mu} \hat{\alpha}_{\perp \nu} \hat{\alpha}_{\parallel}^{\mu} \hat{\alpha}_{\parallel}^{\nu} \right] + y_{7} \operatorname{Tr} \left[\hat{\alpha}_{\perp \mu} \hat{\alpha}_{\perp \nu} \hat{\alpha}_{\parallel}^{\mu} \hat{\alpha}_{\parallel}^{\nu} \right] + y_{7} \operatorname{Tr} \left[\hat{\alpha}_{\perp \mu} \hat{\alpha}_{\perp \nu} \hat{\alpha}_{\parallel}^{\mu} \hat{\alpha}_{\parallel}^{\nu} \right] + y_{7} \operatorname{Tr} \left[\hat{\alpha}_{\perp \mu} \hat{\alpha}_{\perp \nu} \hat{\alpha}_{\parallel}^{\mu} \hat{\alpha}_{\parallel}^{\nu} \right] + y_{7} \operatorname{Tr} \left[\hat{\alpha}_{\perp \mu} \hat{\alpha}_{\perp \nu} \hat{\alpha}_{\parallel}^{\mu} \hat{\alpha}_{\parallel}^{\nu} \right] + y_{7} \operatorname{Tr} \left[\hat{\alpha}_{\perp \mu} \hat{\alpha}_{\perp \nu} \hat{\alpha}_{\parallel}^{\mu} \hat{\alpha}_{\parallel}^{\nu} \right] + y_{7} \operatorname{Tr} \left[\hat{\alpha}_{\perp \mu} \hat{\alpha}_{\perp \nu} \hat{\alpha}_{\parallel}^{\mu} \hat{\alpha}_{\parallel}^{\nu} \right] + y_{7} \operatorname{Tr} \left[\hat{\alpha}_{\perp \mu} \hat{\alpha}_{\perp \nu} \hat{\alpha}_{\parallel}^{\mu} \hat{\alpha}_{\parallel}^{\nu} \right] + y_{7} \operatorname{Tr} \left[\hat{\alpha}_{\perp \mu} \hat{\alpha}_{\perp \nu} \hat{\alpha}_{\parallel}^{\mu} \hat{\alpha}_{\parallel}^{\nu} \right] + y_{7} \operatorname{Tr} \left[\hat{\alpha}_{\perp \mu} \hat{\alpha}_{\perp \nu} \hat{\alpha}_{\parallel}^{\mu} \hat{\alpha}_{\parallel}^{\nu} \right] + y_{7} \operatorname{Tr} \left[\hat{\alpha}_{\perp \mu} \hat{\alpha}_{\parallel}^{\mu} \hat{\alpha}_{\parallel}^{\mu} \hat{\alpha}_{\parallel}^{\nu} \right] + y_{7} \operatorname{Tr} \left[\hat{\alpha}_{\perp \mu} \hat{\alpha}_{\parallel}^{\mu} \hat{\alpha}_{\parallel}^{\mu} \hat{\alpha}_{\parallel}^{\mu} \hat{\alpha}_{\parallel}^{\mu} \right] + y_{7} \operatorname{Tr} \left[\hat{\alpha}_{\perp \mu} \hat{\alpha}_{\perp \nu}^{\mu} \hat{\alpha}_{\parallel}^{\mu} \hat{\alpha}_{\parallel}^{\mu} \hat{\alpha}_{\parallel}^{\mu} \right] + y_{7} \operatorname{Tr} \left[\hat{\alpha}_{\perp \mu} \hat{\alpha}_{\perp \nu}^{\mu} \hat{\alpha}_{\parallel}^{$$

$$\mathcal{L}_{\text{anom}} = \frac{N_c}{16\pi^2} \sum_{i=1}^{3} c_i \mathcal{L}_i,$$

17 terms

where

$$\mathcal{L}_{1} = i \operatorname{Tr} \left[\hat{\alpha}_{L}^{3} \hat{\alpha}_{R} - \hat{\alpha}_{R}^{3} \hat{\alpha}_{L} \right],$$

$$\mathcal{L}_{2} = i \operatorname{Tr} \left[\hat{\alpha}_{L} \hat{\alpha}_{R} \hat{\alpha}_{L} \hat{\alpha}_{R} \right],$$

$$\mathcal{L}_{3} = \operatorname{Tr} \left[F_{V} \left(\hat{\alpha}_{L} \hat{\alpha}_{R} - \hat{\alpha}_{R} \hat{\alpha}_{L} \right) \right],$$

in the 1-form notation with

$$\hat{\alpha}_L = \hat{\alpha}_{\parallel} - \hat{\alpha}_{\perp},$$

$$\hat{\alpha}_R = \hat{\alpha}_{\parallel} + \hat{\alpha}_{\perp},$$

$$F_V = dV - iV^2.$$

M. Harada and K. Yamawaki, Phys. Rep. 381, 1 (2003)

HLS & hQCD

$$S_5 = S_5^{\text{DBI}} + S_5^{\text{CS}}$$

$$S_5^{\text{DBI}} = N_c G_{\text{YM}} \int d^4x dz \left\{ -\frac{1}{2} K_1(z) \text{Tr} [\mathcal{F}_{\mu\nu} \mathcal{F}^{\mu\nu}] + K_2(z) M_{KK}^2 \text{Tr} [\mathcal{F}_{\mu z} \mathcal{F}^{\mu z}] \right\},$$

$$S_5^{\text{CS}} = \frac{N_c}{24\pi^2} \int_{M^4 \times R} w_5(A).$$

$$w_5(A) = \operatorname{Tr} \left[\mathcal{A} \mathcal{F}^2 + \frac{i}{2} \mathcal{A}^3 \mathcal{F} - \frac{1}{10} \mathcal{A}^5 \right].$$

2. induce the HLS Lagrangian from S_5 : integrate out the higher modes

$$\begin{split} A_{\mu}(x,z) &\to A_{\mu}^{\mathrm{integ}}(x,z) \\ &= \hat{\alpha}_{\mu\perp}(x)\psi_0(z) + \left[\hat{\alpha}_{\mu\parallel}(x) + V_{\mu}(x)\right] \\ &+ \hat{\alpha}_{\mu\parallel}(x)\psi_1(z), \end{split}$$

Determination of couplings

$$\begin{split} f_{\pi}^2 &= N_c G_{\mathrm{YM}} M_{KK}^2 \int dz K_2(z) \left[\dot{\psi}_0(z) \right]^2, \\ a f_{\pi}^2 &= N_c G_{\mathrm{YM}} M_{KK}^2 \lambda_1 \langle \psi_1^2 \rangle, \\ \frac{1}{g^2} &= N_c G_{\mathrm{YM}} \langle \psi_1^2 \rangle, \\ y_1 &= -y_2 = -N_c G_{\mathrm{YM}} \left\langle \left(1 + \psi_1 - \psi_0^2 \right)^2 \right\rangle, \\ y_3 &= -y_4 = -N_c G_{\mathrm{YM}} \left\langle \psi_1^2 \left(1 + \psi_1 \right)^2 \right\rangle, \\ y_5 &= 2y_8 = -y_9 = -2 N_c G_{\mathrm{YM}} \left\langle \psi_1^2 \psi_0^2 \right\rangle, \\ y_6 &= -\left(y_5 + y_7 \right), \\ y_7 &= 2 N_c G_{\mathrm{YM}} \left\langle \psi_1 \left(1 + \psi_1 \right) \left(1 + \psi_1 - \psi_0^2 \right) \right\rangle, \\ z_4 &= 2 N_c G_{\mathrm{YM}} \left\langle \psi_1 \left(1 + \psi_1 - \psi_0^2 \right) \right\rangle, \\ z_5 &= -2 N_c G_{\mathrm{YM}} \left\langle \psi_1^2 \left(1 + \psi_1 \right) \right\rangle, \\ c_1 &= \left\langle \left\langle \dot{\psi}_0 \psi_1 \left(\frac{1}{2} \psi_0^2 + \frac{1}{6} \psi_1^2 - \frac{1}{2} \right) \right\rangle \right\rangle, \\ c_2 &= \left\langle \left\langle \dot{\psi}_0 \psi_1 \left(-\frac{1}{2} \psi_0^2 + \frac{1}{6} \psi_1^2 + \frac{1}{2} \psi_1 + \frac{1}{2} \right) \right\rangle \right\rangle, \\ c_3 &= \left\langle \left\langle \frac{1}{2} \dot{\psi}_0 \psi_1^2 \right\rangle \right\rangle, \end{split}$$

eigenvalue equation given in Eq. (34), and $\langle \rangle$ and $\langle \langle \rangle \rangle$ are defined as

where λ_1 is the smallest (non-zero) eigenvalue of the

$$\langle A \rangle \equiv \int_{-\infty}^{\infty} dz K_1(z) A(z),$$

$$\langle \langle A \rangle \rangle \equiv \int_{-\infty}^{\infty} dz A(z)$$
(36)

 $K_1(z), K_2(z)$: metric functions

$$K_1(z) = K^{-1/3}(z), K_2(z) = K(z)$$

with
$$K(z) = 1 + z^2$$

in the Sakai-Sugimoto model

Two parameters

KK MASS

'T WOOFT COUPLING

$$m_{\rho} = 776 \text{ MeV}$$

 $f_{\pi} = 92.4 \text{ MeV}$

a is still undetermined

TABLE I. Low energy constants of the HLS Lagrangian at $O(p^4)$ with a=2.

Model	y_1	y_3	y_5	y_6	z_4	z_5	c_1	c_2	c_3
SS model	-0.001096	-0.002830	-0.015917	+0.013712	0.010795	-0.007325	+0.381653	-0.129602	0.767374
BPS model	-0.071910	-0.153511	-0.012286	-0.196545	0.090338	-0.130778	-0.206992	+3.031734	1.470210

Comparison with the Skyrme Lagrangian

Original Skyrme lagrangian

$$\mathcal{L}_{Sk} = \frac{f_{\pi}^{2}}{4} \operatorname{Tr} \left(\partial_{\mu} U \partial^{\mu} U^{\dagger} \right) + \frac{1}{32e^{2}} \operatorname{Tr} \left[\partial_{\mu} U U^{\dagger}, \partial_{\nu} U U^{\dagger} \right]^{2}, \tag{55}$$

After integrating out YM in HLS

$$\mathcal{L}_{ChPT} = f_{\pi}^{2} \operatorname{Tr} \left[\alpha_{\perp \mu} \alpha_{\perp}^{\mu} \right] + \left(\frac{1}{2g^{2}} - \frac{z_{4}}{2} - \frac{y_{1} - y_{2}}{4} \right) \operatorname{Tr} \left[\alpha_{\perp \mu}, \alpha_{\perp \nu} \right]^{2} + \frac{y_{1} + y_{2}}{4} \operatorname{Tr} \left\{ \alpha_{\perp \mu}, \alpha_{\perp \nu} \right\}^{2},$$
 (56)

$$\frac{1}{2e^2} = \frac{1}{2g^2} - \frac{z_4}{2} - \frac{y_1 - y_2}{4}.$$

 $e \simeq 7.31$

in the SS model

Three models

- HLS(π , ρ , ω) model: full O(p^4) Lagrangian with hWZ terms
- HLS(π , ρ) model: without hQZ terms, the ω meson decouples
- HLS(π) model: integrates out VMs same as the Skyrme Lagrangian but e is fixed by the HLS

Soliton Wave Functions

Classical Solution

$$\xi(\mathbf{r}) = \exp\left[i\mathbf{\tau} \cdot \hat{\mathbf{r}} \frac{F(r)}{2}\right]$$

$$\omega_{\mu} = W(r) \ \delta_{0\mu},$$

$$\rho_0 = 0, \quad \boldsymbol{\rho} = \frac{G(r)}{gr} (\hat{\mathbf{r}} \times \boldsymbol{\tau})$$

Boundary Conditions

$$F(0) = \pi,$$
 $F(\infty) = 0,$
 $G(0) = -2,$ $G(\infty) = 0,$
 $W'(0) = 0,$ $W(\infty) = 0.$

FOR BEI SOLITON

Collective Quantization

$$\xi(\mathbf{r}) \to \xi(\mathbf{r}, t) = A(t) \, \xi(\mathbf{r}) A^{\dagger}(t),$$

$$V_{\mu}(\mathbf{r}) \to V_{\mu}(\mathbf{r}, t) = A(t) \, V_{\mu}(\mathbf{r}) A^{\dagger}(t),$$

$$i\boldsymbol{\tau} \cdot \boldsymbol{\Omega} \equiv A^{\dagger}(t) \partial_{0} A(t).$$

$$\rho^{0}(\mathbf{r}, t) = A(t) \frac{2}{g} \left[\boldsymbol{\tau} \cdot \boldsymbol{\Omega} \, \xi_{1}(r) + \hat{\boldsymbol{\tau}} \cdot \hat{\boldsymbol{r}} \, \boldsymbol{\Omega} \cdot \hat{\boldsymbol{r}} \, \xi_{2}(r) \right] A^{\dagger}(t),$$

$$\omega^{i}(\mathbf{r}, t) = \frac{\varphi(r)}{r} \left(\boldsymbol{\Omega} \times \hat{\boldsymbol{r}} \right)^{i},$$
(21)

Boundary Conditions

$$\xi_1'(0) = \xi_1(\infty) = 0,$$

$$\xi_2'(0) = \xi_2(\infty) = 0,$$

$$\varphi(0) = \varphi(\infty) = 0,$$

Adkins, Nappi, Witten, NPB 228 (1983)

So, substituting $U = A(t)U_0A^{-1}(t)$ in (1), after a lengthy calculation, we get

$$L = -M + \lambda \operatorname{Tr} \left[\partial_0 A \partial_0 A^{-1} \right], \tag{4}$$

Callan, Klebanov, NPB 262 (1985)

order in K will vanish as well). The reasonably simple end result of this rather painful exercise is

$$L_{\text{Skyrme}}(U_{\pi}) + (D_{\mu}K)^{+}D_{\mu}K - m_{K}^{2}K^{+}K$$

$$-\frac{1}{2}K^{+}K\left\langle \text{tr}(\partial U^{+}\partial^{\mu}U_{-}) + \frac{1}{2}\text{tr}[\partial UU_{-}^{+}, \partial U_{-}U_{-}^{+}]^{2}\right\rangle$$

Soliton mass

$$M_{\text{sol}} = 4\pi \int dr \left[M_{(2)}(r) + M_{(4)}(r) + M_{\text{anom}}(r) \right],$$
 (A1)

where $M_{(2)}$, $M_{(4)}$, and M_{anom} are from $\mathcal{L}_{(2)}$, $\mathcal{L}_{(4)y} + \mathcal{L}_{(4)z}$, and $\mathcal{L}_{\text{anom}}$, respectively. Their explicit forms are

$$\begin{split} M_{(2)}(r) &= \frac{f_{\pi}^2}{2} \left(F'^2 r^2 + 2 \sin^2 F \right) - \frac{ag^2 f_{\pi}^2}{2} W^2 r^2 + a f_{\pi}^2 \left(G + 2 \sin^2 \frac{F}{2} \right)^2 - \frac{W'^2 r^2}{2} + \frac{G'^2}{g^2} + \frac{G^2}{2g^2 r^2} \left(G + 2 \right)^2, \quad \text{(A2)} \\ M_{(4)}(r) &= -y_1 \frac{r^2}{8} \left(F'^2 + \frac{2}{r^2} \sin^2 F \right)^2 - y_2 \frac{r^2}{8} F'^2 \left(F'^2 - \frac{4}{r^2} \sin^2 F \right) - y_3 \frac{r^2}{2} \left[\frac{g^2 W^2}{2} - \frac{1}{r^2} \left(G + 2 \sin^2 \frac{F}{2} \right)^2 \right]^2 \\ &- y_4 \frac{g^2 W^2 r^2}{2} \left\{ \frac{g^2 W^2}{4} - \frac{1}{r^2} \left(G + 2 \sin^2 \frac{F}{2} \right)^2 \right\} + \frac{y_5}{4} \left(r^2 F'^2 + 2 \sin^2 F \right) \left[\frac{g^2 W^2}{2} - \frac{1}{r^2} \left(G + 2 \sin^2 \frac{F}{2} \right)^2 \right] \\ &+ \left(y_8 - \frac{y_7}{2} \right) \frac{\sin^2 F}{r^2} \left(G + 2 \sin^2 \frac{F}{2} \right)^2 + y_9 \left\{ \frac{g^2 W^2 r^2}{8} \left(F'^2 + \frac{2}{r^2} \sin^2 F \right) + \frac{F'^2}{4} \left(G + 2 \sin^2 \frac{F}{2} \right)^2 \right\} \\ &+ z_4 \left\{ G' F' \sin F + \frac{\sin^2 F}{2r^2} G(G + 2) \right\} + \frac{z_5}{2r^2} G(G + 2) \left(G + 2 \sin^2 \frac{F}{2} \right)^2, \quad \text{(A3)} \\ M_{\text{anom}}(r) &= \alpha_1 F' W \sin^2 F + \alpha_2 W F' \left(G + 2 \sin^2 \frac{F}{2} \right)^2 \\ &- \alpha_3 \left\{ G(G + 2) W F' + 2 \sin F \left[W G' - W' \left(G + 2 \sin^2 \frac{F}{2} \right) \right] \right\}, \quad \text{(A4)} \end{split}$$

where

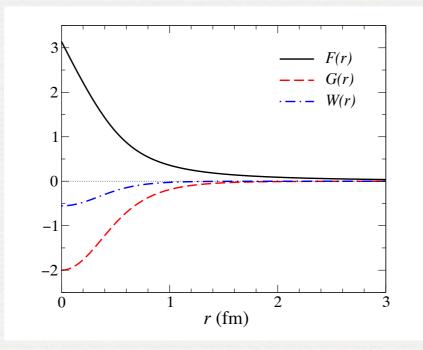
$$\alpha_1 = \frac{3gN_c}{16\pi^2} (c_1 - c_2), \qquad \alpha_2 = \frac{gN_c}{16\pi^2} (c_1 + c_2), \qquad \alpha_3 = \frac{gN_c}{16\pi^2} c_3.$$
 (A5)

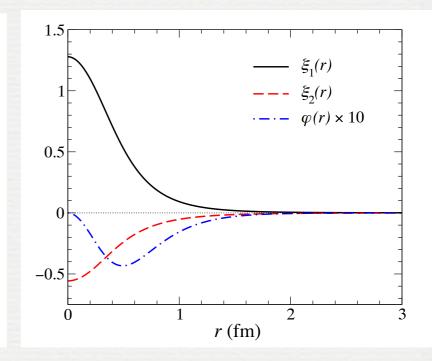
Moment of Inertia

$$\begin{split} L &= -M_{\rm Sol} + I \, {\rm Tr}(\dot{A}\dot{A}^{\dagger}), \qquad I = 4\pi \int dr \big[I_{(2)}(r) + I_{(4)}(r) + I_{\rm anom}(r) \big], \\ I_{2}(r) &= \frac{2}{3} J_{\pi}^{2} r^{2} \sin^{2}F + \frac{1}{3} a J_{\pi}^{2} r^{2} \Big[(\xi_{1} + \xi_{2})^{2} + 2 \Big(\xi_{1} - 2 \sin^{2}\frac{F}{2} \Big)^{2} \Big] - \frac{1}{6} a g^{2} J_{\pi}^{2} \varphi^{2} - \frac{1}{6} \Big(\varphi^{\prime 2} + \frac{2 \varphi^{2}}{r^{2}} \Big) \\ &+ \frac{r^{2}}{3g^{2}} (3 \xi_{1}^{\prime 2} + 2 \xi_{1}^{\prime} \xi_{2}^{\prime} + \xi_{2}^{\prime 2}) + \frac{4}{3g^{2}} G^{2}(\xi_{1} - 1)(\xi_{1} + \xi_{2} - 1) + \frac{2}{3g^{2}} (G^{2} + 2G + 2) \xi_{2}^{2}. \\ I_{(4)} &= \sum_{i} v_{i} I_{y_{i}} + \sum_{i} z_{i} I_{z_{i}}, \\ I_{y_{i}}(r) &= \frac{1}{3} r^{2} \sin^{2}F \Big(r^{2} + \frac{2}{r^{2}} \sin^{2}F \Big) \\ I_{y_{i}}(r) &= \frac{1}{3} r^{2} \sin^{2}F \Big(r^{2} + \frac{2}{r^{2}} \sin^{2}F \Big) \\ I_{y_{i}}(r) &= \frac{1}{3} r^{2} \sin^{2}F F^{2}. \\ I_{y_{i}}(r) &= \frac{1}{3} r^{2} \sin^{2}F \Big(r^{2} + \frac{2}{r^{2}} \sin^{2}F \Big) \Big[(\xi_{1} + 2\sin^{2}\frac{F}{2})^{2} \Big(\xi_{1} - 2\sin^{2}\frac{F}{2} \Big)^{2} \Big] \\ &+ \Big[\frac{1}{2} r^{2} g^{2} W^{2} \Big[(\xi_{1} + \xi_{2})^{2} + 2 \Big(\xi_{1} - 2\sin^{2}\frac{F}{2} \Big)^{2} \Big] - \frac{1}{12} g^{2} W \varphi \Big[g^{2} W \varphi - 8 \Big(G + 2\sin^{2}\frac{F}{2} \Big) \Big(\xi_{1} - 2\sin^{2}\frac{F}{2} \Big) \Big] \\ &+ \frac{1}{3} (G + 2\sin^{2}\frac{F}{2} \Big)^{2} \Big[r^{2} e^{2} + (\xi_{1} + \xi_{2})^{2} \Big] - \frac{r^{2}}{12} e^{2} e^{2} - (\xi_{1} - 2\sin^{2}\frac{F}{2}) \Big[(\xi_{1} - 2\sin^{2}\frac{F}{2}) \Big] \Big[(\xi_{1} - 2\sin^{2}\frac{F}{2}) \Big] \\ &+ \frac{1}{3} (G + 2\sin^{2}\frac{F}{2})^{2} \Big[r^{2} e^{2} - 2\sin^{2}\frac{F}{2} \Big] \Big[r^{2} e^{2} - 2\sin^{2}F \Big] \Big[2 \Big(\xi_{1} - 2\sin^{2}\frac{F}{2} \Big) \Big[\xi_{1} - 2\sin^{2}\frac{F}{2} \Big] \Big] \\ &+ \frac{1}{3} (G + 2\sin^{2}\frac{F}{2})^{2} \Big[r^{2} e^{2} - 2\sin^{2}\frac{F}{2} \Big] \Big[r^{2} e^{2} - 2\sin^{2}F \Big] \Big[2 \Big(\xi_{1} - 2\sin^{2}\frac{F}{2} \Big) \Big[\xi_{1} - 2\sin^{2}\frac{F}{2} \Big] \Big] \\ &+ \frac{1}{3} (G + 2\sin^{2}\frac{F}{2}) \Big[r^{2} e^{2} e^{2} - 2\sin^{2}F \Big] \Big[r^{2} e^{2} e^{2} - 2\sin^{2}F \Big] \Big[r^{2} e^{2} e^{2} e^{2} e^{2} e^{2}$$

Solutions

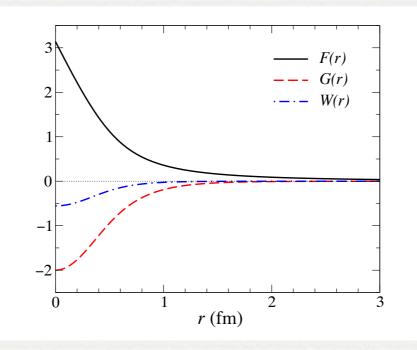
 $HLS(\pi, \rho, \omega)$ model

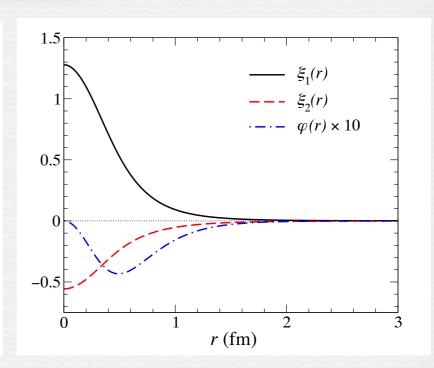




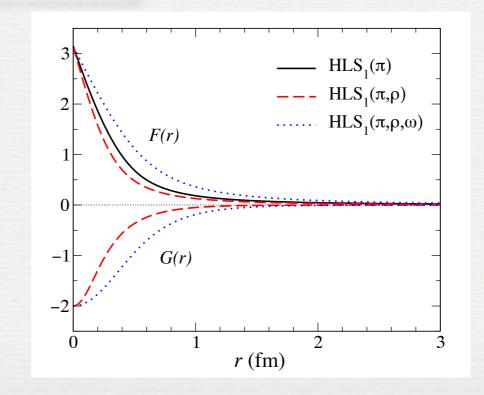
Solutions

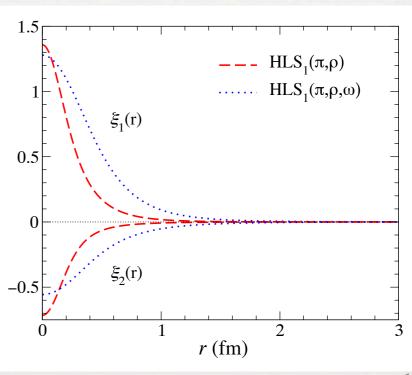
HLS(π, ρ, ω) model





Comparison of the three models





Results

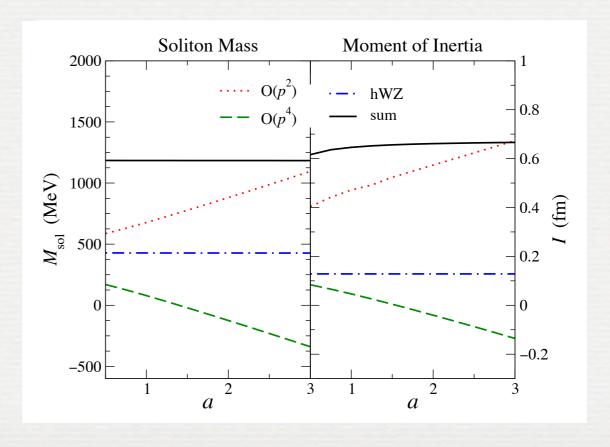
TABLE II. Skyrmion mass and size calculated in the HLS with the SS and BPS models with a=2. The soliton mass $M_{\rm sol}$ and the Δ -N mass difference Δ_M are in unit of MeV while $\sqrt{\langle r^2 \rangle_W}$ and $\sqrt{\langle r^2 \rangle_E}$ are in unit of fm. The column of $O(p^2) + \omega_\mu B^\mu$ is "the minimal model" of Ref. [20] and that of $O(p^2)$ corresponds to the model of Ref. [19]. See the text for more details.

	$\mathrm{HLS}_1(\pi,\rho,\omega)$	$\mathrm{HLS}_1(\pi, \rho)$	$\mathrm{HLS}_1(\pi)$
$\overline{}_{ m sol}$	1184	834	922
Δ_M	448	1707	1014
$\sqrt{\langle r^2 angle_W}$	0.433	0.247	0.309
$\sqrt{\langle r^2 angle_E}$	0.608	0.371	0.417

$BPS(\pi, \rho, \omega)$	$BPS(\pi, \rho)$	$BPS(\pi)$	$O(p^2) + \omega_{\mu} B^{\mu} [20]$	$O(p^2)$ [19]
1162	577	672	1407	1026
456	4541	2613	259	1131
0.415	0.164	0.225	0.540	0.278
0.598	0.271	0.306	0.725	0.422

$$\Delta_M \equiv M_\Delta - M_N$$

a independence of the Skyrmion properties



Discussions

1. The role of ρ meson

- reduction of the soliton mass: from 922 MeV to 834 MeV
- increase of the Δ -N mass difference: from 1014 MeV to 1707 MeV
- shrink the soliton profile: from 0.417 fm to 0.371 fm

2. The role of ω meson

- increase of the soliton mass: from 834 MeV to 1184 MeV
- decrease of the Δ -N mass difference: from 1707 MeV to 448 MeV
- expand the soliton profile: from 0.371 fm to 0.608 fm

3. Without ω meson

• the Δ -N mass difference of $O(1/N_c)$ > the soliton mass of $O(N_c)$

4. The independence of *a*

Direct consequence from hQCD

Summary

1. The role of vector mesons

- previous works: more VMs lead to the Bogomolny bound
- \bullet the inclusion of the ρ meson confirms it.
- ullet but, the ω meson has the opposite role: important from both the theoretical and phenomenological views

2. Issues

- next order corrections: $O(N_c^0)$ pion fluctuation (Casimir energy)
- next order terms in the HLS: in N_c and in p

3. Next Targets

- few-nucleon systems ⇒ semi-empirical mass formula?
- nuclear matter, Skyrmion crystal
- equation of state, nuclear symmetric energy

B.-Y. Park (next talk): Dense baryonic matter in hidden local symmetry

Thank you very much for your attention.