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Linearisation of HEq of TM in a weak sense
Despite a considerable age the 1+1 Dimensional Thirring model:

H[Ψ] = H0[Ψ](x
0) + HI [Ψ](x

0), x = (x0, x1), x0 = t, (1)

H0[Ψ](x
0) =

∫ ∞
−∞

dx1Ψ†(x)E (P1)Ψ(x), (2)

HI [Ψ](x
0) =

g
2

∫ ∞
−∞

dx1J(Ψ)µ(x)Jµ(Ψ)(x), with currents: (3)

Jµ(Ψ)(x) 7−→ Ψ(x)γµΨ(x), J5µ
(Ψ)(x) 7−→ Ψ(x)γµγ5Ψ(x), (4)

Jξ(Ψ)(x) = J0
(Ψ)(x) + ξJ1

(Ψ)(x) 7−→ 2Ψ†ξ(x)Ψξ(x), for: ξ=±, (5)

P1 =−i∂1, E (P1)=γ5P1, γ5 =γ0γ1⇒σ3, γ
µγ5 =−εµνγν ,

is still remained as important touchstone for non-perturbative
methods of quantum field theory. It turns out to be a two
-dimensional analog of the well-known Nambu-Jona-Lasinio model
and provides an important example of using the well-known
bosonization procedure (BP). In the present work the BP for TM is
considered as a particular case of dynamical mapping (DM), what
for Schwinger model was previously done by Greenberg1.

1O.W. Greenberg, Found. Phys. 30, 2000, 383.



Linearisation of HEq of TM in a weak sense
In the framework of canonical quantization scheme

with the CAR:
{

Ψξ(x),Ψξ′(y)
}∣∣∣

x0=y0
= 0, ξ, ξ′ = ±, (6){

Ψξ(x),Ψ†ξ′(y)
}∣∣∣

x0=y0
= δξ,ξ′δ

(
x1 − y1), (⊗Z(Ψ)(x − y)

)
, (7)

the DM method2 consists in the construction of Heisenberg field
(HF) Ψ(x) as a solution of Heisenberg equations (HEq) of motion:

i∂0Ψ(x) = [Ψ(x),H[Ψ]]⇒ :
[
E (P1) + gγ0γνJν(Ψ)(x)

]
Ψ(x) : , (8)

in the form of Haag expansion built as a sum of normal products of
free physical fields ψ(x), whose representation space accords with a
priori unknown physical states of the given field theory. The DM
Ψ(x)

w
= :Υ[ψin(x)] :, being generally speaking a weak equality “w”,

implies the choice of appropriate representation space as well as the
initial conditions to HEq: lim

t→−∞
Ψ(x1, t)

w
= Υ[ψin(x1,−∞)], with

the appropriate asymptotic physical field ψin(x).
2H. Umezawa, H. Matsumoto, M. Tachiki, Thermo-field dynamics and

condensed states. NHPC, Amsterdam, 1982



Linearisation of HEq of TM in a weak sense

The existence of such a DM implies for the full Hamiltonian (1)
H = H0(t) + HI (t) a weak representation as a sum of some
constant W0 and some free H in

0 :

H w
= H in

0 + W0, in a sense: 〈a|H|b〉 = 〈a|H in
0 |b〉+ W0〈a|b〉, (9)

However the asymptotic completeness and irreducibility are absent
in the presense of bound states. In particular for this
two-dimensional model the physical asymptotic states of propagated
physical particles have nothing to do with massless free Dirac
asymptotic fields. For such a case it is convenient3 to use DM onto
the Schrödinger -like physical field ψ(x), associated with the HF at
t → 0: lim

t→0
Ψ(x1, t)

w
= Υ[ψ(x1, 0)], which is a generalization of the

well-known interaction representation and is closely related to the
above canonical quantization procedure (6), (7).

3L.D. Faddeev, Sov. Phys. Doklady, 8, 1964, 881;
A.N. Vall, S.E. Korenblit, V.M. Leviant, A.B. Tanaev, J. Nonlin. Math. Phys.
1997, 4, 492; A.V. Shebeko, M.I.Shirokov, Phys. Part. Nucl. 32, 2001, 31.



Linearisation of HEq of TM in a weak sense
An immediate consequence of HEq (8), is the conservation of both
the currents (4), that determine their dynamics as a free one:

∂µJ
µ
(Ψ)(x) = 0, ∂µJ

5µ
(Ψ)(x) = −εµν∂µJν(Ψ)(x) = 0, (10)

i∂0γ
0γνJν(Ψ)(x)−

[
γ0γνJν(Ψ)(x),H0[Ψ](x

0)
]

= iI ∂µJ
µ
(Ψ)(x) +

+iγ5 εµν∂
µJν(Ψ)(x) ≡ 0 =

[
γ0γνJν(Ψ)(x),HI [Ψ](x

0)
]
, (11)

suggesting the linearization of HEq in a weak sense for free curent:

γ0γνJν(Ψ)(x)
w7→ β

2
√
π
γ0γν Ĵν(χ)(x)⇒ β

2
√
π
γ0γν :Jν(χ)(x) : . (12)

χ(x) is a free massless Dirac field, (γ∂)χ(x) = 0, Z(χ)(a) = 1.
Note that Heisenberg current operators Jν(Ψ)(x) acquire precise
operator meaning – with non-vanishing Schwinger term – only after
the choice of the representation space of CAR (6), (7) and
subsequent reduction in this representation to the normal-ordered
form by means of renormalization via well-known Mandelstam
-Schwinger point-splitting prescription on time-like and/or
space-like vectors and subtraction of vacuum expectation value:



Linearisation of HEq of TM in a weak sense
ε2 = −ε̃2 ≥ 0, so that ε̃0 = ε1 → 0, with fixed ε̃1 = ε0:

J0
(Ψ)(x) 7→ lim

ε̃→0
Ĵ0

(Ψ)(x ; ε̃)= Ĵ0
(Ψ)(x), the same for Ĵν(χ)(x ; ε̃(ε)),

J1
(Ψ)(x) 7→ lim

ε→0
Ĵ1

(Ψ)(x ; ε)= Ĵ1
(Ψ)(x), with: Ĵν(Ψ)(x ; a) = (13)

= Z−1
(Ψ)(a)

[
Ψ(x + a)γνΨ(x)− 〈0|Ψ(x + a)γνΨ(x)|0〉

]
. (14)

The constant β, multiplicative renormalization Z(Ψ)(a) for a→ 0,
depending on ultraviolet cut-off Λ, and dynamical dimension d(Ψ)
will be defined dynamically by means of self-consistent calculation

as: Z(Ψ)(a)⇒
[
−Λ2a2]−β2

/4π
, d(Ψ) = 1/2 + β

2
/4π. (15)

According to (10), (12) now it is enough only a free current’s
bosonization rules. There ∃ a free massless pseudoscalar field φ(x):

Ĵµ(χ)(x) = − 1√
π
εµν∂νφ(x), Ĵ−ξ(χ)(x) =

2√
π
∂ξϕ

ξ
(
xξ
)
, (16)

xξ = x0 + ξx1, φ(x) = −
∑
ξ=±

ξϕξ
(
xξ
)
, ∂2φ(x) = 0. (17)



Free Bose and Dirac fields in 1+1D
The right (ξ = −) and left (ξ = +) moving fields ϕξ(xξ) and their
charges Qξ are defined in the space c(k1)|0〉=0 of φ(x), as:

Pc(k1)P−1 =−c(−k1), [c(k1), c†(q1)]=4πk0δ(k1 − q1), (18)

φ(x) =

∫ ∞
−∞

dk1

4πk0

[
c
(
k1) e−i(kx) + c†

(
k1) e i(kx)

]
, (19)

ϕξ(+)(s) = −
∫ ∞
−∞

dk1

2k0
ξθ(−ξk1)

2π
c(k1)e−ik0s , k0 = |k1|, (20)

ϕξ(−)(s) =
[
ϕξ(+)(s)

]†
, ϕξ(s) = ϕξ(+)(s) + ϕξ(−)(s), (21)

Qξ(+)(x̂0)= lim
L→∞

iξ
∫ ∞
−∞

dk1θ
(
−ξk1) c(k1)e−ik0x̂0

δL(k1)/2, (22)

Qξ(−) =
[
Qξ(+)

]†
, Qξ=Qξ(+)+Qξ(−), δL(k1) 7−→

L→∞
δ(k1), (23)

O
O5

}
= lim

L→∞

∫ ∞
−∞

dy1∆

(
y1

L

){
−∂1
∂0

}
φ(y1, x0)=

∑
ξ=±

{
Qξ,
−ξQξ.

(24)

δL(k1) is Fourier image of charge’s regularization function ∆(y1/L).



Free Bose and Dirac fields in 1+1D
Using the main CCR:[

ϕξ(±)(s), ϕξ
′(∓)(τ)

]
= ∓

δξ,ξ′

4π
ln
(

iµ
{
±(s − τ)− i0

})
, (25)[

ϕξ(±)(s),Qξ′(∓)
]

=
i
4
δξ,ξ′ ,

[
Qξ(±),Qξ′(∓)

]
= ±a0δξ,ξ′ , (26)

a0 = a0(L) = π

∫ ∞
0

dk1k0 (δL(k1)
)2
, (27)

one can construct a variety of different inequivalent representations
of the solutions of free Dirac equation ∂ξχξ(x) = 0. The simplest4,
which for Z(χ)(a) = 1 leads exactly to the bosonization rules (16) is:

χξ

(
x−ξ
)

= Nϕ
{
exp
(
−i2
√
π

[
ϕ−ξ(x−ξ) +

ξ

4
Qξ

])}
uξ, (28)

uξ =

(
µ

2π

)1/2

e i$−iξΘ/4 exp
{
−a0

π

8

}
≡ uOk

ξ exp
{
−a0

π

8

}
. (29)

It gives the formal solution of HEq (8), (12) as exponentials
4N.N. Bogoliubov, A.A. Logunov, A.I. Oksak, I. T. Todorov, General

principles of quantum field theory. KAP, Boston, 1990.



Inequivalent representations and DM
in the normal-ordered form similar to Klaiber5 but is not the same:

Ψξ(x) = Ψξ(x1, x0) = eCξ(−)(x)Ψξ

(
x1 − ξx0, 0

)
eCξ(+)(x), (30)

where the bos-ion rules (16) for the current of field χ(x) (28) gives:

C ξ(±)(x) = −i
βg
2
√
π

∫ x0

0
dy0Ĵ−ξ(±)

(χ)

(
x1 + ξy0 − ξx0, y0) =

= −i
βg
2π

[
ϕξ(±)

(
xξ
)
− ϕξ(±)

(
−x−ξ

)]
.

Remarkably, that the completely unknown initial HF appears here
also as a solution Ψξ(x1 − ξx0, 0)⇒ λξ(x−ξ) of free massless Dirac
equation ∂ξλξ(x−ξ) = 0, but certainly unitarily inequivalent to the
free field χ(x) according to Haag theorem. It should be taking also
in the normal-ordered form Nϕ with respect to the field ϕξ(±)(s),
using appropriate Bogoliubov bosonic canonical transformation of
this field Uη = expFη with constant parameters α = 2

√
π cosh η

and β = 2
√
π sinh η, obeying α2 − β2

= 4π,
5B. Klaiber, “Lectures in Theoretical Physics”, Gordon and Breach, NY,

1968, X, Part A, pp. 141-176.



Inequivalent representations and DM
with the following new fields, charges and generator: y ξ = x0 + ξy1,

ωξ
(
xξ
)

= U−1
η ϕξ

(
xξ
)

Uη =
1

2
√
π

[
αϕξ

(
xξ
)

+ βϕ−ξ
(
−xξ

)]
,

vξ=exp

{
−a0

β
2

16

}(
µ

Λ

)β2
/4π

uξ, λξ(x−ξ)=U−1
η χξ(x−ξ)Uη =

= Nϕ
{
exp
(
−i2
√
π

[
ω−ξ

(
x−ξ
)

+
ξ

4
Wξ

])}
vξ , (31)

Wξ = U−1
η QξUη =

1
2
√
π

[
αQξ − βQ−ξ

]
,

Fη=
η

2π

∫ ∞
−∞

dk1

2k0 θ(k1)
(
c(k1)c(−k1)− c†(−k1)c†(k1)

)
=

=
iη
2

∫ ∞
−∞

dy1φ(y1,−x0)
↔
∂0 φ(y1, x0)=2iη

∫ ∞
−∞

dy1ϕξ(y ξ)∂0ϕ
−ξ(−y ξ).

By imposing the conditions onto the parameters, that necessary to
have a correct spin 1/2 Lorentz -transformation properties



Inequivalent representations and DM
and correct CAR (6), (7), respectively:

α2 − β2
= 4π, β − βg

2π
= 0, eη =

2
√
π

β
=

√
1 +

g
π
, (32)

the following variant of Oksak solution6 of TM is obtained:

ΨOk
ξ (x) = Nϕ

{
exp
(
−i2
√
π

[
%−ξ(x) +

ξ

4
Wξ

])}
vξ, (33)

2
√
π %−ξ(x) = αϕ−ξ

(
x−ξ
)

+ βϕξ
(
xξ
)
, (34)

vξ= v̂ξ exp
{
−a0

π

8
cosh 2η

}
, v̂ξ=

(
µ

2π

)1/2(µ
Λ

)β2
/4π

e i$−iξΘ/4.(35)

The observed weak linearization of HEq for TM together with the
nonlinearity of DM (33) and the weak initial conditions at x0 = 0
allows to overcome the restrictions of Haag theorem, by removing
the problems again into the representation construction of physical
fields: at first as reducible massless free Dirac fields χ(x), and then
as irreducible free massless pseudo scalar field φ(x).

6Oksak A. I., Teoret. Mat. Fiz. 1981. 48. 297.



Inequivalent representations and DM

This solution contains all Klein factors also under the normal form
Nϕ, as is demanded for DM. The infrared regularization parameters
µ and a0 appear for both the free and Oksak field (35) in the one
and the same combination as: (η = 0, d(χ) = 1/2)[
µ exp

{
−a0

π

4

}]d(Ψ)

, d(Ψ) =
cosh 2η

2
, α± β = 2

√
πe±η. (36)



Different solutions, superselection rules and VEV
In order to connect the solution (33), (35) with another known
solutions of TM the unitary transformations of conformal shift for
the fields ϕξ are used. To this end we consider one- and two-
parametric families of solutions for arbitrary real σ, ρ, defined by:
Kσ = expXσ, Lρ = expYρ, as Ψξ(x , σ)=K−1

σ ΨOk
ξ (x)Kσ, with

Xσ= i(σξ/4)
(
Q−ξQ−ξ − QξQξ

)
= iσOO5/4, (37)

Yρ = −iρQξQ−ξ/2 = −iρ
(
O2 − O2

5
)
/8, and the field: (38)

Ψξ(x , σ, ρ)=L−1
ρ Ψξ(x , σ)Lρ=Nϕ

{
eRξ(x ,σ,ρ)

}
vξ(σ, ρ), (39)

Rξ(x , σ, ρ) = −i2
√
π

[
%−ξ(x) +

1
8

Σξ
+Qξ +

1
8

Σξ
−Q−ξ

]
, (40)

vξ(σ, ρ) = v̂ξ exp
{
−a0

π

32

[(
Σξ
−

)2
+
(

Σξ
+

)2
]}

, with: (41)

Σξ
± = e−η [ξ(1− σ) + ρ]± eη [ξ(1 + σ) + ρ] . (42)

This extension of Oksak solution (33) with any σ, ρ obeys again the
same CAR (6), (7) and the bosonization rule (12)–(16),



Different solutions, superselection rules and VEV

with the same renormalization constant Z(Ψ)(a) (15).
For ρ = 0, by using the definition (24) both of charges O,O5 it is a
simple matter to check that σ = ±1 gives the two types of
Mandelstam solution7, for example:

Ψξ(x , 1) = Nϕ
{

eRξ(x ,1)
}

v̂ξ exp
{
−a0

π

4
e2η
}
, σ = 1, (43)

Rξ(x , 1) = −i
√
π

[
ξe−ηφ(x1, x0)− eη

∫ x1

−∞
dy1∂0φ(y1, x0)

]
, (44)

while σ = − coth 2η corresponds to normal form of solution of
Morchio8 et al.

7Mandelstam S., Phys. Rev. 1975. D 11. 3026.
8Morchio G., Pierotti D., Strocchi F., J. Math. Phys. 1992. 33. 777.



Different solutions, superselection rules and VEV
The p -point Wightman function corresponding to vacuum
expectation value (VEV) of the string of the fields (39) with:
li = +1, for Ψi ; li = −1, for Ψ†i , acquires the multiplier:(

Λβ
2
/4π
√
2π
)p
〈
0

∣∣∣∣∣
p∏

i=1

Ψ
(li )
ξi

(xi , σ, ρ)

∣∣∣∣∣ 0
〉
∝

∝ exp
{

i$Sp − i
Θ

4
Sp5

}
exp
{
1
4
[
e2ηS2

p + e−2ηS2
p5
]
lnµ
}
·

· exp

{
−a0

π

16

(
e2η
[

(1 + σ)Sp + ρSp5

]2

+ e−2η
[

(1− σ)Sp5 + ρSp

]2
)}

,

which absorbs all the infrared regularization parameters µ and a0 as
well as σ, ρ dependence and disappears only when both of
superselection rules (45) are fulfilled:

Sp ≡
p∑

i=1

li ⇒ 0, Sp5 ≡
p∑

i=1

liξi ⇒ 0. (45)



TFD. Thermal bosonization. Hot and cold thermofields
At finite temperature T > 0, ς = (kBT )−1, in the framework of
thermofield dynamics9 (TFD) it is necessary to double the number
of degrees of freedom by providing all the fields Ψ with their tilde
partners Ψ̃ according to antilinear homomorphism

(AB)∼ = ÃB̃, (αA + βB)∼ = α∗Ã + β∗B̃, (46)

(A†)∼ = (Ã)†, with the condition : (b̃(ς))∼ = b(ς). (47)

The resulting theory will be determined by the Hamiltonian
Ĥ[Ψ, Ψ̃]=H[Ψ]− H̃[Ψ̃], with H̃[Ψ̃]=H∗[Ψ̃∗], H[Ψ]=H0[Ψ] + HI [Ψ].
The kinematic independence of tilde-conjugate fields Ψ̃ means that:{

Ψξ(x), Ψ̃#
ξ′ (y)

}∣∣∣
x0=y0

= 0,
{

Ψξ(x), Ψ̃#
ξ′ (y)

}∣∣∣
(x−y)2<0

= 0, (48)

and corresponds to independence of their Hamiltonians and their
HEqs. This allows to consider a solution only for the one of them.
Since the thermal transformations Vϑ(F ), Vϑ(B) are not depend on
coordinates and time, they can be applied directly to (48) and HEq
of TM, leading again to the same equations for the new HF Ψ(x , ς).

9H. Umezawa, H. Matsumoto, M. Tachiki, Amsterdam, 1982



TFD. Thermal bosonization. Hot and cold thermofields
The thermal transformation is given by infinite product of one
mode operators and the transformed vacuum state is a coherent
state: |0(ς)〉=V−1

ϑ(B)|00̃〉. For Bose fields: tanh2 ϑ(k1, ς)=e−ςk
0
,

L⇒ 2πδ(0)→∞, ak1

√
2k0L⇒ck1 , K−(k1)= c̃k1ck1 ,

K+(k1)=c†k1 c̃
†
k1 , K0(k1)=(c†k1ck1 +c̃k1 c̃†k1)/2,

∞∏
k1=−∞

V−1
ϑ(k1)(B)

=⇒
L→∞

V−1
ϑ(B) =exp {−Xϑ} = V†ϑ(B), (49)

Xϑ=
1
2π

∫ +∞

−∞

dk1

2k0ϑ(k1, ς)
[
K−(k1)−K+(k1)

]
= X̃ϑ, (50)

V−1
ϑ(B) = exp

{
1
2π

∫ +∞

−∞

dk1

2k0 tanhϑ(k1, ς)K+(k1)

}
·

·exp
{
− 1
2π

∫ +∞

−∞

dk1

2k0 ln
(
cosh2 ϑ(k1, ς)

)
K0(k1)

}
·

·exp
{
− 1
2π

∫ +∞

−∞

dk1

2k0 tanhϑ(k1, ς)K−(k1)

}
, (51)



TFD. Thermal bosonization. Hot and cold thermofields
Bogoliubov transformations for “hot” [+], and “cold” [−] operators,
their CCR, condensate density, and vacuum overlaping read:

ck1([±]ς) = V∓1
ϑ(B)ck1V±1

ϑ(B) = ck1 coshϑ∓ c̃†k1 sinhϑ,

c̃k1([±]ς) = V∓1
ϑ(B)c̃k1V±1

ϑ(B) = c̃k1 coshϑ∓ c†k1 sinhϑ,
(52)[

ck1([±]ς), c†q1([±]ς)
]

= (2π)
(
2k0) δ (k1 − q1) ,[

c̃k1([±]ς), c̃†q1([±]ς)
]

= (2π)
(
2k0) δ (k1 − q1) , (53)

ck1([+]ς)|0(ς)〉 = 0, c̃k1([+]ς)|0(ς)〉 = 0, k0 = ωk1 , (54)

〈0(ς)|c†k1ck1 |0(ς)〉 = 〈00̃|c†k1([+]ς)ck1([+]ς)|00̃〉 =

= 4πk0δ(0) sinh2 ϑ = 2k0L(eςk
0 − 1)−1, L = 2πδ(0), (55)

〈00̃|0(ς)〉 = 〈00̃|V−1
ϑ(B)|00̃〉 ⇒ exp {−(L/ς)(π/12)} ⇐ (56)

⇐ exp
{
−δ(0)

∫ +∞

−∞
dk1 ln

(
coshϑ(k1, ς)

)}
=⇒
L→∞

0, (57)

what means the unitarily inequivalense of different representations
of QFT at different temperature



TFD. Thermal bosonization. Hot and cold thermofields

About motivation of the hot and cold thermofields.
For any functional F [Ψ] of HF in the given representation of
physical fields ψ(x), i.e. for given DM Ψ(x) = Υ[ψ(x)] at zero
temperature, being interested in the matrix elements on the
thermal vacuum of the type:

〈0(ς)|F [Ψ(x)] |0(ς)〉 = 〈00̃|VϑF [Ψ(x)]V−1
ϑ |00̃〉 = (58)

= 〈00̃|F
[
VϑΨ(x)V−1

ϑ

]
|00̃〉 ≡ 〈00̃|F [Ψ(x , [−]ς)]|00̃〉,

we come to formal mapping:
Ψ(x , [−]ς) = VϑΨ(x)V−1

ϑ = Υ
[
Vϑψ(x)V−1

ϑ

]
= Υ [ψ(x , [−]ς)] ,(59)

onto the “cold” physical thermofield:
ψ(x , [−]ς) = Vϑψ(x)V−1

ϑ , with the same coefficient (60)

functions, as for the initial DM, that transferring so all the
temperature dependence from the vacuum state |0(ς)〉 onto these
“cold” physical thermofields.



TFD. Thermal bosonization. Hot and cold thermofields
To compute matrix element (58) it is necessary to substitute into
the r.h.s. of (58), (59) this cold physical thermofields (60) again in
terms of the initial physical fields ψ(x) (52) [−], and reorder again
the so obtained operator with respect to this initial fields to obtain:

〈0(ς)|F [Ψ] |0(ς)〉 ⇒ 〈00̃|F
[
Υ̂ [[−]ς;ψ(x)]

]
|00̃〉. (61)

The standard computation way implies the substitution of the
inverse to (52) [+] linear expressions of physical fields
ψ(x) = Vϑψ(x , [+]ς)V−1

ϑ in terms of the “hot” physical
thermofields into the l.h.s. of (58) and reordering the so obtained
operator with respect to this hot physical thermofield over the
thermal (“hot”) vacuum |0(ς)〉, to obtain:
〈0(ς)|F [Ψ] |0(ς)〉 ⇒ 〈0(ς)|F

[
Υ̂ [[+]ς;ψ(x , [+]ς)]

]
|0(ς)〉.

“Hot” pseudoscalar field with respect to the “hot” vacuum |0(ς)〉

reads: φ(x ; [+]ς) = V−1
ϑ(B)φ(x)Vϑ(B) =

=
1
2π

∫ ∞
−∞

dk1

2k0

[
ck1([+]ς)e−i(kx) + c†k1([+]ς)e+i(kx)

]
. (62)



TFD. Thermal bosonization. Hot and cold thermofields

To construct the solution of HEq for TM in the doubling space of
pseudoscalar fields c(k1)|00̃〉 = c̃(k1)|00̃〉 = 0, all previous T = 0
steps should be repeated again for φ(x ; [±]ς) = V∓1

ϑ(B)φ(x)V±1
ϑ(B):

ϕξ(+)
(
xξ; [±]ς

)
=−
∫ ∞
−∞

dk1

2k0
ξθ(−ξk1)

2π

[
coshϑc(k1)e−ik0xξ∓

∓ sinhϑc̃(k1)e ik0xξ
]
, ϕξ(−)

(
xξ; [±]ς

)
=
{
ϕξ(+)

(
xξ; [±]ς

)}†
,(63)

Qξ(+)([±]ς)= lim
L→∞

∫ ∞
−∞

dk1 iξθ(−ξk1)

2

[
coshϑc(k1)e−ik0x̂0±

± sinhϑc̃(k1)e ik0x̂0
]
δL
(
k1) , Qξ(−)([±]ς)=

{
Qξ(+)([±]ς)

}†
.(64)

with corresponding expressins for the tilde-partners, ϑ = ϑ(k1; ς).
Here the x̂0 – dependence of charge frequency parts is fictitious. It
is the artifact of space regularization (24) of charges and should be
eliminated at the end of calculation.



TFD. Thermal bosonization. Hot and cold thermofields

Putting corresponding ± into respective brackets, the main CCR
read, exhibiting very dangerouse coordinate dependence:[
ϕξ(±) (s; [±]ς) , ϕξ

′(∓) (τ ; [±]ς)
]

=

= (∓1)
δξ,ξ′

4π

{
ln
(
iµ
ς

π
sinh

(
π

ς
(±(s − τ)− i0)

))
− g (ς, µ1)

}
,(65)[

ϕξ(±)(s; [±]ς),Qξ′(∓)([±]ς)
]

= δξ,ξ′

[
i
4
− (±1)

(
x̂0 − s
2ς

)]
, (66)[

ϕξ(±)(s; [±]ς), Q̃ξ′(∓)([±]ς)
]

= (±1)[±1]δξ,ξ′

(
x̂0 − s
2ς

)
, (67)[

Qξ(±)([±]ς),Qξ′(∓)([±]ς)
]

=(±1)a1δξ,ξ′ , (68)[
Qξ(±)([±]ς), Q̃ξ′(∓)([±]ς)

]
=(±1)[∓1]a2δξ,ξ′ . (69)

And for the tilde-conjugate relations correspondingly.



TFD. Thermal bosonization. Hot and cold thermofields

Here the following quantities are defined, which control the
additional infrared divergences: µ=µeC3 , µ1 =µ1eC3→0

g (ς, µ1)=

∫ ∞
µ1

dk1

k0

(
2

eςk0 − 1

)
→ 2

ςµ1
− ln

(
2π
ςµ1

)
, (70)

if: δL
(
k1)⇒L∆(k1L), I ∆

n =

∫ ∞
0

dttn(∆(t)
)2
, then: a0⇒πI ∆

1 , (71)

a1 =a0+ 2π
∫ ∞

0
dtt

(∆(t))2

eςt/L − 1
⇒2πI ∆

0
L
ς

+
π

6
I ∆
2
ς

L
+ O

(( ς
L

)3
)
,(72)

a2 =π

∫ ∞
0

dtt
(∆(t))2

sinh (tς/2L)
⇒2πI ∆

0
L
ς
− π

12
I ∆
2
ς

L
+ O

(( ς
L

)3
)
, (73)

for: L→∞; whence: a1 − a2 → 0, if: a0 <∞,
but: lim

ς→∞
g (ς, µ1) = 0, lim

ς→∞
a1 = a0, lim

ς→∞
a2 = 0, (74)



Thermofield solutions of TM
Now one can construct again a variety of different inequivalent
representations for solutions of the free massless Dirac equation for
the physical field at finite temperature, ∂ξχξ

(
x−ξ, ς

)
= 0 in the

form of local normal ordered exponentials of the left and right
bosonic thermofields ϕξ(xξ, ς), and their charges. Due to above
coordinate dependence of commutators its appear, that kinematic
independence (48) of the tilde-partners can be achieved only by
admixing all the Klein factors coming from both of the charges
Qξ(ς), Q−ξ(ς) and Q̃ξ(ς), Q̃−ξ(ς) into the same field by using the
new charges, with simple commutation relations:

Gξ([±]ς) = Qξ([±]ς) + [±1]Q̃ξ([±]ς), with: (75)[
ϕξ(±)(s; [±]ς),Gξ′(∓)([±]ς)

]
=

i
4
δξ,ξ′ , (76)[

ϕξ(±)(s; [±]ς), G̃ξ′(∓)([±]ς)
]

= [±1]
i
4
δξ,ξ′ , (77)[

Gξ(±)([±]ς),Gξ′(∓)([±]ς)
]

= (±1)2(a1 − a2)δξ,ξ′ , (78)[
Gξ(±)([±]ς), G̃ξ′(∓)([±]ς)

]
= (±1)[±1]2(a1 − a2)δξ,ξ′ . (79)



Thermofield solutions of TM
Moreover, according to the meaning of L as macroscopic
parameter, the wanted thermofields should have a correct
thermodynamic limit L→∞ for the finite temperature. The most
simple case, which obeys again the same CAR (6), (7) and the
bosonization rules (12)–(16), again with Z(χ)(a) = 1 reads as:

χξ(x−ξ; [±]ς) = Nϕ
(
exp
{

Rξ(x−ξ; [±]ς)
})

uξ (µ1, [±]ς) , (80)

Rξ(x−ξ; [±]ς) = −i2
√
π

[
ϕ−ξ

(
x−ξ; [±]ς

)
+
σξ0
4

G−ξ([±]ς)+ (81)

+
σξ1
4

Gξ([±]ς)

]
, with: σξ0 = −ξσ, σξ1 = ξ1 + ρ, (82)

uξ (µ1, [±]ς)
∣∣∣
L→∞

=

(
µ

2π

)1/2

e i$−iξΘ/4 exp
{
− g(ς, µ1)

2

}
, (83)

where the σ and ρ are the same parameters as above, but they
become fixed below by the condition (48).



Thermofield solutions of TM
Integrating again the HEq of TM as above for T = 0 one finds:

Ψξ(x ; [±]ς) = Nϕ (exp {<ξ(x ; [±]ς)}) wξ (µ1, ς) ,

<ξ(x ; [±]ς) = −i

[
B−ξ(x ; [±]ς) +

Σξ
0
4

G−ξ([±]ς) +
Σξ

1
4

Gξ([±]ς)

]
,

with: B−ξ(x ; [±]ς) = αϕ−ξ(x−ξ; [±]ς)) + βϕξ(xξ; [±]ς)),

wξ(µ1, ς)
∣∣∣
L→∞

=

(
Λ

2π

)1/2 [µ
Λ
exp {−g(ς, µ1)}

]d(Ψ)

e i$−iξΘ/4,

Σξ
0 = ασξ0 − βσ

ξ
1, Σξ

1 = ασξ1 − βσ
ξ
0, `, n - integers,

σξ0 = −ξσ ⇒ ξ(2`+ 1), σξ1 = ξ1 + ρ⇒ ξ1 + (2n + 1), (84)

with the same values of parameters (32) and renormalization
constant Z(Ψ)(a) (15). Remarkably, that the obtained conditions
(84) provide the anticommutation, locality and kinematic
independence relations (48) for both the free and the Thirring fields
and their tilde-partners simultaneously. Note that here σ, ρ 6= 0.



Conclusions
0. The correct HF should be only a fully normal ordered operator in
the sense of DM onto the irreducible set of physical fields. Only
this form clarifies and assures correct renormalization, commutation
and symmetry properties and give simple connections between
different types of solutions with finite and zero temperature.
1. The general solutions for HF (30) of TM keeps the Klaiber’s
normal form, but with distinct unitarily inequivalent representation
of the free massless Dirac field sandwiched the simple dynamical
factors. This elucidates an important dynamical role of inequivalent
representations of these fields to built the solution of HEq.
2. The obtained thermofield solution of TM, at T → 0 (ς →∞)
with finite L and omitted tilde charges, come back to above general
solution Ψξ(x , σ, ρ) (39), defined for arbitrary σ, ρ, instead of only
odd values (84) for T > 0. So the naive thermofield transformation
of Mandelstam (or other’s) solution10 is not correct.
3.The notion of “hot” and “cold” physical thermofields is found to
be convenient to distinguish different thermofield representations
with respect to different vacua.

10Amaral R.L.P.G., Belvedere L.V., Rothe K.D., Annals of Physics, 320,
2005, 399.



Conclusions

4. Only if the both superselection rules are fulfilled the
thermodynamic limit L→∞ and the zero temperature limit
ς →∞ may be interchanged with the one and the same result for
any p-point VEV (Wightman functions) that become independent
of all infrared regularizations similarly to the case T = 0.
5. Due to automatical elimination of zero mode’s contributions, the
chosen here representation space of free massless pseudoscalar field
relaxes the problem of non-positivity of the inner product induced
by its two-point Wightman function.



Appendix: Motivation of TFD
Попытка записать статистическое среднее в виде некоторого
вакуумного среднего немедленно приводит к удвоению числа
степеней свободы: термополевой вакуум “живет” в прямом
тензорном произведении пространств: системы и как бы ее
“зеркального” отражения в термостате: Z (ς) = Tr{e−ςH},
ς = (kBT )−1, H|n〉=En|n〉, 〈m|n〉 = δmn,

〈〈A〉〉 = Z−1Tr{e−ςHA} ?
=⇒ 〈0(ς)|A|0(ς)〉, или: (85)

Z−1
∑
n

〈n|A|n〉e−ςEn ?
=⇒ 〈0(ς)|A|0(ς)〉, ищем в виде: (86)

|0(ς)〉 =
∑
n

|n〉fn(ς), f ∗n (ς)fm(ς) = Z−1e−ςEnδnm, (87)

fn(ς) = Z−1/2e−ςEn/2|ñ〉, H̃|ñ〉=En|ñ〉, 〈m̃|ñ〉 = δmn, (88)

|0(ς)〉=Z−1/2
∑
n

e−ςEn/2|n, ñ〉, |n, ñ〉≡|n〉⊗|ñ〉=
(
|n〉
|ñ〉

)
, (89)

Очевидно: Ĥ |0(ς)〉=0, Ĥ =H − H̃, при H, H̃|0(ς)〉 6=0, (90)

〈0(ς)|0(ς)〉=1, b|0〉= b̃|0̃〉=0, b(ς)|0(ς)〉 ?
=0 ?

= b̃(ς)|0(ς)〉. (91)



Appendix: Bogoliubov transformations
Simplest fermionic oscillator: one fixed mode k1; only two
normalized states |0〉 and |1〉, with E0 =0, E1 =ω, annihilated or
created by: b|0〉=0, |1〉=b†|0〉, {b, b†}=1, {b, b}=0. Thermal
vacuum appears as a normalized sum of tensor products of two
independent copies of these states: |00̃〉= |0〉⊗|0̃〉, |11̃〉= |1〉⊗|1̃〉,
weighted with corresponding Gibbs and relative phase factors:
for {b, b̃#}=0, (b̃# = b̃, b̃†), tan2 ϑ(k1, ς)=e−ςω, ω=ωk1 :

|0(ς)〉(F ) =
[
|00̃〉+e iΦe−ςω/2|11̃〉

][
〈00̃|00̃〉+ e−ςω〈11̃|11̃〉

]−1/2
≡ (92)

≡ cosϑ
(
1 + e iΦ tanϑ b†b̃†

)
|00̃〉 = V−1

ϑ(F )|00̃〉, where: (93)

G+ = b†b̃†, G− = b̃b = (G+)† , G3 = (b†b − b̃b̃†)/2, (94)
[G+,G−] = 2G3, [G3,G±] = ±G±, G± = G1 ± iG2, (95)

V−1
ϑ(F ) =exp

{
ϑ
[
e iΦG+− e−iΦG−

]}
=V−ϑ(F ) =V†ϑ(F ) = (96)

= exp
{

e iΦ tanϑG+

}
exp
{
− ln(cos2 ϑ) G3

}
·

·exp
{
−e−iΦ tanϑG−

}
, (97)



Appendix: Bogoliubov transformations
– is a standard form of operator of the coherent state for group
SU(2) allows to identify the algebra (95) as “quasispin” algebra,
with the “cold” vacuum as its lowest state |00̃〉⇒|s,−s〉, for
representation with “quasispin” s = 1/2, and the state |11̃〉⇒|s, s〉,
as the highest one, with: G3|s,±s〉=±s|s,±s〉, G±|s,±s〉=0. The
unique arisen arbitrary relative phase Φ reflects now the fact that
the quantum state is not the vector, rather the ray. The thermal
vacuum (93), as a coherent state, is annihilated (91) by operators:
V−1
ϑ(F )G−Vϑ(F ) =cos2 ϑG−+e iΦsin 2ϑG3−e2iΦsin2 ϑG+ = b

∼
(ς)b(ς),

b(ς) = V−1
ϑ(F ) b Vϑ(F ) = b cosϑ− b̃†e iΦ sinϑ,

b
∼

(ς) = V−1
ϑ(F ) b̃ Vϑ(F ) = b̃ cosϑ+ b†e iΦ sinϑ.

(98)

Up to now b̃# is only notation that does not define any operation.
In order to fix it as an operation: b

∼
(ς) 7→ b̃(ς), one should choose

the phase Φ, which can not be removed by self consistent
redefinition of operators b, b̃.



Appendix: Bogoliubov transformations

The popular choice Φ = 0 leads to complicated tilde conjugation
rules for the fermionic case, different from the bosonic one. The
Ojima choice Φ = −π/2 gives the same rules for both bosonic and
fermionic cases. We see now that the choice Φ = π/2 is also good
and, as well as the original Ojima’s one, satisfies the properties of

antilinear homomorphism and the condition ˜̃b(ς) = b(ς). It seems
very convenient for the purposes of bosonization that the tilde
operation has the same properties for both Fermi and Bose cases.
As a byproduct, we observe a useful interpretation of the thermal
vacuum, defined by Bogoliubov transformation (93), as a coherent
state, obtained by coherent SU(2) rotation of vacuum states for all
Fermi oscillators |0k1 0̃k1〉 as a lowest quasispin states, around one
and the same unit vector u = (sinΦ, cosΦ, 0) onto the different
angles = −2ϑ(k1): V−1

ϑ(F ) = exp [i2ϑ (u · G )].


