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Linearisation of HEq of TM in a weak sense
Despite a considerable age the 1+1 Dimensional Thirring model:

H[\U] = HO[\II]( O) + HI[\IJ]( O)a X = (X07X1)7 X0 = t, (1)
o) (<2 / W () E(PYW(x), 2)
Hjpw(x / dx* Jowy u(x) I, ) ( ), with currents: (3)
J(m)(x) — w(x)w<x) SO () — TP, (@)
J w)(x) (x) + §J (x) —s 2wl ( x)WVe(x), for: €=+, (5)

Pl:—’@l’ E(Pl)z 5P, =10l =03, AP = ey,

is still remained as important touchstone for non-perturbative
methods of quantum field theory. It turns out to be a two
-dimensional analog of the well-known Nambu-Jona-Lasinio model
and provides an important example of using the well-known
bosonization procedure (BP). In the present work the BP for TM is
conS|dered as a particular case of dynamical mapping (DM) what

sly done by Greenberg!.
10.W. Greenberg, Found. Phys. 30, 2000, 383.



Linearisation of HEq of TM in a weak sense
In the framework of canonical quantization scheme

o =0, gaglziv (6)

=0eed (X' =yh), (@Zw(x—y)), (7)

with the CAR:  {W¢(x), Ve (y)}

We(x), WL (y)
{

the DM method? consists in the construction of Heisenberg field
(HF) W(x) as a solution of Heisenberg equations (HEq) of motion:

x0=y

x0=y

i90W(x) = [W(x), H[V]] = ;[E(Pl) + g'yoy,,J(”w)(x)} W(x):, (8)

in the form of Haag expansion built as a sum of normal products of
free physical fields 1)(x), whose representation space accords with a
priori unknown physical states of the given field theory. The DM
W(x) = :T[p™(x)]:, being generally speaking a weak equality “w",
implies the choice of appropriate representation space as well as the
initial conditions to HEq: t_l)imoO W(x1, t) = T (xt, —o0)], with

the appropriate asymptotic physical field 1(x).
2H. Umezawa, H. Matsumoto, M. Tachiki, Thermo-field dynamics and
condensed states. NHPC, Amsterdam, 1982



Linearisation of HEq of TM in a weak sense

The existence of such a DM implies for the full Hamiltonian (1)
H = Ho(t) + H,(t) a weak representation as a sum of some
constant Wy and some free Hy™:

HZ HP + Wy, inasense: (a|H|b) = (a|HI"|b) + Wo(alb), (9)

However the asymptotic completeness and irreducibility are absent
in the presense of bound states. In particular for this
two-dimensional model the physical asymptotic states of propagated
physical particles have nothing to do with massless free Dirac
asymptotic fields. For such a case it is convenient3 to use DM onto
the Schrodinger -like physical field 1(x), associated with the HF at

t—0: l!irr}) W(x1, t) = T[(xt,0)], which is a generalization of the
%

well-known interaction representation and is closely related to the
above canonical quantization procedure (6), (7).

3L.D. Faddeev, Sov. Phys. Doklady, 8, 1964, 881;
A.N. Vall, S.E. Korenblit, V.M. Leviant, A.B. Tanaev, J. Nonlin. Math. Phys.
1997, 4, 492; A.V. Shebeko, M.I.Shirokov, Phys. Part.-Nucl 32, 2001, 31.



Linearisation of HEq of TM in a weak sense
An immediate consequence of HEq (8), is the conservation of both
the currents (4), that determine their dynamics as a free one:

Dl (x) = 0, 8,1J(51j,")(x) = —euw 0" Jfyy(x) =0, (10)
007" (X) = [0y () Hopw) (<0)| = i1 By (x) +
+i® 6mxaﬂ-/(y\u)(x) =0= [’YO’YVJ{w)(X)y HI[W](XO)} , (11)

suggesting the linearization of HEq in a weak sense for free curent:
v W /8 v B v
“/O%J(\u)(x)'—> 72\/%“/071/J(X)(X):> 2\/7;'707’/ o) (12)

X(x) is a free massless Dirac field, (v0)x(x) =0, Z(,y(a) = 1.
Note that Heisenberg current operators J(”w)(x) acquire precise

operator meaning — with non-vanishing Schwinger term — only after
the choice of the representation space of CAR (6), (7) and
subsequent reduction in this representation to the normal-ordered
form by means of renormalization via well-known Mandelstam
-Schwinger point-splitting prescription on time-like and/or
space-like vectors and subtraction of vacuum expectation value:



Linearisation of HEq of TM in a weak sense
€2 =—82>0, so that 8 = ¢! — 0, with fixed &% = £°:

Sy ()= lim Ju)(x:8) =Ty (x), the same for J \(x;E(e)),

J(lw)(x)»—>€|i_r)n0/j(1w)(x; 6):7(1W)(X), with: /j{w)(x; a) = (13)
= Z(;,l)(a) [W(x + a)y"W(x) — (0|W(x + a)7y"W(x)|0)] . (14)

The constant 3, multiplicative renormalization Z(y(a) for a — 0,
depending on ultraviolet cut-off A, and dynamicaﬁ dimension dy)
will be defined dynamically by means of self-consistent calculation

2 21-F /4 72
as: Z(u,)(a) = [—/\ a ] , d(\U) =1/2+4 5" /Ar. (15)

According to (10), (12) now it is enough only a free current'’s
bosonization rules. There 3 a free massless pseudoscalar field ¢(x):

Tt (x ):_;%GWM) TS50 = =0 (<) . a6)

xE=x0 e, gl Z&P (). %) =0. (1)



Free Bose and Dirac fields in 1+1D
The right (¢ = —) and left (€ = +) moving fields ¢©*(x*) and their
charges Q¢ are defined in the space c(k')|0) =0 of ¢(x), as:

Pc(k)P=—c(—kY), [c(k'),c(¢h)]=4nkP(k! —qt), (18)

(Z)(X) _ /_oo 4ikk10 |:C (kl) e_i(kx) + CT (kl) ei(kx)i| , (19)
QDE(JF)(S) — _/OO ;”/i(l)ge(;fkl)c(kl)eikos7 KO — ‘kl‘, (20)
F) =[] (9 =) + o). (@)

QI(R)= lim it / T (k) (ke FR s (kY 2, (22)

Qé(*):[QS(Hr, Q=@M+ Q). (k) — (K, (23)

S =dim [ana () arfeoto0-x{ o e

=+

5. (k') is Fourier image of charge’s regularization function A(y!/L).



Free Bose and Dirac fields in 1+1D
Using the main CCR:

[#(s), (7| = qcéj;f’ In (m{i(s —7) - fo}), (25)
[gof(i)(s), QE’(:F)] — i'(g&g,’ [Qﬁ(i), QE'(:F)] = tagdeer, (26)
a0 = ao(L) = w/ooo dk KO (50(KM))?, (27)
one can construct a variety of different inequivalent representations

of the solutions of free Dirac equation d¢x¢(x) = 0. The simplest*,
which for Z(,)(a) = 1 leads exactly to the bosonization rules (16) is:

Xe (x*f> — N {exp (-iz\/% {gpf(xf) + ijD } ue, (28)

ug = <2/;) 1/2teiw_i£e/4 exp {—aog} = ugk exp {—agg} . (29)

i Eq (8), (12) as exponentials
“*N.N. Bogoliubov, A.A. Logunov, A.l. Oksak, I. T. Todorov, General
principles of quantum field theory. KAP, Boston, 1990.



Inequivalent representations and DM
in the normal-ordered form similar to Klaiber® but is not the same:

We(x) = We(x', x%) = e 0 (x1 — £x0,0) <70 (30)

where the bos-ion rules (16) for the current of field x(x) (28) gives:

XO
C) = =iy & [ a5 (e - ) =

__ ,-éii’ [&(i) <X§> ) <_X—5)} _

Remarkably, that the completely unknown initial HF appears here
also as a solution W¢(x! —¢x%,0) = A¢(x7¢) of free massless Dirac
equation J¢A¢(x %) = 0, but certainly unitarily inequivalent to the
free field x(x) according to Haag theorem. It should be taking also
in the normal-ordered form A, with respect to the field p¢*)(s),
using appropriate Bogoliubov bosonic canonical transformation of
this field U, = exp F,, with constant parameters @ = 2y/7 cosh 7
- _ . . —2 32 _ 47_‘_,

5B. Klaiber, “Lectures in Theoretical Physics”, Gordon and Breach, NY,

1968, X, Part A, pp. 141-176.



Inequivalent representations and DM
with the following new fields, charges and generator: y¢ = x0 4 ¢y?t,

() = 08 () = s ot () 3 ().

RV
Ve =exp {—3016} (/\> Ug, /\5()(_5) = U77_1X§(X_£)Un =

=N, {exp (—i2\/77 [w‘f (X_f) + iWﬂ)} Ve (31)
WE = U, QEU, = 2\1/7? [T
Fy= / ;’i;e(kl)( (kK)e(=k") = ct(=k)cT (k) ) =

”’/ dy'6(y*, —x%) 0 (", x°)=2in _Zdylsog(yf)aosfg(—yg)-

By imposing the conditions onto the parameters, that necessary to
have a correct spin 1/2 Lorentz -transformation properties



Inequivalent representations and DM
and correct CAR (6), (7), respectively:

a2 — B =4n, _Je =0, e”:M: 1+, (32
27 15} s
the following variant of Oksak solution® of TM is obtained:
Vo (x) =N, {exp <—i2\/7? |:Q_§(X) + iwf} ) } Ve, (33)
2V 08 (x) = ae ™t (x76) 4+ Bt (x¢), (34)

1/2, \ B J4r
v5:$5exp{—aogcosh2n} Ve= (;T) (ﬁ) '™ i¢0/4 (35)

The observed weak linearization of HEq for TM together with the
nonlinearity of DM (33) and the weak initial conditions at x° =0
allows to overcome the restrictions of Haag theorem, by removing
the problems again into the representation construction of physical
flelds at flrst as reducible massless free Dirac fields x(x), and then

do scalar field ¢(x).
50ksak A. I., Teoret. Mat. Fiz. 1981. 48. 297.



Inequivalent representations and DM

This solution contains all Klein factors also under the normal form
N, as is demanded for DM. The infrared regularization parameters
Iz and ag appear for both the free and Oksak field (35) in the one
and the same combination as: (n =0, d(,) = 1/2)

_ T 19w cosh2n _  —
[ueXp{—aoZ}] Y dwy = > T @+B=2/7e. (36)



Different solutions, superselection rules and VEV

In order to connect the solution (33), (35) with another known
solutions of TM the unitary transformations of conformal shift for
the fields ¢ are used. To this end we consider one- and two-
parametric families of solutions for arbitrary real o, p, defined by:
Ko =expXs, L, =expY),, as We(x, a):Kglwgk(x)KU, with

X, =i(0€/4) (Q‘EQ‘g - QEQE> =ig00s/4, (37)
Y, = —ipQiQ¢/2 = —ip (0? — 02) /8, and the field: (38)
Ve(x,0,p) =L, We(x,0)L, =N, { Re ”f’)} ve(o,p),  (39)

Relx.o.p) = ~i2v/7 | o500 + gEE Q4 gE @] (a0

ve(o, p) = Veexp { ;2 [<Z§ ) (Zi)z] } , with:  (41)
T =e (1 —0)+pl e [(1+0) + ). (42)

This extension of Oksak solution (33) with any o, p obeys again the
same CAR (6), (7) and the bosonization rule (12)—(16),



Different solutions, superselection rules and VEV

with the same renormalization constant Z(y(a) (15).

For p = 0, by using the definition (24) both of charges O, Os it is a
simple matter to check that o = %1 gives the two types of
Mandelstam solution’, for example:

Ve(x,1) =N, {eR€(X’1)}§£ exp {—aogezn} , o=1, (43)
!

Re(x,1) = —iv/T [fe—%(xl,x")—e" Xdylaoczs(y%x")], (44)

while o = — coth 2n corresponds to normal form of solution of
Morchio® et al.

"Mandelstam S., Phys. Rev. 1975. D 11. 3026.
8Morchio G., Pierotti D., Strocchi F., J. Math. Phys. 1992. 33. 777-



Different solutions, superselection rules and VEV
The p -point Wightman function corresponding to vacuum
expectation value (VEV) of the string of the fields (39) with:

[ = +1, for V;; [; = —1, for W}L, acquires the multiplier:
=2 P P /)
(/\*8 /4”\/277) H\Il ” Xiy 0y p) o
i=1
x expiws, — 128 1[2”32+ “S% ] Infi -
P iwSp — iy Sps pexpy  [e71S, e o5 Inzi

2 2
- exp {—ao;; (e277 [(1 +0)Sp + pSpg,] + e 2 [(1 —0)Sps5 + pSp} ) } ,

which absorbs all the infrared regularization parameters i and ag as
well as o, p dependence and disappears only when both of
superselection rules (45) are fulfilled:

p p
Sp = Z /,' = 0, SP5 = Z /,'f,‘ = 0. (45)
i=1 i=1




TFD. Thermal bosonization. Hot and cold thermofields
At finite temperature T > 0, ¢ = (kg 7)1, in the framework of
thermofield dynamics® (TFD) it is necessary to double the number
of degrees of freedom by providing all the fields W with their tilde

partners W according to antilinear homomorphism
(AB)~ = AB, (aA+ fB)~ =a*A+ B, (46)
(AN~ = (A)f, with the condition : (E(g))N =b(s).  (47)
The resulting theory will be determined by the Hamiltonian
H[V, V] =H[V] — H[V], with H[V]=H*[V*], H[V] :fIO[\U] + Hjpy)-

The kinematic independence of tilde-conjugate fields W means that:
(W), W} =0, {wet0, W)}

and corresponds to independence of their Hamiltonians and their
HEgs. This allows to consider a solution only for the one of them.
Since the thermal transformations Vy(r), Vy(g) are not depend on
coordinates and t|me they can be applied directly to (48) and HEq

e equations for the new HF W(x,<).
°H. Umezawa, H. Matsumoto, M. Tachiki, Amsterdam, 1982

= 4
(x—y)?2<0 0. (48)

x0=y/



TFD. Thermal bosonization. Hot and cold thermofields
The thermal transformation is given by infinite product of one
mode operators and the transformed vacuum state is a coherent

state: yo(g)>=v1;(13)|06>. For Bose fields: tanh? 9(k?,¢)=e K,
L= 271'(5(0) — 00, a1V 2k0L :>Ck1, IC_(kl):Zk1ck1,
Ki(kYy=cl,el,, Ko(k')=(clicia+Eutli)/2,

kH Vﬂ(kl)(B):V( )—exp{ Xy} = (B), (49)

Xy= mdklﬁ K o) [K_ (kM —Ko (kM) =X, 50

=5 | Stk K ()KL (k)] =%, (50)
1 +oodkl

% (:}3) exp{27r/_C>O 540 tanh19( )IC+(I<1)}

toodkl 2 orp1 1
_exp{_%/oo 540 In (cosh I(k ,@)) Ko(k )}

-exp {/:O Zf tanh 9(k*, )IC(kl)}, (51)



TFD. Thermal bosonization. Hot and cold thermofields
Bogoliubov transformations for “hot” [+], and “cold” [—] operators,
their CCR, condensate density, and vacuum overlaping read:

ca([E]s) = V;g)cklvgt(g) = ¢ coshd F 'E}:l sinh 9,
Ca([£]s) = V;z(lB)Ekl V;t(g) = G coshd F c):l sinh 9,

[ ([E0), cha([219)] = 2m) (2K°) 3 (K~ ¢1) .
G ([H6), Eh(1H0)| = (2m) (k) 6 (K = 1),
ca([+16)10(s)) = 0, Ga([+]0)I0(s)) =0, K®=wia,  (54)
(0(5)lefrcial0()) = (00]cfs ([+]<) cra ([+]5)]00) =
= 47k95(0)sinh® ¥ = 2kOL(es** — 1)1, L =275(0),  (55)
(00[0(<)) = (00[Vy/00) = exp {—(L/s)(w/12)} < (56)
< exp {—5(0) +OC>dkl In (cosh¥(k*, <)) } =0 (57)

what means the unitarily inequivalense of different representations
of QFT at different temperature



TFD. Thermal bosonization. Hot and cold thermofields

About motivation of the hot and cold thermofields.

For any functional F [V] of HF in the given representation of
physical fields ¢(x), i.e. for given DM W(x) = T[¢(x)] at zero
temperature, being interested in the matrix elements on the
thermal vacuum of the type:

(O)IF O] 10(6)) = (O0VaF )]V 108) = 59)
= (00]F [VoW(x)V;1]|00) = (00]F [W(x, [~]s)]00),

we come to formal mapping:

V(x, [=]6) = VaW(x)Vyt = T [V (x)Vy ] = T [(x, [-]5)] (59)
onto the “cold” physical thermofield:

U(x,[~]s) = Voo(x)V; !, with the same coefficient (60)

functions, as for the initial DM, that transferring so all the
temperature dependence from the vacuum state |0(¢)) onto these
“cold” physical thermofields.



TFD. Thermal bosonization. Hot and cold thermofields

To compute matrix element (58) it is necessary to substitute into

the r.h.s. of (58), (59) this cold physical thermofields (60) again in
terms of the initial physical fields ¢)(x) (52) [—], and reorder again
the so obtained operator with respect to this initial fields to obtain:

(0()IF [W]0(<)) = (001F | T [[~]s; ¢:(x)] | |00). (61)

The standard computation way implies the substitution of the
inverse to (52) [+] linear expressions of physical fields

P(x) = Vo(x, [+]s)V; ! in terms of the “hot” physical
thermofields into the l.h.s. of (58) and reordering the so obtained
operator with respect to this hot physical thermofield over the
thermal (“hot”) vacuum |0(<)), to obtain:

(0()|F W1 10(6)) = (O()IF [T [[+]si v, [+19)]] 10(<))-

“Hot" pseudoscalar field with respect to the “hot” vacuum |0(<))
reads: §(x; [+]6) = Vyh) 6(x)Vi(s) =

= [ s [0 )+ clrige ™. (@2



TFD. Thermal bosonization. Hot and cold thermofields

To construct the solution of HEq for TM in the doubling space of
pseudoscalar fields c(k')|00) = ¢(k*)|00) = 0, all previous T = 0

steps should be repeated again for ¢(x; [£]¢) = VI;F(E@(X)V?(E):

© dkt £0(—€k? .
D (Xf; [ik) :_/ 2/(05(25) [cosh ﬂc(kl)e_’koxng

T sinh 19E(k1)e"koxﬂ, gof(’) (xé; [i]g) = {wg(ﬂ (Xg; [i]C) }T(63)

> 1iE0(—Ek 1,020
Qg(ﬂ([i]g)zl_lim/ dkllfg(zék) [cosh Ve(kt)e X4

+ sinh 0E(k1)e"k°?°] o (K1), QO)([H]o)= {Qf‘”([ﬂ:]c)}T .(64)

with corresponding expressins for the tilde-partners, ¥ = 9¥(k!;¢).
Here the XY — dependence of charge frequency parts is fictitious. It

is the artifact of space regularization (24) of charges and should be
eliminated at the end of calculation.



TFD. Thermal bosonization. Hot and cold thermofields

Putting corresponding =+ into respective brackets, the main CCR
read, exhibiting very dangerouse coordinate dependence:

[¢5(i) (s: [£]6) , o5 (7 [i]g)] —
- (;1)545;’ {In <i,f sinh <:(j:(s —7)— i0)>> -g (§,M1)} (65)

s

s 0 0 F10)] = e [ - 1) ()] )
r X0 —s
961210, 8 10)] = nleniee (55). o0
QN ([H), “P([6) | = (1) ardeer (68)
QN ([), QXD ([H6) | = (+1)[F U arde (69)

And for the tilde-conjugate relations correspondingly.



TFD. Thermal bosonization. Hot and cold thermofields

Here the following quantities are defined, which control the
additional infrared divergences: 7i=pe®,7i; =1 =0

o dk! 2 2 27
5 pr— —_— —_— % 7_| T ) 70
g (e ) /m K (egk‘)—l) Sp1 n(%) (70)
if: 5, (k') = LA(K'L), /nA:/ dtt"(Z(t)f, then: ag= /&, (71)
0

B > (A(t))? Al  moAS )3
31—30+27T ; dttm:>27rlo c + 6 2 L + O (L) ,(72)

o (A(1))? NN S\
= S Sk S AN ¥ e 2 3
ar W/o dttsinh(t§/2L):> o 122L+O (L> , (73)

for: L — oco; whence: a3 —a» — 0, if: ag < oo,
but: glgr;og(g,ul) =0, gILngo a; = ao, gIer;o a, =0, (74)



Thermofield solutions of TM

Now one can construct again a variety of different inequivalent
representations for solutions of the free massless Dirac equation for
the physical field at finite temperature, Ogx¢ (x_g, g) =0 in the
form of local normal ordered exponentials of the left and right
bosonic thermofields ¢(x%, <), and their charges. Due to above
coordinate dependence of commutators its appear, that kinematic
independence (48) of the tilde-partners can be achieved only by
admixing all the Klein factors coming from both of the charges
Q%(s), Q74(s) and Q(s), @4(s) into the same field by using the

new charges, with simple commutation relations:

GE([6) = Q([=]0) + [F1QF([H]e),  with: (75)
O(s; [6), Y[ = ;b (76)
(s [416), G P [410)] = (112 e (77)
GEA (), GEP (o) | = (+1)2(a1 — a2)idee (78)
:Gg(i)([i]§)7 @s’m([i]g)] = (£1)[£1]2(a1 — @2)deer.  (79)




Thermofield solutions of TM

Moreover, according to the meaning of L as macroscopic
parameter, the wanted thermofields should have a correct
thermodynamic limit L — oo for the finite temperature. The most
simple case, which obeys again the same CAR (6), (7) and the
bosonization rules (12)-(16), again with Z(,)(a) = 1 reads as:

Xe(x7; [£]s) = N, (exp {Rg(x_g; [:|:]§)}> ug (p1, [£]6),  (80)
&
Re(x6: [£]6) = — 27 [w (&) + 22GE (1) + (B)

3
+LGE ()

—\1)2
_(FNT gwicoa o [ 80 1)
w19 = (1) e oen {-EL L (@

where the o and p are the same parameters as above, but they
become fixed below by the condition (48).

, with: 0§ = —¢o, of =¢l+p, (82)




Thermofield solutions of TM
Integrating again the HEq of TM as above for T = 0 one finds:

We(x; [E]c) = N (exp {Re(x; [£])}) we (111,)

yé PR
Re(x; [£]6) = —i | B~ (x; [£]s) + TOG‘g([ik) + TIGE([ik)

with: B75(x; [£]¢) = ap (x5 [£]5)) + Be*(x*; [£]5)),

AY? 1 dwy
W&(,ULC))L C>O: <) [MeXp{—g(g,,ul)}] el 159/4,

27
Zg aao ﬁal, Zg = aal Bao, ¢, n - integers,
oS =—to=>¢0+1), of=¢l+p=£E1+02n+1), (84)

with the same values of parameters (32) and renormalization
constant Z(y)(a) (15). Remarkably, that the obtained conditions
(84) provide the anticommutation, locality and kinematic
independence relations (48) for both the free and the Thirring fields
and their tilde-partners simultaneously. Note that here o, p # 0.



Conclusions

0. The correct HF should be only a fully normal ordered operator in
the sense of DM onto the irreducible set of physical fields. Only
this form clarifies and assures correct renormalization, commutation
and symmetry properties and give simple connections between
different types of solutions with finite and zero temperature.

1. The general solutions for HF (30) of TM keeps the Klaiber's
normal form, but with distinct unitarily inequivalent representation
of the free massless Dirac field sandwiched the simple dynamical
factors. This elucidates an important dynamical role of inequivalent
representations of these fields to built the solution of HEq.

2. The obtained thermofield solution of TM, at T — 0 (¢ — )
with finite L and omitted tilde charges, come back to above general
solution W¢(x, o, p) (39), defined for arbitrary o, p, instead of only
odd values (84) for T > 0. So the naive thermofield transformation
of Mandelstam (or other’s) solution®? is not correct.

3.The notion of “hot” and “cold” physical thermofields is found to
be convenient to distinguish different thermofield representations
with respect to different vacua.

19Amaral R.L.P.G., Belvedere L.V., Rothe K.D., Annals of Physics, 320,
2005, 399.




Conclusions

4. Only if the both superselection rules are fulfilled the
thermodynamic limit L — oo and the zero temperature limit

¢ — oo may be interchanged with the one and the same result for
any p-point VEV (Wightman functions) that become independent
of all infrared regularizations similarly to the case T = 0.

5. Due to automatical elimination of zero mode's contributions, the
chosen here representation space of free massless pseudoscalar field
relaxes the problem of non-positivity of the inner product induced
by its two-point Wightman function.



Appendix: Motivation of TFD

MonbiTka 3anNMcaTh CTaTUCTUYECKOE CPEAHEE B BUAE HEKOTOPOro
BaKyYMHOIO CPEAHEro HEMEANEHHO NPUBOANT K YABOEHUIO HMC/A
cTeneHeli cBoboabl: TEPMOMOJIEBO BaKyyM HKUBET B NPsIMOM
TEH3OPHOM MPOM3BEACHNI MPOCTPAHCTB: CACTEMbI 1 Kak bbl ee
“3epkanbHoro’ oTpaxeHus B Tepmoctate: Z(s) = Tr{e "},
<= (ks T) "L, H|n)=Enln), (mln) = b,

(Ay =z} Tr{e_CHA} = (0(<)|Al0()), wnnu: (85)
12 (n|A|n) = (0(¢)|A|0(s)), wwem B BuAE: (86)
=D Imfa(s), £ ()fm(s) = Z 7 e EnSpm, (87)

fio() = Z7Y2e=En/2|R) HIRY=En|R), (M[A) = 6mn, (88)
0(c)y=Z"1/2 Ze Eal2|n 7Y, |n, ) =|n)@|A)= <I%§>, (89)
OueBugHo: H|O(§)>:O, H=H —H, npn H, H|0(5))#£0, (90)
(0(9)I0()) =1, bJ0y=b[0)=0, b(<)|0(s))=0< b(s)[0(<)). (91)



Appendix: Bogoliubov transformations
Simplest fermionic oscillator: one fixed mode k*; only two
normalized states |0) and |1), with Eg=0, E; =w, annihilated or
created by: b|0)=0, |1)=b'|0), {b, b} =1, {b, b}=0. Thermal
vacuum appears as a normalized sum of tensor products of two
independent copies of these states: [00)=[0)®[0), [11)=|1)®|1),
weighted with corresponding Gibbs and relative phase factors:
for {b, b#}=0, (b# =b, b'), tan? 9(k,¢) =€, w=wja:
- ~ - . -1/2
10()) 7y = [|00>+e""e*<w/2111>} [<00\00) + e*<W<11111>} =
= cos ¥ (1 + e'®tan bTET> |00) = V;(ll__)|05), where:

(92)

(93)

G, =b'bt, G_=bb=(Gy)', Gs=(bTb—bb')/2, (94)
(G, G_] =2Gs, [Gs3,Ge]=+Gy, Gi= Gi=+iGy, (95)
(96)

V;(l,__) :exp{zﬁ1 [eiq’ Gp—e ® G,}} =V_y(F) :VL(F) =
= exp {ei¢ tan G+} exp {—In(cos® V) G3} -

-exp{—ef"(1> tand G,}, (97)



Appendix: Bogoliubov transformations
— is a standard form of operator of the coherent state for group
SU(2) allows to identify the algebra (95) as “quasispin” algebra,
with the “cold” vacuum as its lowest state |00) = |s, —s), for
representation with “quasispin” s = 1/2, and the state [11)=|s, s),
as the highest one, with: Gs|s, +s)==+sls, +s), Gi|s, £s)=0. The
unique arisen arbitrary relative phase ® reflects now the fact that
the quantum state is not the vector, rather the ray. The thermal
vacuum (93), as a coherent state, is annihilated (91) by operators:

V;(lF) G_Vy(r)y=cos® I G_+€'®sin 20 Gz — 2 ®sin ¥ G =b(<)b(<).

b(s) = Vg(lF) bVy(F) = beosid) — be® sin 1,

[NJ(C) = V;(IF) bV = bcos® + bel® sin 0.

(98)

Up to now b# is only notation that does not define any operation.
In order to fix it as an operation: b(s) — b(s), one should choose

the phase ®, which can not be removed by self consistent
redefinition of operators b, b.



Appendix: Bogoliubov transformations

The popular choice @ = 0 leads to complicated tilde conjugation
rules for the fermionic case, different from the bosonic one. The
Ojima choice ® = —7/2 gives the same rules for both bosonic and
fermionic cases. We see now that the choice ® = 7/2 is also good
and, as well as the original Ojima’s one, satisfies the properties of

antilinear homomorphism and the condition b(s) = b(). It seems
very convenient for the purposes of bosonization that the tilde
operation has the same properties for both Fermi and Bose cases.
As a byproduct, we observe a useful interpretation of the thermal
vacuum, defined by Bogoliubov transformation (93), as a coherent
state, obtained by coherent SU(2) rotation of vacuum states for all
Fermi oscillators [0410,1) as a lowest quasispin states, around one
and the same unit vector u = (sin ¢, cos ®, 0) onto the different
angles = —29(k'): Vﬁ_&_-) = exp [i20 (u - G)].



