The 7th BLTP JINR-APCTP Joint Workshop July 14–19, 2013

Prospects for Nuclear Astrophysics Experiments in Korea

Kevin Insik Hahn

Ewha Womans University

Introduction

Nuclear Astrophysics in Korea - Experimental groups - Selected experiments

RIB accelerator (RAON)
 Introduction of the facility
 Proposed NAP experiments

85 Years of Nuclear Astrophysics

A Story of Success

1928 Gamow-Factor George Gamow

1931 Stellar Structure & Theory of White Dwarfs Subramanyan Chandrasekhar

1938 CNO Cycle - C. F. von Weizsacker CNO Cycle, pp Chain - Hans Bethe

1957 Nucleosynthesis of Elements in Stars Margaret &Geoffrey Burbridge, William Fowler and Fred Hoyle = B²FH

1983 Nobel Prize: William Fowler Subramanyan Chandrasekhar

2002 Nobel Prize for Neutrino Detection Raymond Davis & Masatoshi Koshiba X-ray Astronomy - Riccardo Giacconi

Experimental Nuclear Astrophysics

Nuclear reactions in stars

M.S. Smith and K.E. Rehm, Ann. Rev. Nucl. Part. Sci, 51 (2001)

In many cosmic phenomena, radioactive nuclei play an influential role, hence the need for <u>Radioactive lon Beams</u>

1985 by Fowler (Nobel prize 1983)

We stand on the verge of one of those exciting periods which occur in science from time to time. ...there is an urgent need for data on the properties and interactions of radioactive nuclei ... for use in nuclear astrophysics."

Experimental considerations Nucleosynthetic reactions are typically dominated by Coulomb barriers

$$E_{B} = \frac{Z_{1}Z_{2}e^{2}}{R} = \frac{1.44Z_{1}Z_{2}}{R(fm)} MeV$$
$$E_{T} \approx kT = 8.62 \times 10^{-8}T \ keV$$

- For T=10⁹ K, kT=86 keV a pretty low energy!
- Coulomb and/or angular momentum barriers are important
- Neutrons: Energies ~ kT most important for determining reaction rate
- Charged particles: Energies significantly higher than kT needed due to Coulomb barrier (Gamow Energy / Gamow Window)

• Example: $\alpha + {}^{12}C @ T = 2x10^8 K \rightarrow E_0 = 0.3 MeV$

Thermonuclear reactions in stars

Experimental Nuclear Astrophysics Group

<u>Name</u>	Affiliation	Experiments	
Y. K. Kim Y. K. Kwon J. H. Lee J. Y. Moon	RISP/Hanyang Univ. RISP RISP RISP RISP	CNS CNS CNS	
C. S. Lee	Chungang Univ.	CNS, ORNL	27AI, 26Si, 18F
C. B. Moon	Hoseo Univ.	RIKEN	11Li
S.H. Choi A. Kim	SNU SNU	CNS/RIKEN CNS	14O(a,p)
S. H. Park	KAERI	TRIUMF, U. W	7Be(p,g)
K. Y. Chae	SKKU	ORNL	18F, 17F
K. I. Hahn	Ewha Womans Univ.	Yale, CNS, ORNL	18Ne, 8B, 3H
S. C. Jeong	KEK	KEK, RIKEN	
H. Y. Lee	Los Alamos	Notre Dame, ANL	
H. S. Jung	Notre Dame	CNS	

⁸B CD Experiment at RIKEN

large σ thick target (intermediate energy)

experiments with R.I. beams

some of the theorists in (Nuclear) Astrophysics

- M. K. Cheoun @ Soongsil Univ.
 - Neutrino Reaction in Nuclear Astrophysics
 v-processes in Nucleosynthesis
- H. K. Lee @ Hanyang Univ. -. Nuclear Symmetry Energy and Compact Stars
- C. H. Lee @ Pusan Univ.
 - -. Gamma-ray burst, Hypernovae, Supernovae, neutron star

Nova models

Timestep = 0

Time (sec) = -4.904E+01

Density $(g/cm^3) = 8.006E+04$

Temperature (T9) = 1.974E-01

Max : 6.77E-01

Min : 1.00E-25

nucastrodata.org

Measurements

- Direct measurements are desirable ways to measure the ¹⁵O(α,γ)¹⁹Ne and ¹⁴O(α,p)¹⁷F reactions over indirect methods.
- Only became possible after new generation of accelerators that can make ^{14,15}O and ¹⁷F beams in the late 90's.
- There are still large uncertainties of the reaction relevant to X-ray burst and novae.

Measurements

Direct measurements have a serious problem due to their very low cross sections

- Indirect measurements
 - Transfer reactions (selectivity, resolution)
 - ²⁰Ne(p,t) ¹⁸Ne, ¹⁶O(³He,n)¹⁸Ne,
 - ¹²C(¹²C, ⁶He)¹⁸Ne,
 - ¹⁹F(³He,t)¹⁹Ne, ¹⁶O(⁶Li,t) ¹⁹Ne, etc.
 - Resonant elastic scattering
 - ${}^{4}\text{He}({}^{14}\text{O}, \alpha){}^{14}\text{O} \text{ and } {}^{4}\text{He}({}^{15}\text{O}, \alpha){}^{15}\text{O}$

Hahn et al. (96)

p(17F, 14O)a Experiment at ORNL

- ¹⁴O(a,p)¹⁷F reaction rate is strongly affected by resonant states of ¹⁸Ne.
- However, there are large uncertainties in ¹⁴O(a,p)¹⁷F reaction rate.
- People have measured the timereverse reaction ¹⁷F(p,a)¹⁴O.
- Previous other measurements were indirect experiments, which were to measure the resonance properties of ¹⁸Ne.

We performed <u>direct measurement of</u> <u>14O(a,p)17F and 14O(a,a)14O.</u>

We measured the 14O+alpha experiment in June, 2008

Secondary beam d

count rate: $\sim 10^5$ /s energy: 24.0 MeV

• Secondary beam condition (¹⁴O)

count rate: ~10⁵ /s (on target) energy: 24.0 MeV (low energy) 36.0 MeV (high energy) • Secondary target (⁴He gas)

thickness: 150mm (room temp. ,440 torr) ->1.43mg/cm²

-> Ex = 7.2 \sim 13.1 MeV in ¹⁸Ne was scanned.

Analysis & Results

Reconstruction of recoiled particles spectrum
 thick target method (effective thickness & solid angle)

relativistic kinematics

1.¹⁴O(α,α)¹⁴O 2.¹⁴O(α,p)¹⁷F

- Energy calibration of detector
 - : alpha source, proton beam and ¹⁴N beam
- Background subtraction
 - : empty target run, Ar gas run

Separation of secondary beam

¹⁴O beam was distinguished very cleanly.

Two dimensional plot of RF1 vs TOF at F3

dE-E plot of recoiled particles

Effective thickness

Aram Kim (2010)

Fig. 5. (Color online) Excitation function of the ${}^{14}O(\alpha, \alpha){}^{14}O$ reaction at the 0 degrees telescope. The level marked by * has not been seen before.

Reconstruction of proton spectra

Distinction Of proton decay branches of ¹⁸Ne* by using the thick target method.

TOF **vs.** Energy

Protons have different TOF value according to the energy.

FIG. 4. The energy distribution of single and double proton events. The x axis represents the energy summation of ΔE -E detector. The scale of y axis is logarithmic.

Run Plan

∆E-E detector

Hè gas filled

....α.

250 mm

• ¹⁵O + alpha test experiment in 2013

Energy of ¹⁵ O (Eth=3.529MeV)	He gas pressure	To scan Energy region up to 6 MeV		vacuum air Nal arr
Before the window 37 MeV	0.1 atm	1500 mm (2.49 μg/cm²)		150 beam
After the window 28.6 MeV	0.5 atm	300 mm (12.5 μg/cm²)	PPAC a PPAC b	250 m

Expected excitation function of ${}^{15}O(\alpha, \alpha){}^{15}O$

Rare Isotope Accelerator

Korea will build a RIB accelerator facility - KoRIA -> RAON

- Superconducting Linear Accelerator
 - various charged particles (p~U)
 - U: 200 MeV/u with 8 p microA
 - In-flight fragmentation / fission
- Cyclotron
 - Proton: 70 MeV with 1mA
 - ISOL
- Re-acceleration of RIB from ISOL

Physics Objectives

Nuclear Physics

- New Radioactive Isotopes
- New, comprehensive understanding of nuclei
- Nuclear Astrophysics
 - Properties of radioactive isotopes
 - Cross section measurements with RIB
 - Origin of elements in the Universe

RISP(Rare Isotope Science Project) Status and Plan

- Conceptual Design Report (Mar. 2010 Feb. 2011)
- IAC review (Jul. 2011 Oct. 2011)
- Rare Isotope Science Project started in IBS (Dec. 2011)
 - Director : Prof. S. K. Kim
 - Deputy Director: Prof. Y. K. Kim
- Conceptual Design of the Building and Conventional Facilities (May 2012)
- Baseline Design Summary (by July 2012)
- Technical Design Report (by July 2013)
- Ground Breaking (2014)

RAON [raon] is the new name of the Korean Rare Isotope Accelerator

RAON : RISP Accelerator Complex

Accelerator System

Beam Requirement of Accelerator System

Accelerator	Driver Linac		Post Acc.	Cyclotron
Particle	proton	U ⁺⁷⁹	RI beam	proton
Beam energy	600 MeV	200 MeV/u	18.5 MeV/u	70 MeV
Beam current	660 µA	8.3 рµА	-	1 mA
Power on target	400 kW	400 kW	-	70 kW

From Y. K. Kwon

KOBRA (KOrea Broad acceptance Recoil spectrometer and Apparatus)

Concep	t of the <mark>KO</mark>	BRA	m Y. K. Kwoi
F0 F1 F2	F3	F4	F5
• Main specifica	Designed by	K-trace code (Ray-tr	racing method)
Maximum mag Mass resolutio Dispersion (cm Momentum ac Angular accept	gnetic rigidity (T·m) n (M/∆M) n/%) cceptance (%) @ stage1 tance (mrad) @ stage2	~ 2 < 200 ~ 2.3 14 Horizontal: 40 Vertical: 200	

Two stage

- Stage 1 (F0~F3) : Production and separation of RIBs via In-Flight method with high intensity SIBs from LINAC
- Stage 2 (F3~F5): Big-bite spectrometer with Wien filter
- Secondary target is located at F3
 - Enough space around F3 (~3m) : In-beam gamma-ray spectroscopy, symmetry energy, SHE, spin physics, charged particle spectroscopy etc

¹⁵O(α,γ)¹⁹Ne reaction

♦ Motivation

- ${}^{15}O(\alpha,\gamma){}^{19}Ne$ reaction
 - : breakout path from hot-CNO to rp-process
 - : key reaction to understand nucleosynthesis under explosive stellar environments

♦ Experimental Challenges

- For direct measurement of cross section we need
 - : ¹⁵O RI beam intensity > 10¹⁰pps, Helium-4 target density > 10¹⁸ atoms/cm², recoil detection efficiency > 40% → then ~1 counts/hr

Measurement	Required RIB intensity	Beam production	Expected outputs
¹⁵ O+alpha : elastic scatt.ering	> 10 ⁶ pps	IF @KOBRA	Resonant parameters
 ¹⁵O(⁶Li,d)¹⁹Ne alpha transfer reaction 	> 10 ⁸ pps	IF @KOBRA	Spectroscopic factors from angular distribution
Direct measurement	> 10 ¹⁰ pps	ISOL	Reaction rates (final goal!!)

r-process reactions

New Era due to RIB Facilities

At present, except for a few cases (blue), output of models cannot be matched to measured abundances.

Future RIB facilities will allow one to constrain r-process models using abundance data

Constrain r-process environment by comparison of simulations with observation!

From Langanke

49

Alpha resonant scattering ¹⁴O, and direct measurements of ¹⁷F(p,α) and ¹⁴O(α,p) were successfully performed using radioactive ion beams.

 Measurements using RI beams will give us a deeper understanding of explosive stellar sites
 - X-ray burst, novae, supernovae etc

There will be a lot of opportunities for nuclear astrophysics at RAON