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Introdu
tionMixing of states (�elds) is a well-known phenomenon existing in thesystems of neutrinos, quarks and hadrons. As for theoreti
aldes
ription of mixing phenomena, a general tenden
y with time anddevelopment of experiment 
onsists in transition from a simpli�edquantum-me
hani
al des
ription to the quantum �eld theory methods.Mixing of fermion �elds has some spe
i�
s as 
ompared with boson
ase. Firstly, there exists γ-matrix stru
ture in a propagator.Se
ondly, fermion and antifermion have the opposite P -parity, sofermion propagator 
ontains 
ontributions of di�erent parities. As aresult, besides a standard mixing of �elds with the same quantumnumbers, for fermions there exists a mixing of �elds with oppositeparities (OPF-mixing) at loop level, even if the parity is 
onserved inLagrangian.Below we say about non-standard e�e
t of OPF-mixing andits manifestation in systems of baryon resonan
es.



Proje
tion basisWe will use the o�-shell proje
tion operators Λ±:
Λ± =

1

2

(
1± p̂

W

)
, W =

√
p2,where W is the rest-frame energy.Main properties of proje
tion operators are:

Λ±Λ± = Λ±, Λ±Λ∓ = 0, Λ±γ5 = γ5Λ∓,We 
an de
ompose propagator (self-energy) in this basis:
G =

2∑

M=1

PMGM , P1 ≡ Λ+, P2 ≡ Λ−. (1)If γ5 takes part in game, it's 
onvenient to do as:
G =

4∑

M=1

PMGM , P3 ≡ Λ+γ5, P4 ≡ Λ−γ5. (2)



Non-diagonal loopFirst of all, look at the non-diagonal self-energy:
Σ12

Ψ1 Ψ2Let parity is 
onserved in Lagrangian.Mixing of �elds with the same quantum numbers:
Σ12 = A(p2) + p̂B(p2) =

= Λ+
[
A(W 2) +WB(W 2)

]
+ Λ−

[
A(W 2)−WB(W 2)

]Mixing of �elds with opposite parities:
Σ12 = γ5C(p2) + p̂γ5D(p2) =

= Λ+γ5
[
C(W 2) +WD(W 2)

]
+ Λ−γ5

[
C(W 2)−WD(W 2)

]Main statement: Σ12 6= 0 for mixing of opposite parities �elds.Fermion spe
i�
s !



Appendix: O�-shell proje
tion operators and fermion dressingInverse propagator in this basis looks as:
S(p) = P1

(
W −m1 − Σ1

11 0
0 W −m2 − Σ1

22

)
+

+ P2

(
−W −m1 − Σ2

11 0
0 −W −m2 − Σ2

22

)
+

+ P3

(
0 −Σ3

12

−Σ3
21 0

)
+ P4

(
0 −Σ4

12

−Σ4
21 0

)
,

(3)
where the indexes i, j = 1, 2 in the self-energy ΣM

ij numerate dressingfermion �elds and the indexes M = 1, . . . 4 are refered to the γ-matrixde
omposition (39).



Appendix: O�-shell proje
tion operators and fermion dressingReversing of (40) gives the matrix dressed propagator:
G =P1




−W −m2 − Σ2
22

∆1
0

0
−W −m1 − Σ2

11

∆2


+

+P2




W −m2 − Σ1
22

∆2
0

0
W −m1 − Σ1

11

∆1


+

+P3




0
Σ3

12

∆1
Σ3

21

∆2
0


+ P4




0
Σ4

12

∆2
Σ4

21

∆1
0


 .

(4)
∆1 =

(
W −m1 − Σ1

11

)(
−W −m2 − Σ2

22

)
− Σ3

12Σ
4
21,

∆2 =
(
−W −m1 − Σ2

11

)(
W −m2 − Σ1

22

)
− Σ4

12Σ
3
21 = ∆1

(
W → −W

)
.



Where OPF-mixing 
an be seen?Below we will dis
uss manifestation of OPF-mixing in πN s
attering.There are two pla
es, where we 
an identify this e�e
t:1. Simplest one is the pair of partial waves P13, D13, where baryons
3/2± are produ
ed. It was dis
ussed in: A.Kaloshin,E.Kobeleva, V.Lomov, Int. J.of Mod.Phys. A26 (2011)2307 on the base of the matrix propagator.2. OPF-mixing in another pair: S11, P11 (JP = 1/2±) is subje
t ofpaper:A.Kaloshin, E.Kobeleva, V.Lomov,arXiv:1306.6171. This required to develop a variant ofK-matrix, whi
h in
ludes this e�e
t.I will say mainly about last item: OPF-mixing inpartial waves S11, P11.



Partial wave analysis (PWA) of πN → πN with I = 1/2R.A.Arndt et al. PR C74 (2006) 045205; (gwda
.phys.gwu.edu)
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W,  GeVThe pair of partial waves P13, D13 looks as simplest 
ase foridenti�
ation of the dis
ussed OPF-mixing e�e
t.



OPF-mixing and K-matrixWe need to dis
uss the e�e
t of OPF-mixing in amplitudes of πNs
attering and its implementation in framework of K-matrixdes
ription. For a �rst step one may restri
t oneself by a simpli�ed
ase: two resonan
e states and two 
hannels.E�e
tive Lagrangians πNN ′ without derivatives and 
onserving theparity:
Lint = g1N̄1(x)N(x)φ(x) + h.
., for JP (N1) = 1/2−, (5)
Lint = ıg2N̄2(x)γ

5N(x)φ(x) + h.
., for JP (N2) = 1/2+. (6)Let us 
onsider two baryon states of opposite parities with masses m1(JP = 1/2−), m2 (JP = 1/2+) and two intermediate states πN , ηN .Using the e�e
tive Lagrangians we 
an 
al
ulate 
ontributions ofstates N1, N2 to partial waves at tree level:



OPF-mixing and K-matrix
s-wave amplitudes:

f tree
s,+ (πN → πN) = − (E

(π)
N +mN )

8πW

(
g21,π

W −m1
+

g22,π
W +m2

)
,

f tree
s,+ (πN → ηN) = −

√(
E

(π)
N +mN

)(
E

(η)
N +mN

)

8πW

(
g1,πg1,η
W −m1

+
g2,πg2,η
W +m2

)
,

f tree
s,+ (ηN → ηN) = − (E

(η)
N +mN )

8πW

(
g21,η

W −m1
+

g22,η
W +m2

) (7)and p-wave amplitudes:
f tree
p,− (πN → πN) =

(E
(π)
N −mN )

8πW

(
g21,π

−W −m1
+

g22,π
−W +m2

)
,

f tree
p,− (πN → ηN) =

√(
E

(π)
N −mN

)(
E

(η)
N −mN

)

8πW

(
g1,πg1,η

−W −m1
+

g2,πg2,η
−W +m2

)
,

f tree
p,− (ηN → ηN) =

(E
(η)
N −mN )

8πW

(
g21,η

−W −m1
+

g22,η
−W +m2

)
. (8)



OPF-mixing and K-matrixHere W =
√
s is the total CMS energy and E

(π)
N

(
E

(η)
N

) is nu
leonCMS energy of system πN
(
ηN

)

E
(π)
N =

W 2 +m2
N −m2

π

2W
. (9)Short notations for 
oupling 
onstants, e.g. g1,π = gN1Nπ.The tree amplitudes (5)�(6) 
ontain poles with both positive andnegative energy, originated from propagators of N1 and N2 �elds ofopposite parities. A

ounting the loop transitions results in dressingof states and also in mixing of these two �elds.Note that W → −W repla
ement gives

E
(π)
N +mN → −

(
E

(π)
N −mN

)
, (10)so tree amplitudes (5)�(6) exhibit the Ma
Dowell symmetry property(S. W. Ma
Dowell, Phys. Rev. 116 (1959) 774).

fp,−(W ) = −fs,+(−W ). (11)



OPF-mixing and K-matrixIn K-matrix representation for partial amplitudes
f = K

(
1− ıPK

)−1
, (12)diagonal matrix ıP , 
onstru
ted from CMS momenta, originates fromimaginary part of a loop. Therefore, K-matrix here is simply a matrixof tree amplitudes that should be identi�ed with amplitudes (5),(6).As the result we 
ome to representation of partial amplitudes for s-and p-waves

fs(W ) = Ks(W )
(
1−ıPKs(W )

)−1
, fp(W ) = Kp(W )

(
1−ıPKp(W )

)−1
,(13)where the matri
es Ks, Kp (i.e. tree amplitudes (5),(6)), may bewritten in fa
torized form

Ks = − 1

8π
ρsK̂sρs, Kp =

1

8π
ρpK̂pρp. (14)



OPF-mixing and K-matrixHere ρs, ρp are
ρs(W ) =




√
E

(π)
N +mN

W
, 0

0,

√
E

(η)
N +mN

W




, (15)
ρp(W ) =




√
E

(π)
N −mN

W
, 0

0,

√
E

(η)
N −mN

W




, (16)and matrix P 
onsists of CMS momenta as analyti
 fun
tions of W .In this 
ase "primitive"K-matri
es 
ontain poles with both positiveand negative energy



OPF-mixing and K-matrix
K̂s(W ) =




g21,π
W −m1

+
g22,π

W +m2
,

g1,πg2,η
W −m1

+
g2,πg2,η
W +m2

g1,πg2,η
W −m1

+
g2,πg2,η
W +m2

,
g21,η

W −m1
+

g22,η
W +m2


 ,(17)

K̂p(W ) = K̂s(−W ) =




g21,π
−W −m1

+
g22,π

−W +m2
,

g1,πg2,η
−W −m1

+
g2,πg2,η

−W +m2

g1,πg2,η
−W −m1

+
g2,πg2,η

−W +m2
,

g21,η
−W −m1

+
g22,η

−W +m2


(18)Re
all that m1 is mass of JP = 1/2− state and m2 is mass of

JP = 1/2+ one. Generalization of this 
onstru
tion for the 
ase ofmore 
hannels and states is obvious.Sin
e CMS momenta have the property P (−W ) = −P (W ), theMa
Dowell symmetry property (9) is extended from tree amplitudesto unitarized K-matrix ones (11).



Naive expe
tationsLook again at tree partial amplitudes:
f tree
s,+ (πN → πN) = − (E

(π)
N +mN )

8πW

(
g21,π

W −m1
+

g22,π
W +m2

)

f tree
p,− (πN → πN) =

(E
(π)
N −mN )

8πW

(
g22,π

−W +m2
+

g21,π
−W −m1

)From a 
ommon sense one 
an expe
t that negative energy poleshould give a negligible e�e
t in physi
al energy region. However, thisis not the 
ase if 
orresponding 
oupling 
onstant is large
| g2,π |≫| g1,π |. One 
an 
ompare de
ay widths of s- and p-states

Γ(N1 → πN) = g2N1πN
Φs, Γ(N2 → πN) = g2N2πN

Φp, (19)where Φs, Φp are 
orresponding phase volumes. For resonan
e statesnot far from threshold, with masses, e.g. 1.5�1.7 GeV, phase volumesdi�er greatly, Φs ≫ Φp. If both resonan
es have typi
al hadroni
width Γ ∼ 100 MeV, then 
oupling 
onstants di�er dramati
ally too,
| gN2πN | ≫| gN1πN |.



In
lusion of derivativesAbove we use the simplest e�e
tive Lagrangians (3)�(4) to derive treeamplitudes. However, it is well-known, that spontaneous breaking of
hiral symmetry requires pion �eld to appear in Lagrangian onlythrough derivative
Lint = f2N̄2(x)γ

5γµN(x)∂µφ(x)+h.
., JP = 1/2+, f2 =
g2

m2 +mN

.(20)It is not di�
ult to understand how in
lusion of derivative 
hangestree amplitudes and, hen
e K-matrix. Pole 
ontribution
π(k1)N(p1) → N2(p) → π(k2)N(p2) in that 
ase takes the form:

T = f2
2 ū(p2)γ

5k̂2
1

p̂−M
γ5k̂1u(p1). (21)With use of equations of motion, we see that in
lusion of derivative atvertex leads to the following modi�
ation of resonan
e 
ontribution

g22
1

p̂−M
→ f2

2 (p̂+mN )
1

p̂−M
(p̂+mN ). (22)



In
lusion of derivativesSeparation of the positive and negative energy poles is performed withthe o�-shell proje
tor operators Λ± = 1/2
(
1± p̂/W

)

f2
2 (p̂+mN )

1

p̂−mN

(p̂+mN) = Λ+ f2
2 (W +mN )2

W −M
+Λ− f2

2 (W −mN )2

−W −M
,(23)where the �rst term gives 
ontribution to p-wave and se
ond one to

s-wave. Modi�
ation of the pole 
ontributions in"primitive"K-matri
es (15)�(16) is evident
g22 → f2

2 (W −mN )2, for s-wave, (24)
g22 → f2

2 (W +mN )2, for p-wave. (25)One 
an expe
t that the in
lusion of derivatives most strongly a�e
tson threshold properties of s-wave due to dumping fa
tor (W −mN)2.



Partial amplitudes of πN s
atteringNote that our K-matrix di�ers from one used by other authors (e.g.R.A.Arndt et al. PR C74 (2006) 045205) by:
◮ Another form of phase-spa
e fa
tors (QFT 
al
ulations)
◮ Presen
e of the negative energy poles in K̂These two points together lead to Ma
Dowell symmetry.We will use our K-matrix for des
ription of partial waves S11 and P11of πN s
attering in the energy region W < 2 GeV. Following to ideaof M. Batini
 et al, PR C51(1995) 2310, we will use three
hannels of rea
tion: πN , ηN and σN , where the last is"e�e
tive"
hannel, imitating di�erent ππN states."Primitive"K̂-matri
es have a form (15)�(16) but 
an 
ontain several

JP = 1/2+ and JP = 1/2− states.



Fit of P11First of all, let us try to des
ribe S11 and P11 waves separately.
p-wave is des
ribed rather well by our formulas with derivative invertex (22)�(23), see Fig. 1. In this 
ase the s-wave states are missingin amplitudes, the p-wave K-matrix has two positive energy poles.
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Fit of P11Quality of des
ription is de�ned by:
χ2/DOF = 273/95. (26)The use of verti
es without derivative leads to impairment of qualityof des
ription: χ2 > 350, again we need two poles with 
lose masses.Both variants give a negative ba
kground 
ontribution to S11 wave,
omparable in magnitude with other 
ontributions, as it seen onFig. 2. Variant without derivative in vertex gives a larger ba
kground
ontribution, rapidly 
hanging near thresholds. It seems thatdes
ription of P11 partial wave without derivative in verti
es
ontradi
ts to data on S11. On Fig. 2 there are shown some typi
al
urves, there exist di�erent variants with sharp behavior nearthresholds. The presen
e of derivative in a vertex suppresses thethreshold region in ba
kground 
ontribution due to fa
tor (W −mN)2,but in resonan
e region this is rather large 
ontribution, see Fig. 2.



Ba
kground in s-wave
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ontribution to s-wave, generated by p-wave states, i.e.in this 
ase K-matrix for s-wave (15) has only negative energy poles. Solidlines represent variant with derivative in vertex (
orresponding to 
urves onFig. 1), dashed lines � variant without derivative in vertex.



Fit of S11Attempt to des
ribe S11 without ba
kground has no su

ess: itdoesn't allow to rea
h even qualitative agreement with PWA.As a next step, let us add the ba
kground 
ontribution, arising from
p-wave states (solid lines on Fig. 1) with �xed parameters of p-wave.
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urves on Fig. 1, s-wave 
ontains twostates with K-matrix masses 1.55 and 1.75 GeV.



Fit of S11

One 
an see from Fig. 3 that quality of des
ription is unsatisfa
tory inthis 
ase but double-peak behavior is arisen in partial wave for the�rst time. It means that to des
ribe S11 wave a ba
kground
ontribution is ne
essary and its value is 
lose to solid line 
urves atFig. 1



Joint �t of S11 and P11Let's perform the joint analysis of S11 and P11, when resonan
e statesin one wave generate ba
kground in other and vi
e versa. In this 
ase
K̂-matri
es have poles with both positive and negative energy: we usetwo s-wave and two p-wave poles. This leads to noti
eableimprovement of des
ription, as it seen from Fig. 4:
χ2/DOF = 850/190.
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W,  GeV�èñ. : Result of joint �tting of S11 and P11-waves of πN s
attering. Dashedlines show real and imaginary parts of (unitarized) ba
kground
ontribution.



Joint �t of S11 and P11At last, ba
kground 
an be generated not only by negative energypoles but by other terms. We a

ounted it by adding to elasti
amplitudes πN → πN a smooth 
ontributions of the form:
K̂B

s = A+B(W −mN )2, K̂B
p = A+B(W +mN )2, (27)whi
h do not violate the Ma
Dowell symmetry property. Note that wehave quite good des
ription χ2/DOF = 584/187 and ba
kground
ontribution in S11 is 
lose to simplest variant of Fig. 2.
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W,  GeV�èñ. : Result of joint �tting of S11 and P11 waves of πN s
attering.So, the performed joint analysis of and partial wavesdemonstrates that OPF-mixing gives rather marked e�e
t inprodu
tion of baryons.



Few remark after �t
◮ We used simpli�ed des
ription of πN partial waves (σN is some"quasi-
hannel") to re
ognize the e�e
t of OPF-mixing in systemof baryons 1/2±. Rather unexpe
tedly we obtained a goodquality of des
ription χ2/DOF = 584/187, whi
h is 
ompartiblewith mu
h more 
omprehensive analyses up to 6 
hannels.
◮ It seems that OPF-mixing may be introdu
ed into dynami
almodels used for baryon physi
s, e.g. H. Kamano, S.Nakamura, T.-S. Lee, and T. Sato, Phys.Rev. C81,065207 (2010). Besides theoreti
al 
onstrains it 
an have alsosome pra
ti
al meaning.



Poles in 
omplex planeIn Table 1 we present the pole masses and widths obtained by
ontinuation of our amplitudes to 
omplex W plane. As a whole, wesee that our values for mp, Γp are rather 
lose to previously obtained.The only hint for disagreement is appearan
e at some sheets of astable pole 1/2+ with mp ≈ 1500 MeV instead of generally a

eptedmass mp ≈ 1365 MeV.Partial wave,PDG values This work Some other works
S11, 1/2−N(1535) (1510, 70) (1507, 87) (1502, 95), (1648, 80) [?℄N(1650) (1655, 165) (1659, 149) (1519, 129), (1669, 136) [?℄
P11, 1/2+N(1440) (1365, 190) (1365, 194) (1359, 162) [?℄(1500, 160) (1385, 164) [?℄(1387, 147) [?℄Òàáëèöà : Pole masses and widths (MR,ΓR) extra
ted from poles positionin the 
omplex plane W : W0 = MR − ıΓR/2.



Con
lusions
◮ E�e
t of mixing of fermion �elds with opposite parity 
an bereadily realized in the framework of K-matrix approa
h. It leadsto well-known Ma
Dowell symmetry

fl,+(W ) = −fl+1,−(−W ),
onne
ting two partial waves.BUT: Taking OPF-mixing into a

ount, Ma
Dowell symmetryleads to pra
ti
al 
onsequen
es: resonan
e in one partial wavegives rise to ba
kground 
ontribution in another and vi
e versa.
◮ This 
onne
tion, as in 
ase of 3/2± resonan
es, works mainly inone dire
tion: it generates large negative ba
kground in a wavewith lower orbital momentum.
◮ As for pra
ti
al use: we suppose that this 
onne
tion may be ofinterest as a sour
e of additional information about wave withhigher orbital momentum (in our 
ase about P11 and baryons

1/2+).



Appendix: O�-shell proje
tion operators and fermion dressing
We will use the o�-shell proje
tion operators Λ±:

Λ± =
1

2

(
1± p̂

W

)
, W =

√
p2,where W is the rest-frame energy.Main properties of proje
tion operators are:

Λ±Λ± = Λ±, Λ±Λ∓ = 0, Λ±γ5 = γ5Λ∓,

Λ+ + Λ− = 1, Λ+ − Λ− =
p̂

W
.



Appendix: O�-shell proje
tion operators and fermion dressingDyson�S
hwinger equation for dressed propagator G(p):
G(p) = G0 +GΣG0, (28)where G0 is a bare propagator and Σ is a self-energy.We 
an expand all elements in eq. (26) in the basis of proje
tionoperators:

G =

2∑

M=1

PMGM , P1 ≡ Λ+, P2 ≡ Λ−. (29)After it Dyson�S
hwinger equation is redu
ed to equations on s
alarfun
tions:
GM = GM

0 +GMΣMGM
0 , M = 1, 2, (30)or (

G−1
)
M

=
(
G−1

0

)
M − ΣM . (31)



Appendix: O�-shell proje
tion operators and fermion dressingDe
omposition of inverse dressed propagator:
G−1 = P1 (W −m− Σ1) + P2 (−W −m− Σ2). (32)Usual form of the self-energy is

Σ(p) = A(p2) + p̂B(p2), (33)and its de
omposition in proje
tion basis:
Σ1 = A(W 2) +WB(W 2), Σ2 = A(W 2)−WB(W 2). (34)Note the property of 
oe�
ients in the proje
tion basis:

Σ2(W ) = Σ1(−W ).Dressed propagator has a form:
G = P1

1

(W −m− Σ1)
+ P2

1

(−W −m− Σ2)
. (35)



Appendix: O�-shell proje
tion operators and fermion dressingWhen we have two fermion �elds Ψi, the in
lusion of intera
tion leadsalso to mixing of these �elds. In this 
ase the Dyson�S
hwingerequation (26) a
quire matrix indi
es:
Gij = (G0)ij +GikΣkl(G0)lj , i, j, k, l = 1, 2. (36)Therefore we have the same equation, but all fa
tor are matri
es 2× 2.

G(p) = G0 +GΣG0, (37)The simplest variant is when the fermion �elds Ψi have the samequantum numbers and the parity is 
onserved in the Lagrangian.Inverse propagator in this 
ase:
G−1 = P1S

1(W ) + P2S
2(W ) =

= P1

(
W −m1 − Σ1

11 −Σ1
12

−Σ1
21 W −m2 − Σ1

22

)
+ P2S

1(−W ).
(38)



Appendix: O�-shell proje
tion operators and fermion dressing
The matrix 
oe�
ients as before have the symmetry property
S2(W ) = S1(−W ). To obtain the matrix dressed propagator G(p) oneshould reverse the matrix 
oe�
ients:

G(p) = P1(S
1(W ))−1 + P2(S

2(W ))−1 (39)We see that with use of proje
tion basis the problem of fermionmixing is redu
ed to studying of the same mixing matrix as for bosonsbesides the obvious repla
ement s−m2 → W −m.



Appendix: O�-shell proje
tion operators and fermion dressingFirst of all, look at the non-diagonal self-energy:
Σ12

Ψ1 Ψ2Let parity is 
onserved in Lagrangian.Mixing of �elds with the same quantum numbers:
Σ12 = A(p2) + p̂B(p2) =

= Λ+
[
A(W 2) +WB(W 2)

]
+ Λ−

[
A(W 2)−WB(W 2)

]Mixing of �elds with opposite parities:
Σ12 = γ5C(p2) + p̂γ5D(p2) =

= Λ+γ5
[
C(W 2) +WD(W 2)

]
+ Λ−γ5

[
C(W 2)−WD(W 2)

]Main statement: Σ12 6= 0 for mixing of opposite parities �elds.Fermion spe
i�
s !



Appendix: O�-shell proje
tion operators and fermion dressingLet us 
onsider the joint dressing of two fermion �elds of oppositeparities provided that the parity is 
onserved in a vertex. In this 
asethe diagonal transition loops Σii 
ontain only I and p̂ matri
es, whilethe o�-diagonal ones Σ12,Σ21 must 
ontain γ5.Proje
tion basis should be supplemented by elements 
ontaining γ5, itis 
onvenient to 
hoose the γ-matrix basis as:
P1 = Λ+, P2 = Λ−, P3 = Λ+γ5, P4 = Λ−γ5. (40)In this 
ase the γ-matrix de
omposition has four terms:

S =

4∑

M=1

PMSM , (41)where the 
oe�
ients SM are matri
es and have the obvioussymmetry properties S2(W ) = S1(−W ), S4(W ) = S3(−W ).



Appendix: O�-shell proje
tion operators and fermion dressingInverse propagator in this basis looks as:
S(p) = P1

(
W −m1 − Σ1

11 0
0 W −m2 − Σ1

22

)
+

+ P2

(
−W −m1 − Σ2

11 0
0 −W −m2 − Σ2

22

)
+

+ P3

(
0 −Σ3

12

−Σ3
21 0

)
+ P4

(
0 −Σ4

12

−Σ4
21 0

)
,

(42)
where the indexes i, j = 1, 2 in the self-energy ΣM

ij numerate dressingfermion �elds and the indexes M = 1, . . . 4 are refered to the γ-matrixde
omposition (39).



Appendix: O�-shell proje
tion operators and fermion dressingReversing of (40) gives the matrix dressed propagator:
G =P1




−W −m2 − Σ2
22

∆1
0

0
−W −m1 − Σ2

11

∆2


+

+P2




W −m2 − Σ1
22

∆2
0

0
W −m1 − Σ1

11

∆1


+

+P3




0
Σ3

12

∆1
Σ3

21

∆2
0


+ P4




0
Σ4

12

∆2
Σ4

21

∆1
0


 .

(43)
∆1 =

(
W −m1 − Σ1

11

)(
−W −m2 − Σ2

22

)
− Σ3

12Σ
4
21,

∆2 =
(
−W −m1 − Σ2

11

)(
W −m2 − Σ1

22

)
− Σ4

12Σ
3
21 = ∆1

(
W → −W

)
.



Appendix: Comparison with D.Arndt et al.
Note that our K-matrix amplitudes (11) may be rewritten in otherform, 
lose to the one used in: R. A. Arndt, J. M. Ford, and L.Roper, Phys.Rev. D32, 1085 (1985).

fs(W ) = − 1

8π
ρsK̂s

[
1 + ıρsPρsK̂s(W )/(8π)

]−1
ρs,

fp(W ) =
1

8π
ρpK̂p

[
1− ıρpPρpK̂p(W )/(8π)

]−1
ρp.

(44)


