Loop mixing of the opposite parity fermion fields and its manifestation in πN scattering

A.Kaloshin (in collaboration with E.Kobeleva and V.Lomov)

Irkutsk State University

17 июля 2013 г.

・ロト ・回ト ・ヨト ・ヨト

- Introduction
- ▶ Projection basis and matrix propagator
- ▶ Opposite parity fermion (OPF) fields mixing and K-matrix

(日) (四) (三) (三) (三)

- 2

- Descripting of PWA results for S_{11} and P_{11} waves
- ► Conclusions

Mixing of states (fields) is a well-known phenomenon existing in the systems of neutrinos, quarks and hadrons. As for theoretical description of mixing phenomena, a general tendency with time and development of experiment consists in transition from a simplified quantum-mechanical description to the quantum field theory methods.

Mixing of fermion fields has some specifics as compared with boson case. Firstly, there exists γ -matrix structure in a propagator. Secondly, fermion and antifermion have the opposite *P*-parity, so fermion propagator contains contributions of different parities. As a result, besides a standard mixing of fields with the same quantum numbers, for fermions there exists a mixing of fields with opposite parities (OPF-mixing) at loop level, even if the parity is conserved in Lagrangian.

Below we say about non-standard effect of OPF-mixing and its manifestation in systems of baryon resonances.

Projection basis

We will use the **off-shell** projection operators Λ^{\pm} :

$$\Lambda^{\pm} = \frac{1}{2} \left(1 \pm \frac{\hat{p}}{W} \right), \qquad W = \sqrt{p^2},$$

where W is the rest-frame energy. Main properties of projection operators are:

$$\Lambda^{\pm}\Lambda^{\pm} = \Lambda^{\pm}, \quad \Lambda^{\pm}\Lambda^{\mp} = 0, \quad \Lambda^{\pm}\gamma^{5} = \gamma^{5}\Lambda^{\mp},$$

We can decompose propagator (self-energy) in this basis:

$$G = \sum_{M=1}^{2} \mathcal{P}_{M} G^{M}, \qquad \mathcal{P}_{1} \equiv \Lambda^{+}, \quad \mathcal{P}_{2} \equiv \Lambda^{-}.$$
(1)

If γ^5 takes part in game, it's convenient to do as:

$$G = \sum_{M=1}^{4} \mathcal{P}_M G^M, \qquad \mathcal{P}_3 \equiv \Lambda^+ \gamma^5, \quad \mathcal{P}_4 \equiv \Lambda^- \gamma^5.$$
(2)

・ロト ・四ト ・ヨト ・ヨト

Non-diagonal loop

First of all, look at the non-diagonal self-energy:

Let parity is conserved in Lagrangian. Mixing of fields with the same quantum numbers:

$$\Sigma_{12} = A(p^2) + \hat{p}B(p^2) =$$

= $\Lambda^+ [A(W^2) + WB(W^2)] + \Lambda^- [A(W^2) - WB(W^2)]$

Mixing of fields with opposite parities:

$$\begin{split} \Sigma_{12} &= \gamma^5 C(p^2) + \hat{p} \gamma^5 D(p^2) = \\ &= \Lambda^+ \gamma^5 \left[C(W^2) + W D(W^2) \right] + \Lambda^- \gamma^5 \left[C(W^2) - W D(W^2) \right] \end{split}$$

Main statement: $\Sigma_{12} \neq 0$ for mixing of opposite parities fields. Fermion specifics !

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Inverse propagator in this basis looks as:

$$S(p) = \mathcal{P}_{1} \begin{pmatrix} W - m_{1} - \Sigma_{11}^{1} & 0 \\ 0 & W - m_{2} - \Sigma_{22}^{1} \end{pmatrix} + + \mathcal{P}_{2} \begin{pmatrix} -W - m_{1} - \Sigma_{11}^{2} & 0 \\ 0 & -W - m_{2} - \Sigma_{22}^{2} \end{pmatrix} + + \mathcal{P}_{3} \begin{pmatrix} 0 & -\Sigma_{12}^{3} \\ -\Sigma_{21}^{3} & 0 \end{pmatrix} + \mathcal{P}_{4} \begin{pmatrix} 0 & -\Sigma_{12}^{4} \\ -\Sigma_{21}^{4} & 0 \end{pmatrix},$$
(3)

(日) (四) (분) (분) (분) (분)

where the indexes i, j = 1, 2 in the self-energy \sum_{ij}^{M} numerate dressing fermion fields and the indexes $M = 1, \ldots 4$ are referred to the γ -matrix decomposition (39).

Reversing of (40) gives the matrix dressed propagator:

$$G = \mathcal{P}_1 \left(\begin{array}{cc} \frac{-W - m_2 - \Sigma_{22}^2}{\Delta_1} & 0\\ 0 & \frac{-W - m_1 - \Sigma_{11}^2}{\Delta_2} \end{array} \right) +$$

$$+\mathcal{P}_{2}\left(\begin{array}{cc} \frac{W-m_{2}-\Sigma_{22}^{1}}{\Delta_{2}} & 0\\ 0 & \frac{W-m_{1}-\Sigma_{11}^{1}}{\Delta_{1}} \end{array}\right)+$$
(4)

$$+\mathcal{P}_3 \left(\begin{array}{cc} 0 & \frac{\Sigma_{12}^3}{\Delta_1} \\ \frac{\Sigma_{21}^3}{\Delta_2} & 0 \end{array} \right) + \mathcal{P}_4 \left(\begin{array}{cc} 0 & \frac{\Sigma_{12}^4}{\Delta_2} \\ \frac{\Sigma_{21}^4}{\Delta_1} & 0 \end{array} \right)$$

 $\Delta_{1} = \left(W - m_{1} - \Sigma_{11}^{1}\right) \left(-W - m_{2} - \Sigma_{22}^{2}\right) - \Sigma_{12}^{3} \Sigma_{21}^{4},$ $\Delta_{2} = \left(-W - m_{1} - \Sigma_{11}^{2}\right) \left(W - m_{2} - \Sigma_{22}^{1}\right) - \Sigma_{12}^{4} \Sigma_{21}^{3} = \Delta_{1} \left(W \to -W\right).$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Below we will discuss manifestation of OPF-mixing in πN scattering. There are two places, where we can identify this effect:

- Simplest one is the pair of partial waves P₁₃, D₁₃, where baryons 3/2[±] are produced. It was discussed in: A.Kaloshin,
 E.Kobeleva, V.Lomov, Int. J.of Mod.Phys. A26 (2011) 2307 on the base of the matrix propagator.
- OPF-mixing in another pair: S₁₁, P₁₁ (J^P = 1/2[±]) is subject of paper: A.Kaloshin, E.Kobeleva, V.Lomov, arXiv:1306.6171. This required to develop a variant of K-matrix, which includes this effect.

I will say mainly about last item: OPF-mixing in partial waves S_{11}, P_{11} .

Partial wave analysis (PWA) of $\pi N \to \pi N$ with I = 1/2

R.A.Arndt et al. PR C74 (2006) 045205; (gwdac.phys.gwu.edu)

The pair of partial waves P_{13}, D_{13} looks as simplest case for identification of the discussed OPF-mixing effect.

We need to discuss the effect of OPF-mixing in amplitudes of πN scattering and its implementation in framework of K-matrix description. For a first step one may restrict oneself by a simplified case: two resonance states and two channels.

Effective Lagrangians $\pi NN'$ without derivatives and conserving the parity:

$$L_{\rm int} = g_1 \bar{N}_1(x) N(x) \phi(x) + \text{h.c.}, \qquad \text{for } J^P(N_1) = 1/2^-, \quad (5)$$

$$L_{\rm int} = \imath g_2 \bar{N}_2(x) \gamma^5 N(x) \phi(x) + {\rm h.c.}, \text{ for } J^P(N_2) = 1/2^+.$$
 (6)

Let us consider two baryon states of opposite parities with masses m_1 $(J^P = 1/2^-)$, m_2 $(J^P = 1/2^+)$ and two intermediate states πN , ηN . Using the effective Lagrangians we can calculate contributions of states N_1 , N_2 to partial waves at tree level:

OPF-mixing and K-matrix

s-wave amplitudes:

$$\begin{split} f_{s,+}^{\text{tree}}(\pi N \to \pi N) &= -\frac{(E_N^{(\pi)} + m_N)}{8\pi W} \bigg(\frac{g_{1,\pi}^2}{W - m_1} + \frac{g_{2,\pi}^2}{W + m_2} \bigg), \\ f_{s,+}^{\text{tree}}(\pi N \to \eta N) &= -\frac{\sqrt{(E_N^{(\pi)} + m_N)(E_N^{(\eta)} + m_N)}}{8\pi W} \bigg(\frac{g_{1,\pi}g_{1,\eta}}{W - m_1} + \frac{g_{2,\pi}g_{2,\eta}}{W + m_2} \bigg), \\ f_{s,+}^{\text{tree}}(\eta N \to \eta N) &= -\frac{(E_N^{(\eta)} + m_N)}{8\pi W} \bigg(\frac{g_{1,\eta}^2}{W - m_1} + \frac{g_{2,\eta}^2}{W + m_2} \bigg), \end{split}$$

and *p*-wave amplitudes:

$$\begin{split} f_{p,-}^{\text{tree}}(\pi N \to \pi N) &= \frac{(E_N^{(\pi)} - m_N)}{8\pi W} \left(\frac{g_{1,\pi}^2}{-W - m_1} + \frac{g_{2,\pi}^2}{-W + m_2}\right) \\ f_{p,-}^{\text{tree}}(\pi N \to \eta N) &= \frac{\sqrt{\left(E_N^{(\pi)} - m_N\right)\left(E_N^{(\eta)} - m_N\right)}}{8\pi W} \left(\frac{g_{1,\pi}g_{1,\eta}}{-W - m_1} + \frac{g_{2,\pi}g_{2,\eta}}{-W + m_2}\right) \\ f_{p,-}^{\text{tree}}(\eta N \to \eta N) &= \frac{\left(E_N^{(\eta)} - m_N\right)}{8\pi W} \left(\frac{g_{1,\eta}^2}{-W - m_1} + \frac{g_{2,\eta}^2}{-W + m_2}\right) \end{split}$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

OPF-mixing and K-matrix

Here $W = \sqrt{s}$ is the total CMS energy and $E_N^{(\pi)}(E_N^{(\eta)})$ is nucleon CMS energy of system $\pi N(\eta N)$

$$E_N^{(\pi)} = \frac{W^2 + m_N^2 - m_\pi^2}{2W}.$$
(9)

Short notations for coupling constants, e.g. $g_{1,\pi} = g_{N_1N\pi}$. The tree amplitudes (5)–(6) contain poles with both positive and negative energy, originated from propagators of N_1 and N_2 fields of opposite parities. Accounting the loop transitions results in dressing of states and also in mixing of these two fields. Note that $W \to -W$ replacement gives

$$E_N^{(\pi)} + m_N \to -(E_N^{(\pi)} - m_N),$$
 (10)

so tree amplitudes (5)–(6) exhibit the MacDowell symmetry property (S. W. MacDowell, Phys. Rev. 116 (1959) 774).

$$f_{p,-}(W) = -f_{s,+}(-W).$$
 (11)

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 臣 のへ⊙

In K-matrix representation for partial amplitudes

$$f = K \left(1 - \imath P K \right)^{-1}, \tag{12}$$

diagonal matrix iP, constructed from CMS momenta, originates from imaginary part of a loop. Therefore, K-matrix here is simply a matrix of tree amplitudes that should be identified with amplitudes (5),(6). As the result we come to representation of partial amplitudes for sand p-waves

$$f_s(W) = K_s(W) (1 - \iota P K_s(W))^{-1}, \quad f_p(W) = K_p(W) (1 - \iota P K_p(W))^{-1},$$
(13)

where the matrices K_s , K_p (i.e. tree amplitudes (5),(6)), may be written in factorized form

$$K_s = -\frac{1}{8\pi} \rho_s \hat{K}_s \rho_s, \quad K_p = \frac{1}{8\pi} \rho_p \hat{K}_p \rho_p.$$
 (14)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへの

OPF-mixing and K-matrix

Here ρ_s, ρ_p are

$$\rho_s(W) = \begin{pmatrix} \sqrt{\frac{E_N^{(\pi)} + m_N}{W}}, & 0\\ 0, & \sqrt{\frac{E_N^{(\eta)} + m_N}{W}} \end{pmatrix}, \quad (15) \\
\rho_p(W) = \begin{pmatrix} \sqrt{\frac{E_N^{(\pi)} - m_N}{W}}, & 0\\ 0, & \sqrt{\frac{E_N^{(\eta)} - m_N}{W}} \end{pmatrix}, \quad (16)$$

and matrix P consists of CMS momenta as analytic functions of W. In this case "primitive" K-matrices contain poles with both positive and negative energy

OPF-mixing and K-matrix

$$\hat{K}_{s}(W) = \begin{pmatrix} \frac{g_{1,\pi}^{2}}{W - m_{1}} + \frac{g_{2,\pi}^{2}}{W + m_{2}}, & \frac{g_{1,\pi}g_{2,\eta}}{W - m_{1}} + \frac{g_{2,\pi}g_{2,\eta}}{W + m_{2}} \\ \frac{g_{1,\pi}g_{2,\eta}}{W - m_{1}} + \frac{g_{2,\pi}g_{2,\eta}}{W + m_{2}}, & \frac{g_{1,\eta}^{2}}{W - m_{1}} + \frac{g_{2,\pi}^{2}g_{2,\eta}}{W + m_{2}} \end{pmatrix},$$
(17)
$$\hat{K}_{p}(W) = \hat{K}_{s}(-W) = \begin{pmatrix} \frac{g_{1,\pi}^{2}}{-W - m_{1}} + \frac{g_{2,\pi}g_{2,\eta}}{-W - m_{1}} + \frac{g_{2,\pi}g_{2,\eta}}{-W - m_{1}}, & \frac{g_{1,\pi}g_{2,\eta}}{-W - m_{1}} + \frac{g_{2,\pi}g_{2,\eta}}{-W - m_{1}} + \frac{g_{2,\pi}g_{2,\eta}}{-W - m_{1}} + \frac{g_{2,\pi}g_{2,\eta}}{-W - m_{1}} \end{pmatrix},$$
(18)

Recall that m_1 is mass of $J^P = 1/2^-$ state and m_2 is mass of $J^P = 1/2^+$ one. Generalization of this construction for the case of more channels and states is obvious.

Since CMS momenta have the property P(-W) = -P(W), the MacDowell symmetry property (9) is extended from tree amplitudes to unitarized K-matrix ones (11).

Naive expectations

Look again at tree partial amplitudes:

$$f_{s,+}^{\text{tree}}(\pi N \to \pi N) = -\frac{(E_N^{(\pi)} + m_N)}{8\pi W} \left(\frac{g_{1,\pi}^2}{W - m_1} + \frac{g_{2,\pi}^2}{W + m_2}\right)$$

$$f_{p,-}^{\text{tree}}(\pi N \to \pi N) = \frac{(E_N^{(\pi)} - m_N)}{8\pi W} \left(\frac{g_{2,\pi}^2}{-W + m_2} + \frac{g_{1,\pi}^2}{-W - m_1}\right)$$

From a common sense one can expect that negative energy pole should give a negligible effect in physical energy region. However, this is not the case if corresponding coupling constant is large $|g_{2,\pi}| \gg |g_{1,\pi}|$. One can compare decay widths of *s*- and *p*-states

$$\Gamma(N_1 \to \pi N) = g_{N_1 \pi N}^2 \Phi_s, \quad \Gamma(N_2 \to \pi N) = g_{N_2 \pi N}^2 \Phi_p, \tag{19}$$

where Φ_s , Φ_p are corresponding phase volumes. For resonance states not far from threshold, with masses, e.g. 1.5–1.7 GeV, phase volumes differ greatly, $\Phi_s \gg \Phi_p$. If both resonances have typical hadronic width $\Gamma \sim 100$ MeV, then coupling constants differ dramatically too, $|g_{N_2\pi N}| \gg |g_{N_1\pi N}|$.

Inclusion of derivatives

Above we use the simplest effective Lagrangians (3)-(4) to derive tree amplitudes. However, it is well-known, that spontaneous breaking of chiral symmetry requires pion field to appear in Lagrangian only through derivative

$$\mathscr{L}_{\rm int} = f_2 \bar{N}_2(x) \gamma^5 \gamma^\mu N(x) \partial_\mu \phi(x) + \text{h.c.}, \quad J^P = 1/2^+, \quad f_2 = \frac{g_2}{m_2 + m_N}.$$
(20)

It is not difficult to understand how inclusion of derivative changes tree amplitudes and, hence K-matrix. Pole contribution $\pi(k_1)N(p_1) \to N_2(p) \to \pi(k_2)N(p_2)$ in that case takes the form:

$$T = f_2^2 \bar{u}(p_2) \gamma^5 \hat{k}_2 \frac{1}{\hat{p} - M} \gamma^5 \hat{k}_1 u(p_1).$$
(21)

With use of equations of motion, we see that inclusion of derivative at vertex leads to the following modification of resonance contribution

$$g_2^2 \frac{1}{\hat{p} - M} \to f_2^2(\hat{p} + m_N) \frac{1}{\hat{p} - M}(\hat{p} + m_N).$$
 (22)

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Separation of the positive and negative energy poles is performed with the off-shell projector operators $\Lambda^{\pm} = 1/2(1 \pm \hat{p}/W)$

$$f_2^2(\hat{p}+m_N)\frac{1}{\hat{p}-m_N}(\hat{p}+m_N) = \Lambda^+ \frac{f_2^2(W+m_N)^2}{W-M} + \Lambda^- \frac{f_2^2(W-m_N)^2}{-W-M},$$
(23)

where the first term gives contribution to p-wave and second one to s-wave. Modification of the pole contributions in "primitive" K-matrices (15)–(16) is evident

$$g_2^2 \to f_2^2 (W - m_N)^2$$
, for *s*-wave, (24)

$$g_2^2 \to f_2^2 (W + m_N)^2$$
, for *p*-wave. (25)

One can expect that the inclusion of derivatives most strongly affects on threshold properties of s-wave due to dumping factor $(W - m_N)^2$.

Partial amplitudes of πN scattering

Note that our K-matrix differs from one used by other authors (e.g. R.A.Arndt et al. PR C74 (2006) 045205) by:

- ► Another form of phase-space factors (QFT calculations)
- Presence of the negative energy poles in \hat{K}

These two points together lead to MacDowell symmetry.

We will use our K-matrix for description of partial waves S_{11} and P_{11} of πN scattering in the energy region W < 2 GeV. Following to idea of **M. Batinic et al, PR C51(1995) 2310**, we will use three channels of reaction: πN , ηN and σN , where the last is "effective"channel, imitating different $\pi \pi N$ states.

"Primitive" $\hat{K}\text{-matrices}$ have a form (15)–(16) but can contain several $J^P=1/2^+$ and $J^P=1/2^-$ states.

Fit of P_{11}

First of all, let us try to describe S_{11} and P_{11} waves separately. *p*-wave is described rather well by our formulas with derivative in vertex (22)–(23), see Fig. 1. In this case the *s*-wave states are missing in amplitudes, the *p*-wave *K*-matrix has two positive energy poles.

Phc.: The results of fitting of P_{11} -wave. Dots – results of PWA (**R.A.Arndt et al. PR C74 (2006) 045205**) solid lines represent our amplitudes (11)–(16) in the presence of derivative in vertex (22)–(23). *K*-matrix has only *p*-wave states. Partial wave normalization corresponds to **R.A.Arndt et al.**: Im $f = |f|^2 + (1 - \eta^2)/4$. Quality of description is defined by:

$$\chi^2 / \text{DOF} = 273/95.$$
 (26)

The use of vertices without derivative leads to impairment of quality of description: $\chi^2 > 350$, again we need two poles with close masses.

Both variants give a negative background contribution to S_{11} wave, comparable in magnitude with other contributions, as it seen on Fig. 2. Variant without derivative in vertex gives a larger background contribution, rapidly changing near thresholds. It seems that description of P_{11} partial wave without derivative in vertices contradicts to data on S_{11} . On Fig. 2 there are shown some typical curves, there exist different variants with sharp behavior near thresholds. The presence of derivative in a vertex suppresses the threshold region in background contribution due to factor $(W - m_N)^2$, but in resonance region this is rather large contribution, see Fig. 2.

Background in *s*-wave

Phc. : Background contribution to s-wave, generated by p-wave states, i.e. in this case K-matrix for s-wave (15) has only negative energy poles. Solid lines represent variant with derivative in vertex (corresponding to curves on Fig. 1), dashed lines – variant without derivative in vertex.

Fit of S_{11}

Attempt to describe S_{11} without background has no success: it doesn't allow to reach even qualitative agreement with PWA.

As a next step, let us add the background contribution, arising from *p*-wave states (solid lines on Fig. 1) with fixed parameters of p-wave.

Phc. : Results of s-wave fitting with fixed parameters for p-wave states. Parameters of p-wave correspond to curves on Fig. 1, s-wave contains two states with K-matrix masses 1.55 and 1.75 GeV. One can see from Fig. 3 that quality of description is unsatisfactory in this case but double-peak behavior is arisen in partial wave for the first time. It means that to describe S_{11} wave a background contribution is necessary and its value is close to solid line curves at Fig. 1

Joint fit of S_{11} and P_{11}

Let's perform the joint analysis of S_{11} and P_{11} , when resonance states in one wave generate background in other and vice versa. In this case \hat{K} -matrices have poles with both positive and negative energy: we use two *s*-wave and two *p*-wave poles. This leads to noticeable improvement of description, as it seen from Fig. 4: $\chi^2/\text{DOF} = 850/190$.

Phc.: Result of joint fitting of S_{11} and P_{11} -waves of πN scattering. Dashed lines show real and imaginary parts of (unitarized) background contribution.

・ロト ・四ト ・ヨト ・ヨト

Joint fit of S_{11} and P_{11}

At last, background can be generated not only by negative energy poles but by other terms. We accounted it by adding to elastic amplitudes $\pi N \to \pi N$ a smooth contributions of the form:

$$\hat{K}_s^B = A + B(W - m_N)^2, \quad \hat{K}_p^B = A + B(W + m_N)^2, \quad (27)$$

which do not violate the MacDowell symmetry property. Note that we have quite good description $\chi^2/\text{DOF} = 584/187$ and background contribution in S_{11} is close to simplest variant of Fig. 2.

Puc. : Result of joint fitting of S_{11} and P_{11} waves of πN scattering.

900

- We used simplified description of πN partial waves (σN is some "quasi-channel") to recognize the effect of OPF-mixing in system of baryons $1/2^{\pm}$. Rather unexpectedly we obtained a good quality of description $\chi^2/\text{DOF} = 584/187$, which is compartible with much more comprehensive analyses up to 6 channels.
- It seems that OPF-mixing may be introduced into dynamical models used for baryon physics, e.g. H. Kamano, S. Nakamura, T.-S. Lee, and T. Sato, Phys.Rev. C81, 065207 (2010). Besides theoretical constrains it can have also some practical meaning.

・ロト ・回ト ・ミト ・ミト ・ミー のへで

Poles in complex plane

In Table 1 we present the pole masses and widths obtained by continuation of our amplitudes to complex W plane. As a whole, we see that our values for m_p , Γ_p are rather close to previously obtained. The only hint for disagreement is appearance at some sheets of a stable pole $1/2^+$ with $m_p \approx 1500$ MeV instead of generally accepted mass $m_p \approx 1365$ MeV.

Partial wave, PDG values	This work	Some other works
$S_{11}, 1/2^-$		
N(1535) (1510, 70)	(1507, 87)	(1502, 95), (1648, 80) [?]
N(1650) (1655, 165)	(1659, 149)	(1519, 129), (1669, 136) [?]
$P_{11}, 1/2^+$		
N(1440) (1365, 190)	(1365, 194)	(1359, 162) [?]
	(1500, 160)	(1385, 164) [?]
		(1387, 147) [?]

Таблица : Pole masses and widths (M_R, Γ_R) extracted from poles position in the complex plane $W: W_0 = M_R - i\Gamma_R/2$. ▶ Effect of mixing of fermion fields with opposite parity can be readily realized in the framework of *K*-matrix approach. It leads to well-known MacDowell symmetry

$$f_{l,+}(W) = -f_{l+1,-}(-W),$$

connecting two partial waves.

BUT: Taking OPF-mixing into account, MacDowell symmetry leads to practical consequences: resonance in one partial wave gives rise to background contribution in another and vice versa.

- ► This connection, as in case of 3/2[±] resonances, works mainly in one direction: it generates large negative background in a wave with lower orbital momentum.
- As for practical use: we suppose that this connection may be of interest as a source of additional information about wave with higher orbital momentum (in our case about P_{11} and baryons $1/2^+$).

We will use the **off-shell** projection operators Λ^{\pm} :

$$\Lambda^{\pm} = \frac{1}{2} \left(1 \pm \frac{\hat{p}}{W} \right), \qquad W = \sqrt{p^2},$$

where W is the rest-frame energy. Main properties of projection operators are:

$$\begin{split} \Lambda^{\pm}\Lambda^{\pm} &= \Lambda^{\pm}, \quad \Lambda^{\pm}\Lambda^{\mp} = 0, \quad \Lambda^{\pm}\gamma^{5} = \gamma^{5}\Lambda^{\mp}, \\ \Lambda^{+} &+ \Lambda^{-} = 1, \quad \Lambda^{+} - \Lambda^{-} = \frac{\hat{p}}{W}. \end{split}$$

< □ > < □ > < □ > < □ > < □ >

Dyson–Schwinger equation for dressed propagator G(p):

$$G(p) = G_0 + G\Sigma G_0, \tag{28}$$

where G_0 is a bare propagator and Σ is a self-energy. We can expand all elements in eq. (26) in the basis of projection operators:

$$G = \sum_{M=1}^{2} \mathcal{P}_{M} G^{M}, \qquad \mathcal{P}_{1} \equiv \Lambda^{+}, \quad \mathcal{P}_{2} \equiv \Lambda^{-}.$$
(29)

After it Dyson–Schwinger equation is reduced to equations on scalar functions:

$$G^{M} = G_{0}^{M} + G^{M} \Sigma^{M} G_{0}^{M}, \qquad M = 1, 2,$$
(30)

or

$$\left(G^{-1}\right)^M = \left(G_0^{-1}\right)^M - \Sigma^M.$$
(31)

Decomposition of inverse dressed propagator:

$$G^{-1} = \mathcal{P}_1 (W - m - \Sigma^1) + \mathcal{P}_2 (-W - m - \Sigma^2).$$
 (32)

Usual form of the self-energy is

$$\Sigma(p) = A(p^2) + \hat{p}B(p^2), \qquad (33)$$

and its decomposition in projection basis:

$$\Sigma^{1} = A(W^{2}) + WB(W^{2}), \qquad \Sigma^{2} = A(W^{2}) - WB(W^{2}).$$
(34)

Note the property of coefficients in the projection basis:

$$\Sigma^2(W) = \Sigma^1(-W).$$

Dressed propagator has a form:

$$G = \mathcal{P}_1 \ \frac{1}{(W - m - \Sigma^1)} + \mathcal{P}_2 \ \frac{1}{(-W - m - \Sigma^2)}.$$
 (35)

When we have two fermion fields Ψ_i , the inclusion of interaction leads also to mixing of these fields. In this case the Dyson–Schwinger equation (26) acquire matrix indices:

$$G_{ij} = (G_0)_{ij} + G_{ik} \Sigma_{kl} (G_0)_{lj}, \quad i, j, k, l = 1, 2.$$
(36)

Therefore we have the same equation, but all factor are matrices 2×2 .

$$G(p) = G_0 + G\Sigma G_0, \tag{37}$$

The simplest variant is when the fermion fields Ψ_i have the same quantum numbers and the parity is conserved in the Lagrangian. Inverse propagator in this case:

$$G^{-1} = \mathcal{P}_1 S^1(W) + \mathcal{P}_2 S^2(W) =$$

$$= \mathcal{P}_1 \begin{pmatrix} W - m_1 - \Sigma_{11}^1 & -\Sigma_{12}^1 \\ -\Sigma_{21}^1 & W - m_2 - \Sigma_{22}^1 \end{pmatrix} + \mathcal{P}_2 S^1(-W).$$
(38)

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - 釣A@

The matrix coefficients as before have the symmetry property $S^2(W) = S^1(-W)$. To obtain the matrix dressed propagator G(p) one should reverse the matrix coefficients:

$$G(p) = \mathcal{P}_1(S^1(W))^{-1} + \mathcal{P}_2(S^2(W))^{-1}$$
(39)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

We see that with use of projection basis the problem of fermion mixing is reduced to studying of the same mixing matrix as for bosons besides the obvious replacement $s - m^2 \rightarrow W - m$.

First of all, look at the non-diagonal self-energy:

Let parity is conserved in Lagrangian. Mixing of fields with the same quantum numbers:

$$\Sigma_{12} = A(p^2) + \hat{p}B(p^2) =$$

= $\Lambda^+ [A(W^2) + WB(W^2)] + \Lambda^- [A(W^2) - WB(W^2)]$

Mixing of fields with opposite parities:

$$\begin{split} \Sigma_{12} &= \gamma^5 C(p^2) + \hat{p} \gamma^5 D(p^2) = \\ &= \Lambda^+ \gamma^5 \left[C(W^2) + W D(W^2) \right] + \Lambda^- \gamma^5 \left[C(W^2) - W D(W^2) \right] \end{split}$$

Main statement: $\Sigma_{12} \neq 0$ for mixing of opposite parities fields. Fermion specifics !

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Let us consider the joint dressing of two fermion fields of opposite parities provided that the parity is conserved in a vertex. In this case the diagonal transition loops Σ_{ii} contain only I and \hat{p} matrices, while the off-diagonal ones Σ_{12}, Σ_{21} must contain γ^5 .

Projection basis should be supplemented by elements containing γ^5 , it is convenient to choose the γ -matrix basis as:

$$\mathcal{P}_1 = \Lambda^+, \quad \mathcal{P}_2 = \Lambda^-, \quad \mathcal{P}_3 = \Lambda^+ \gamma^5, \quad \mathcal{P}_4 = \Lambda^- \gamma^5.$$
 (40)

In this case the γ -matrix decomposition has four terms:

$$S = \sum_{M=1}^{4} \mathcal{P}_M S^M, \tag{41}$$

where the coefficients S^M are matrices and have the obvious symmetry properties $S^2(W) = S^1(-W)$, $S^4(W) = S^3(-W)$. Inverse propagator in this basis looks as:

$$S(p) = \mathcal{P}_{1} \begin{pmatrix} W - m_{1} - \Sigma_{11}^{1} & 0 \\ 0 & W - m_{2} - \Sigma_{22}^{1} \end{pmatrix} + + \mathcal{P}_{2} \begin{pmatrix} -W - m_{1} - \Sigma_{11}^{2} & 0 \\ 0 & -W - m_{2} - \Sigma_{22}^{2} \end{pmatrix} + + \mathcal{P}_{3} \begin{pmatrix} 0 & -\Sigma_{12}^{3} \\ -\Sigma_{21}^{3} & 0 \end{pmatrix} + \mathcal{P}_{4} \begin{pmatrix} 0 & -\Sigma_{12}^{4} \\ -\Sigma_{21}^{4} & 0 \end{pmatrix},$$
(42)

where the indexes i, j = 1, 2 in the self-energy \sum_{ij}^{M} numerate dressing fermion fields and the indexes $M = 1, \ldots 4$ are referred to the γ -matrix decomposition (39).

<ロト <回ト < 注入 < 注ト < 注ト = 注

Reversing of (40) gives the matrix dressed propagator:

$$G = \mathcal{P}_1 \left(\begin{array}{cc} \frac{-W - m_2 - \Sigma_{22}^2}{\Delta_1} & 0\\ 0 & \frac{-W - m_1 - \Sigma_{11}^2}{\Delta_2} \end{array} \right) +$$

$$+\mathcal{P}_{2}\left(\begin{array}{cc}\frac{W-m_{2}-\Sigma_{22}^{1}}{\Delta_{2}} & 0\\ 0 & \frac{W-m_{1}-\Sigma_{11}^{1}}{\Delta_{1}}\end{array}\right)+$$
(43)

$$+\mathcal{P}_3\left(\begin{array}{cc}0&\frac{\Sigma_{12}^3}{\Delta_1}\\\frac{\Sigma_{21}^3}{\Delta_2}&0\end{array}\right)+\mathcal{P}_4\left(\begin{array}{cc}0&\frac{\Sigma_{12}^4}{\Delta_2}\\\frac{\Sigma_{21}^4}{\Delta_1}&0\end{array}\right)$$

 $\Delta_{1} = \left(W - m_{1} - \Sigma_{11}^{1}\right) \left(-W - m_{2} - \Sigma_{22}^{2}\right) - \Sigma_{12}^{3} \Sigma_{21}^{4},$ $\Delta_{2} = \left(-W - m_{1} - \Sigma_{11}^{2}\right) \left(W - m_{2} - \Sigma_{22}^{1}\right) - \Sigma_{12}^{4} \Sigma_{21}^{3} = \Delta_{1} \left(W \to -W\right).$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Note that our K-matrix amplitudes (11) may be rewritten in other form, close to the one used in: R. A. Arndt, J. M. Ford, and L. Roper, Phys.Rev. D32, 1085 (1985).

$$f_{s}(W) = -\frac{1}{8\pi} \rho_{s} \hat{K}_{s} \left[1 + i \rho_{s} P \rho_{s} \hat{K}_{s}(W) / (8\pi) \right]^{-1} \rho_{s},$$

$$f_{p}(W) = \frac{1}{8\pi} \rho_{p} \hat{K}_{p} \left[1 - i \rho_{p} P \rho_{p} \hat{K}_{p}(W) / (8\pi) \right]^{-1} \rho_{p}.$$
(44)