Loop mixing of the opposite parity fermion fields and its manifestation in πN scattering
A.Kaloshin
(in collaboration with E.Kobeleva and V.Lomov)
Irkutsk State University
17 июля 2013 г.

Outlook

- Introduction
- Projection basis and matrix propagator
- Opposite parity fermion (OPF) fields mixing and K-matrix
- Descripting of PWA results for S_{11} and P_{11} waves
- Conclusions

Introduction

Mixing of states (fields) is a well-known phenomenon existing in the systems of neutrinos, quarks and hadrons. As for theoretical description of mixing phenomena, a general tendency with time and development of experiment consists in transition from a simplified quantum-mechanical description to the quantum field theory methods.

Mixing of fermion fields has some specifics as compared with boson case. Firstly, there exists γ-matrix structure in a propagator. Secondly, fermion and antifermion have the opposite P-parity, so fermion propagator contains contributions of different parities. As a result, besides a standard mixing of fields with the same quantum numbers, for fermions there exists a mixing of fields with opposite parities (OPF-mixing) at loop level, even if the parity is conserved in Lagrangian.

Below we say about non-standard effect of OPF-mixing and its manifestation in systems of baryon resonances.

Projection basis

We will use the off-shell projection operators $\Lambda^{ \pm}$:

$$
\Lambda^{ \pm}=\frac{1}{2}\left(1 \pm \frac{\hat{p}}{W}\right), \quad W=\sqrt{p^{2}},
$$

where W is the rest-frame energy.
Main properties of projection operators are:

$$
\Lambda^{ \pm} \Lambda^{ \pm}=\Lambda^{ \pm}, \quad \Lambda^{ \pm} \Lambda^{\mp}=0, \quad \Lambda^{ \pm} \gamma^{5}=\gamma^{5} \Lambda^{\mp}
$$

We can decompose propagator (self-energy) in this basis:

$$
\begin{equation*}
G=\sum_{M=1}^{2} \mathcal{P}_{M} G^{M}, \quad \mathcal{P}_{1} \equiv \Lambda^{+}, \quad \mathcal{P}_{2} \equiv \Lambda^{-} \tag{1}
\end{equation*}
$$

If γ^{5} takes part in game, it's convenient to do as:

$$
\begin{equation*}
G=\sum_{M=1}^{4} \mathcal{P}_{M} G^{M}, \quad \quad \mathcal{P}_{3} \equiv \Lambda^{+} \gamma^{5}, \quad \mathcal{P}_{4} \equiv \Lambda^{-} \gamma^{5} \tag{2}
\end{equation*}
$$

Non-diagonal loop

First of all, look at the non-diagonal self-energy:
$\xrightarrow{\Psi_{1}} \Sigma_{12}^{\Psi_{2}}$

Let parity is conserved in Lagrangian.
Mixing of fields with the same quantum numbers:

$$
\begin{aligned}
\Sigma_{12} & =A\left(p^{2}\right)+\hat{p} B\left(p^{2}\right)= \\
& =\Lambda^{+}\left[A\left(W^{2}\right)+W B\left(W^{2}\right)\right]+\Lambda^{-}\left[A\left(W^{2}\right)-W B\left(W^{2}\right)\right]
\end{aligned}
$$

Mixing of fields with opposite parities:

$$
\begin{aligned}
\Sigma_{12} & =\gamma^{5} C\left(p^{2}\right)+\hat{p} \gamma^{5} D\left(p^{2}\right)= \\
& =\Lambda^{+} \gamma^{5}\left[C\left(W^{2}\right)+W D\left(W^{2}\right)\right]+\Lambda^{-} \gamma^{5}\left[C\left(W^{2}\right)-W D\left(W^{2}\right)\right]
\end{aligned}
$$

Main statement: $\Sigma_{12} \neq 0$ for mixing of opposite parities fields. Fermion specifics !

Appendix: Off-shell projection operators and fermion dressing

Inverse propagator in this basis looks as:

$$
\begin{align*}
S(p) & =\mathcal{P}_{1}\left(\begin{array}{cc}
W-m_{1}-\Sigma_{11}^{1} & 0 \\
0 & W-m_{2}-\Sigma_{22}^{1}
\end{array}\right)+ \\
& +\mathcal{P}_{2}\left(\begin{array}{cc}
-W-m_{1}-\Sigma_{11}^{2} & 0 \\
0 & -W-m_{2}-\Sigma_{22}^{2}
\end{array}\right)+ \tag{3}\\
& +\mathcal{P}_{3}\left(\begin{array}{cc}
0 & -\Sigma_{12}^{3} \\
-\Sigma_{21}^{3} & 0
\end{array}\right)+\mathcal{P}_{4}\left(\begin{array}{cc}
0 & -\Sigma_{12}^{4} \\
-\Sigma_{21}^{4} & 0
\end{array}\right),
\end{align*}
$$

where the indexes $i, j=1,2$ in the self-energy $\Sigma_{i j}^{M}$ numerate dressing fermion fields and the indexes $M=1, \ldots 4$ are refered to the γ-matrix decomposition (39).

Appendix: Off-shell projection operators and fermion dressing

Reversing of (40) gives the matrix dressed propagator:

$$
\begin{align*}
G & =\mathcal{P}_{1}\left(\begin{array}{cc}
\frac{-W-m_{2}-\Sigma_{22}^{2}}{\Delta_{1}} & 0 \\
0 & \frac{-W-m_{1}-\Sigma_{11}^{2}}{\Delta_{2}}
\end{array}\right)+ \\
& +\mathcal{P}_{2}\left(\begin{array}{cc}
\frac{W-m_{2}-\Sigma_{22}^{1}}{\Delta_{2}} & 0 \\
0 & \frac{W-m_{1}-\Sigma_{11}^{1}}{\Delta_{1}}
\end{array}\right)+ \tag{4}\\
& +\mathcal{P}_{3}\left(\begin{array}{cc}
0 & \frac{\Sigma_{12}^{3}}{\Delta_{1}} \\
\frac{\Sigma_{21}^{3}}{\Delta_{2}} & 0
\end{array}\right)+\mathcal{P}_{4}\left(\begin{array}{cc}
0 & \frac{\Sigma_{12}^{4}}{\Delta_{2}} \\
\frac{\Sigma_{21}^{4}}{\Delta_{1}} & 0
\end{array}\right)
\end{align*}
$$

$\Delta_{1}=\left(W-m_{1}-\Sigma_{11}^{1}\right)\left(-W-m_{2}-\Sigma_{22}^{2}\right)-\Sigma_{12}^{3} \Sigma_{21}^{4}$,
$\Delta_{2}=\left(-W-m_{1}-\Sigma_{11}^{2}\right)\left(W-m_{2}-\Sigma_{22}^{1}\right)-\Sigma_{12}^{4} \Sigma_{21}^{3}=\Delta_{1}(W \rightarrow-W)$.

Where OPF-mixing can be seen?

Below we will discuss manifestation of OPF-mixing in πN scattering. There are two places, where we can identify this effect:

1. Simplest one is the pair of partial waves P_{13}, D_{13}, where baryons $3 / 2^{ \pm}$are produced. It was discussed in: A.Kaloshin, E.Kobeleva, V.Lomov, Int. J.of Mod.Phys. A26 (2011) 2307 on the base of the matrix propagator.
2. OPF-mixing in another pair: $S_{11}, P_{11}\left(J^{P}=1 / 2^{ \pm}\right)$is subject of paper:A.Kaloshin, E.Kobeleva, V.Lomov, arXiv:1306.6171. This required to develop a variant of K-matrix, which includes this effect.

I will say mainly about last item: OPF-mixing in partial waves S_{11}, P_{11}.

Partial wave analysis (PWA) of $\pi N \rightarrow \pi N$ with $I=1 / 2$

R.A.Arndt et al. PR C74 (2006) 045205; (gwdac.phys.gwu.edu)

The pair of partial waves P_{13}, D_{13} looks as simplest case for identification of the discussed OPF-mixing effect.

OPF-mixing and K-matrix

We need to discuss the effect of OPF-mixing in amplitudes of πN scattering and its implementation in framework of K-matrix description. For a first step one may restrict oneself by a simplified case: two resonance states and two channels.

Effective Lagrangians $\pi N N^{\prime}$ without derivatives and conserving the parity:

$$
\begin{array}{ll}
L_{\text {int }}=g_{1} \bar{N}_{1}(x) N(x) \phi(x)+\text { h.c. }, & \text { for } J^{P}\left(N_{1}\right)=1 / 2^{-}, \\
L_{\text {int }}=\imath g_{2} \bar{N}_{2}(x) \gamma^{5} N(x) \phi(x)+\text { h.c. }, & \text { for } J^{P}\left(N_{2}\right)=1 / 2^{+} . \tag{6}
\end{array}
$$

Let us consider two baryon states of opposite parities with masses m_{1} $\left(J^{P}=1 / 2^{-}\right), m_{2}\left(J^{P}=1 / 2^{+}\right)$and two intermediate states $\pi N, \eta N$. Using the effective Lagrangians we can calculate contributions of states N_{1}, N_{2} to partial waves at tree level:

OPF-mixing and K-matrix

s-wave amplitudes:

$$
\begin{array}{r}
f_{s,+}^{\text {tree }}(\pi N \rightarrow \pi N)=-\frac{\left(E_{N}^{(\pi)}+m_{N}\right)}{8 \pi W}\left(\frac{g_{1, \pi}^{2}}{W-m_{1}}+\frac{g_{2, \pi}^{2}}{W+m_{2}}\right) \\
f_{s,+}^{\text {tree }}(\pi N \rightarrow \eta N)=-\frac{\sqrt{\left(E_{N}^{(\pi)}+m_{N}\right)\left(E_{N}^{(\eta)}+m_{N}\right)}}{8 \pi W}\left(\frac{g_{1, \pi} g_{1, \eta}}{W-m_{1}}+\frac{g_{2, \pi} g_{2, \eta}}{W+m_{2}}\right) \\
f_{s,+}^{\text {tree }}(\eta N \rightarrow \eta N)=-\frac{\left(E_{N}^{(\eta)}+m_{N}\right)}{8 \pi W}\left(\frac{g_{1, \eta}^{2}}{W-m_{1}}+\frac{g_{2, \eta}^{2}}{W+m_{2}}\right)
\end{array}
$$

and p-wave amplitudes:

$$
\begin{array}{r}
f_{p,-}^{\text {tree }}(\pi N \rightarrow \pi N)=\frac{\left(E_{N}^{(\pi)}-m_{N}\right)}{8 \pi W}\left(\frac{g_{1, \pi}^{2}}{-W-m_{1}}+\frac{g_{2, \pi}^{2}}{-W+m_{2}}\right), \\
f_{p,-}^{\text {tree }}(\pi N \rightarrow \eta N)=\frac{\sqrt{\left(E_{N}^{(\pi)}-m_{N}\right)\left(E_{N}^{(\eta)}-m_{N}\right)}}{8 \pi W}\left(\frac{g_{1, \pi} g_{1, \eta}}{-W-m_{1}}+\frac{g_{2, \pi} g_{2, \eta}}{-W+m_{2}}\right), \\
f_{p,-}^{\text {tree }}(\eta N \rightarrow \eta N)=\frac{\left(E_{N}^{(\eta)}-m_{N}\right)}{8 \pi W}\left(\frac{g_{1, \eta}^{2}}{-W-m_{1}}+\frac{g_{2, \eta}^{2}}{-W+m_{2}}\right)
\end{array}
$$

OPF-mixing and K-matrix

Here $W=\sqrt{s}$ is the total CMS energy and $E_{N}^{(\pi)}\left(E_{N}^{(\eta)}\right)$ is nucleon CMS energy of system $\pi N(\eta N)$

$$
\begin{equation*}
E_{N}^{(\pi)}=\frac{W^{2}+m_{N}^{2}-m_{\pi}^{2}}{2 W} \tag{9}
\end{equation*}
$$

Short notations for coupling constants, e.g. $g_{1, \pi}=g_{N_{1} N \pi}$.
The tree amplitudes (5)-(6) contain poles with both positive and negative energy, originated from propagators of N_{1} and N_{2} fields of opposite parities. Accounting the loop transitions results in dressing of states and also in mixing of these two fields. Note that $W \rightarrow-W$ replacement gives

$$
\begin{equation*}
E_{N}^{(\pi)}+m_{N} \rightarrow-\left(E_{N}^{(\pi)}-m_{N}\right), \tag{10}
\end{equation*}
$$

so tree amplitudes (5)-(6) exhibit the MacDowell symmetry property (S. W. MacDowell, Phys. Rev. 116 (1959) 774).

$$
\begin{equation*}
f_{p,-}(W)=-f_{s,+}(-W) . \tag{11}
\end{equation*}
$$

OPF-mixing and K-matrix

In K-matrix representation for partial amplitudes

$$
\begin{equation*}
f=K(1-\imath P K)^{-1}, \tag{12}
\end{equation*}
$$

diagonal matrix $\imath P$, constructed from CMS momenta, originates from imaginary part of a loop. Therefore, K-matrix here is simply a matrix of tree amplitudes that should be identified with amplitudes (5),(6). As the result we come to representation of partial amplitudes for s and p-waves
$f_{s}(W)=K_{s}(W)\left(1-\imath P K_{s}(W)\right)^{-1}, \quad f_{p}(W)=K_{p}(W)\left(1-\imath P K_{p}(W)\right)^{-1}$,
where the matrices K_{s}, K_{p} (i.e. tree amplitudes (5),(6)), may be written in factorized form

$$
\begin{equation*}
K_{s}=-\frac{1}{8 \pi} \rho_{s} \hat{K}_{s} \rho_{s}, \quad K_{p}=\frac{1}{8 \pi} \rho_{p} \hat{K}_{p} \rho_{p} . \tag{14}
\end{equation*}
$$

OPF-mixing and K-matrix

Here ρ_{s}, ρ_{p} are

$$
\begin{align*}
& \rho_{s}(W)=\left(\begin{array}{cc}
\sqrt{\frac{E_{N}^{(\pi)}+m_{N}}{W}}, & 0 \\
0, & \sqrt{\frac{E_{N}^{(\eta)}+m_{N}}{W}}
\end{array}\right), \tag{15}\\
& \rho_{p}(W)=\left(\begin{array}{cc}
\sqrt{\frac{E_{N}^{(\pi)}-m_{N}}{W}}, & 0 \\
0, & \sqrt{\frac{E_{N}^{(\eta)}-m_{N}}{W}}
\end{array}\right), \tag{16}
\end{align*}
$$

and matrix P consists of CMS momenta as analytic functions of W. In this case "primitive" K-matrices contain poles with both positive and negative energy

OPF-mixing and K-matrix

$$
\begin{gather*}
\hat{K}_{s}(W)=\left(\begin{array}{ll}
\frac{g_{1, \pi}^{2}}{W-m_{1}}+\frac{g_{2, \pi}^{2}}{W+m_{2}}, & \frac{g_{1, \pi} g_{2, \eta}}{W-m_{1}}+\frac{g_{2, \pi} g_{2, \eta}}{W+m_{2}} \\
\frac{g_{1, \pi} g_{2, \eta}}{W-m_{1}}+\frac{g_{2, \pi} g_{2, \eta}}{W+m_{2}}, & \frac{g_{1, \eta}^{2}}{W-m_{1}}+\frac{g_{2, \eta}^{2}}{W+m_{2}}
\end{array}\right), \tag{17}\\
\hat{K}_{p}(W)=\hat{K}_{s}(-W)=\left(\begin{array}{ll}
\frac{g_{1, \pi}^{2}}{-W-m_{1}}+\frac{g_{2, \pi}^{2}}{-W+m_{2}}, & \frac{g_{1, \pi} g_{2, \eta}}{-W-m_{1}}+\frac{g_{2, \pi} g_{2, \eta}}{-W+m_{2}} \\
\frac{g_{1, \pi} g_{2, \eta}}{-W-m_{1}}+\frac{g_{2, \pi} g_{2, \eta}}{-W+m_{2}}, & \frac{g_{1, \eta}^{2}}{-W-m_{1}}+\frac{g_{2, \eta}^{2}}{-W+m_{2}}
\end{array}\right) \tag{18}
\end{gather*}
$$

Recall that m_{1} is mass of $J^{P}=1 / 2^{-}$state and m_{2} is mass of $J^{P}=1 / 2^{+}$one. Generalization of this construction for the case of more channels and states is obvious.
Since CMS momenta have the property $P(-W)=-P(W)$, the MacDowell symmetry property (9) is extended from tree amplitudes to unitarized K-matrix ones (11).

Naive expectations

Look again at tree partial amplitudes:

$$
\begin{array}{r}
f_{s,+}^{\text {tree }}(\pi N \rightarrow \pi N)=-\frac{\left(E_{N}^{(\pi)}+m_{N}\right)}{8 \pi W}\left(\frac{g_{1, \pi}^{2}}{W-m_{1}}+\frac{g_{2, \pi}^{2}}{W+m_{2}}\right) \\
f_{p,-}^{\text {tree }}(\pi N \rightarrow \pi N)=\frac{\left(E_{N}^{(\pi)}-m_{N}\right)}{8 \pi W}\left(\frac{g_{2, \pi}^{2}}{-W+m_{2}}+\frac{g_{1, \pi}^{2}}{-W-m_{1}}\right)
\end{array}
$$

From a common sense one can expect that negative energy pole should give a negligible effect in physical energy region. However, this is not the case if corresponding coupling constant is large $\left|g_{2, \pi}\right| \gg\left|g_{1, \pi}\right|$. One can compare decay widths of s - and p-states

$$
\begin{equation*}
\Gamma\left(N_{1} \rightarrow \pi N\right)=g_{N_{1} \pi N}^{2} \Phi_{s}, \quad \Gamma\left(N_{2} \rightarrow \pi N\right)=g_{N_{2} \pi N}^{2} \Phi_{p} \tag{19}
\end{equation*}
$$

where Φ_{s}, Φ_{p} are corresponding phase volumes. For resonance states not far from threshold, with masses, e.g. 1.5-1.7 GeV, phase volumes differ greatly, $\Phi_{s} \gg \Phi_{p}$. If both resonances have typical hadronic width $\Gamma \sim 100 \mathrm{MeV}$, then coupling constants differ dramatically too, $\left|g_{N_{2} \pi N}\right| \gg\left|g_{N_{1} \pi N}\right|$.

Inclusion of derivatives

Above we use the simplest effective Lagrangians (3)-(4) to derive tree amplitudes. However, it is well-known, that spontaneous breaking of chiral symmetry requires pion field to appear in Lagrangian only through derivative

$$
\begin{equation*}
\mathscr{L}_{\text {int }}=f_{2} \bar{N}_{2}(x) \gamma^{5} \gamma^{\mu} N(x) \partial_{\mu} \phi(x)+\text { h.c. }, \quad J^{P}=1 / 2^{+}, \quad f_{2}=\frac{g_{2}}{m_{2}+m_{N}} \tag{20}
\end{equation*}
$$

It is not difficult to understand how inclusion of derivative changes tree amplitudes and, hence K-matrix. Pole contribution $\pi\left(k_{1}\right) N\left(p_{1}\right) \rightarrow N_{2}(p) \rightarrow \pi\left(k_{2}\right) N\left(p_{2}\right)$ in that case takes the form:

$$
\begin{equation*}
T=f_{2}^{2} \bar{u}\left(p_{2}\right) \gamma^{5} \hat{k}_{2} \frac{1}{\hat{p}-M} \gamma^{5} \hat{k}_{1} u\left(p_{1}\right) \tag{21}
\end{equation*}
$$

With use of equations of motion, we see that inclusion of derivative at vertex leads to the following modification of resonance contribution

$$
\begin{equation*}
g_{2}^{2} \frac{1}{\hat{p}-M} \rightarrow f_{2}^{2}\left(\hat{p}+m_{N}\right) \frac{1}{\hat{p}-M}\left(\hat{p}+m_{N}\right) \tag{22}
\end{equation*}
$$

Inclusion of derivatives

Separation of the positive and negative energy poles is performed with the off-shell projector operators $\Lambda^{ \pm}=1 / 2(1 \pm \hat{p} / W)$
$f_{2}^{2}\left(\hat{p}+m_{N}\right) \frac{1}{\hat{p}-m_{N}}\left(\hat{p}+m_{N}\right)=\Lambda^{+} \frac{f_{2}^{2}\left(W+m_{N}\right)^{2}}{W-M}+\Lambda^{-} \frac{f_{2}^{2}\left(W-m_{N}\right)^{2}}{-W-M}$,
where the first term gives contribution to p-wave and second one to s-wave. Modification of the pole contributions in "primitive" K-matrices (15)-(16) is evident

$$
\begin{array}{ll}
g_{2}^{2} \rightarrow f_{2}^{2}\left(W-m_{N}\right)^{2}, & \text { for } s \text {-wave }, \\
g_{2}^{2} \rightarrow f_{2}^{2}\left(W+m_{N}\right)^{2}, & \text { for } p \text {-wave. } \tag{25}
\end{array}
$$

One can expect that the inclusion of derivatives most strongly affects on threshold properties of s-wave due to dumping factor $\left(W-m_{N}\right)^{2}$.

Partial amplitudes of πN scattering

Note that our K-matrix differs from one used by other authors (e.g. R.A.Arndt et al. PR C74 (2006) 045205) by:

- Another form of phase-space factors (QFT calculations)
- Presence of the negative energy poles in \hat{K}

These two points together lead to MacDowell symmetry.

We will use our K-matrix for description of partial waves S_{11} and P_{11} of πN scattering in the energy region $W<2 \mathrm{GeV}$. Following to idea of M. Batinic et al, PR C51(1995) 2310, we will use three channels of reaction: $\pi N, \eta N$ and σN, where the last is "effective"channel, imitating different $\pi \pi N$ states.
"Primitive" \hat{K}-matrices have a form (15)-(16) but can contain several $J^{P}=1 / 2^{+}$and $J^{P}=1 / 2^{-}$states.

Fit of P_{11}

First of all, let us try to describe S_{11} and P_{11} waves separately. p-wave is described rather well by our formulas with derivative in vertex (22)-(23), see Fig. 1. In this case the s-wave states are missing in amplitudes, the p-wave K-matrix has two positive energy poles.

Pис. : The results of fitting of P_{11}-wave. Dots - results of PWA
(R.A.Arndt et al. PR C74 (2006) 045205) solid lines represent our amplitudes (11)-(16) in the presence of derivative in vertex (22)-(23). K-matrix has only p-wave states. Partial wave normalization corresponds to R.A.Arndt et al.: $\operatorname{Im} f=|f|^{2}+\left(1-\eta^{2}\right) / 4$.

Fit of P_{11}

Quality of description is defined by:

$$
\begin{equation*}
\chi^{2} / \mathrm{DOF}=273 / 95 . \tag{26}
\end{equation*}
$$

The use of vertices without derivative leads to impairment of quality of description: $\chi^{2}>350$, again we need two poles with close masses.

Both variants give a negative background contribution to S_{11} wave, comparable in magnitude with other contributions, as it seen on Fig. 2. Variant without derivative in vertex gives a larger background contribution, rapidly changing near thresholds. It seems that description of P_{11} partial wave without derivative in vertices contradicts to data on S_{11}. On Fig. 2 there are shown some typical curves, there exist different variants with sharp behavior near thresholds. The presence of derivative in a vertex suppresses the threshold region in background contribution due to factor $\left(W-m_{N}\right)^{2}$, but in resonance region this is rather large contribution, see Fig. 2.

Background in s-wave

Pис. : Background contribution to s-wave, generated by p-wave states, i.e. in this case K-matrix for s-wave (15) has only negative energy poles. Solid lines represent variant with derivative in vertex (corresponding to curves on Fig. 1), dashed lines - variant without derivative in vertex.

Fit of S_{11}

Attempt to describe S_{11} without background has no success: it doesn't allow to reach even qualitative agreement with PWA.

As a next step, let us add the background contribution, arising from p-wave states (solid lines on Fig. 1) with fixed parameters of p-wave.

Рис. : Results of s-wave fitting with fixed parameters for p-wave states. Parameters of p-wave correspond to curves on Fig. 1, s-wave contains two states with K-matrix masses 1.55 and 1.75 GeV .

Fit of S_{11}

One can see from Fig. 3 that quality of description is unsatisfactory in this case but double-peak behavior is arisen in partial wave for the first time. It means that to describe S_{11} wave a background contribution is necessary and its value is close to solid line curves at Fig. 1

Joint fit of S_{11} and P_{11}

Let's perform the joint analysis of S_{11} and P_{11}, when resonance states in one wave generate background in other and vice versa. In this case \hat{K}-matrices have poles with both positive and negative energy: we use two s-wave and two p-wave poles. This leads to noticeable improvement of description, as it seen from Fig. 4:
$\chi^{2} / \mathrm{DOF}=850 / 190$.

Рис. : Result of joint fitting of S_{11} and P_{11}-waves of πN scattering. Dashed lines show real and imaginary parts of (unitarized) background contribution.

Joint fit of S_{11} and P_{11}

At last, background can be generated not only by negative energy poles but by other terms. We accounted it by adding to elastic amplitudes $\pi N \rightarrow \pi N$ a smooth contributions of the form:

$$
\begin{equation*}
\hat{K}_{s}^{B}=A+B\left(W-m_{N}\right)^{2}, \quad \hat{K}_{p}^{B}=A+B\left(W+m_{N}\right)^{2}, \tag{27}
\end{equation*}
$$

which do not violate the MacDowell symmetry property. Note that we have quite good description $\chi^{2} / \mathrm{DOF}=584 / 187$ and background contribution in S_{11} is close to simplest variant of Fig. 2.

Рис. : Result of joint fitting of S_{11} and P_{11} waves of πN scattering.

Few remark after fit

- We used simplified description of πN partial waves (σN is some "quasi-channel") to recognize the effect of OPF-mixing in system of baryons $1 / 2^{ \pm}$. Rather unexpectedly we obtained a good quality of description $\chi^{2} / \mathrm{DOF}=584 / 187$, which is compartible with much more comprehensive analyses up to 6 channels.
- It seems that OPF-mixing may be introduced into dynamical models used for baryon physics, e.g. H. Kamano, S. Nakamura, T.-S. Lee, and T. Sato, Phys.Rev. C81, 065207 (2010). Besides theoretical constrains it can have also some practical meaning.

Poles in complex plane

In Table 1 we present the pole masses and widths obtained by continuation of our amplitudes to complex W plane. As a whole, we see that our values for m_{p}, Γ_{p} are rather close to previously obtained. The only hint for disagreement is appearance at some sheets of a stable pole $1 / 2^{+}$with $m_{p} \approx 1500 \mathrm{MeV}$ instead of generally accepted mass $m_{p} \approx 1365 \mathrm{MeV}$.

Partial wave,	This work	Some other works
PDG values		
$S_{11}, 1 / 2^{-}$		
$\mathrm{N}(1535)(1510,70)$	$(1507,87)$	$(1502,95),(1648,80)[?]$
$\mathrm{N}(1650)(1655,165)$	$(1659,149)$	$(1519,129),(1669,136)[?]$
$P_{11}, 1 / 2^{+}$		
$\mathrm{N}(1440)(1365,190)$	$(1365,194)$	$(1359,162)[?]$
	$(1500,160)$	$(1385,164)[?]$
		$(1387,147)[?]$

Таблица : Pole masses and widths $\left(M_{R}, \Gamma_{R}\right)$ extracted from poles position in the complex plane W : $W_{0}=M_{R}-\imath \Gamma_{R} / 2$.

Conclusions

- Effect of mixing of fermion fields with opposite parity can be readily realized in the framework of K-matrix approach. It leads to well-known MacDowell symmetry

$$
f_{l,+}(W)=-f_{l+1,-}(-W),
$$

connecting two partial waves.
BUT: Taking OPF-mixing into account, MacDowell symmetry leads to practical consequences: resonance in one partial wave gives rise to background contribution in another and vice versa.

- This connection, as in case of $3 / 2^{ \pm}$resonances, works mainly in one direction: it generates large negative background in a wave with lower orbital momentum.
- As for practical use: we suppose that this connection may be of interest as a source of additional information about wave with higher orbital momentum (in our case about P_{11} and baryons $1 / 2^{+}$).

Appendix: Off-shell projection operators and fermion dressing

We will use the off-shell projection operators $\Lambda^{ \pm}$:

$$
\Lambda^{ \pm}=\frac{1}{2}\left(1 \pm \frac{\hat{p}}{W}\right), \quad W=\sqrt{p^{2}}
$$

where W is the rest-frame energy.
Main properties of projection operators are:

$$
\begin{gathered}
\Lambda^{ \pm} \Lambda^{ \pm}=\Lambda^{ \pm}, \quad \Lambda^{ \pm} \Lambda^{\mp}=0, \quad \Lambda^{ \pm} \gamma^{5}=\gamma^{5} \Lambda^{\mp} \\
\Lambda^{+}+\Lambda^{-}=1, \quad \Lambda^{+}-\Lambda^{-}=\frac{\hat{p}}{W}
\end{gathered}
$$

Appendix: Off-shell projection operators and fermion dressing

Dyson-Schwinger equation for dressed propagator $G(p)$:

$$
\begin{equation*}
G(p)=G_{0}+G \Sigma G_{0}, \tag{28}
\end{equation*}
$$

where G_{0} is a bare propagator and Σ is a self-energy.
We can expand all elements in eq. (26) in the basis of projection operators:

$$
\begin{equation*}
G=\sum_{M=1}^{2} \mathcal{P}_{M} G^{M}, \quad \mathcal{P}_{1} \equiv \Lambda^{+}, \quad \mathcal{P}_{2} \equiv \Lambda^{-} \tag{29}
\end{equation*}
$$

After it Dyson-Schwinger equation is reduced to equations on scalar functions:

$$
\begin{equation*}
G^{M}=G_{0}^{M}+G^{M} \Sigma^{M} G_{0}^{M}, \quad M=1,2, \tag{30}
\end{equation*}
$$

or

$$
\begin{equation*}
\left(G^{-1}\right)^{M}=\left(G_{0}^{-1}\right)^{M}-\Sigma^{M} . \tag{31}
\end{equation*}
$$

Appendix: Off-shell projection operators and fermion dressing

Decomposition of inverse dressed propagator:

$$
\begin{equation*}
G^{-1}=\mathcal{P}_{1}\left(W-m-\Sigma^{1}\right)+\mathcal{P}_{2}\left(-W-m-\Sigma^{2}\right) . \tag{32}
\end{equation*}
$$

Usual form of the self-energy is

$$
\begin{equation*}
\Sigma(p)=A\left(p^{2}\right)+\widehat{p} B\left(p^{2}\right) \tag{33}
\end{equation*}
$$

and its decomposition in projection basis:

$$
\begin{equation*}
\Sigma^{1}=A\left(W^{2}\right)+W B\left(W^{2}\right), \quad \Sigma^{2}=A\left(W^{2}\right)-W B\left(W^{2}\right) \tag{34}
\end{equation*}
$$

Note the property of coefficients in the projection basis:

$$
\Sigma^{2}(W)=\Sigma^{1}(-W)
$$

Dressed propagator has a form:

$$
\begin{equation*}
G=\mathcal{P}_{1} \frac{1}{\left(W-m-\Sigma^{1}\right)}+\mathcal{P}_{2} \frac{1}{\left(-W-m-\Sigma^{2}\right)} . \tag{35}
\end{equation*}
$$

Appendix: Off-shell projection operators and fermion dressing

When we have two fermion fields Ψ_{i}, the inclusion of interaction leads also to mixing of these fields. In this case the Dyson-Schwinger equation (26) acquire matrix indices:

$$
\begin{equation*}
G_{i j}=\left(G_{0}\right)_{i j}+G_{i k} \Sigma_{k l}\left(G_{0}\right)_{l j}, \quad i, j, k, l=1,2 . \tag{36}
\end{equation*}
$$

Therefore we have the same equation, but all factor are matrices 2×2.

$$
\begin{equation*}
G(p)=G_{0}+G \Sigma G_{0} \tag{37}
\end{equation*}
$$

The simplest variant is when the fermion fields Ψ_{i} have the same quantum numbers and the parity is conserved in the Lagrangian. Inverse propagator in this case:

$$
\begin{align*}
& G^{-1}=\mathcal{P}_{1} S^{1}(W)+\mathcal{P}_{2} S^{2}(W)= \\
= & \mathcal{P}_{1}\left(\begin{array}{cc}
W-m_{1}-\Sigma_{11}^{1} & -\Sigma_{12}^{1} \\
-\Sigma_{21}^{1} & W-m_{2}-\Sigma_{22}^{1}
\end{array}\right)+\mathcal{P}_{2} S^{1}(-W) . \tag{38}
\end{align*}
$$

Appendix: Off-shell projection operators and fermion dressing

The matrix coefficients as before have the symmetry property $S^{2}(W)=S^{1}(-W)$. To obtain the matrix dressed propagator $G(p)$ one should reverse the matrix coefficients:

$$
\begin{equation*}
G(p)=\mathcal{P}_{1}\left(S^{1}(W)\right)^{-1}+\mathcal{P}_{2}\left(S^{2}(W)\right)^{-1} \tag{39}
\end{equation*}
$$

We see that with use of projection basis the problem of fermion mixing is reduced to studying of the same mixing matrix as for bosons besides the obvious replacement $s-m^{2} \rightarrow W-m$.

Appendix: Off-shell projection operators and fermion dressing

First of all, look at the non-diagonal self-energy:

Let parity is conserved in Lagrangian.
Mixing of fields with the same quantum numbers:

$$
\begin{aligned}
\Sigma_{12} & =A\left(p^{2}\right)+\hat{p} B\left(p^{2}\right)= \\
& =\Lambda^{+}\left[A\left(W^{2}\right)+W B\left(W^{2}\right)\right]+\Lambda^{-}\left[A\left(W^{2}\right)-W B\left(W^{2}\right)\right]
\end{aligned}
$$

Mixing of fields with opposite parities:

$$
\begin{aligned}
\Sigma_{12} & =\gamma^{5} C\left(p^{2}\right)+\hat{p} \gamma^{5} D\left(p^{2}\right)= \\
& =\Lambda^{+} \gamma^{5}\left[C\left(W^{2}\right)+W D\left(W^{2}\right)\right]+\Lambda^{-} \gamma^{5}\left[C\left(W^{2}\right)-W D\left(W^{2}\right)\right]
\end{aligned}
$$

Main statement: $\Sigma_{12} \neq 0$ for mixing of opposite parities fields. Fermion specifics !

Appendix: Off-shell projection operators and fermion dressing

Let us consider the joint dressing of two fermion fields of opposite parities provided that the parity is conserved in a vertex. In this case the diagonal transition loops $\Sigma_{i i}$ contain only I and \hat{p} matrices, while the off-diagonal ones Σ_{12}, Σ_{21} must contain γ^{5}.
Projection basis should be supplemented by elements containing γ^{5}, it is convenient to choose the γ-matrix basis as:

$$
\begin{equation*}
\mathcal{P}_{1}=\Lambda^{+}, \quad \mathcal{P}_{2}=\Lambda^{-}, \quad \mathcal{P}_{3}=\Lambda^{+} \gamma^{5}, \quad \mathcal{P}_{4}=\Lambda^{-} \gamma^{5} . \tag{40}
\end{equation*}
$$

In this case the γ-matrix decomposition has four terms:

$$
\begin{equation*}
S=\sum_{M=1}^{4} \mathcal{P}_{M} S^{M} \tag{41}
\end{equation*}
$$

where the coefficients S^{M} are matrices and have the obvious symmetry properties $S^{2}(W)=S^{1}(-W), S^{4}(W)=S^{3}(-W)$.

Appendix: Off-shell projection operators and fermion dressing

Inverse propagator in this basis looks as:

$$
\begin{align*}
S(p) & =\mathcal{P}_{1}\left(\begin{array}{cc}
W-m_{1}-\Sigma_{11}^{1} & 0 \\
0 & W-m_{2}-\Sigma_{22}^{1}
\end{array}\right)+ \\
& +\mathcal{P}_{2}\left(\begin{array}{cc}
-W-m_{1}-\Sigma_{11}^{2} & 0 \\
0 & -W-m_{2}-\Sigma_{22}^{2}
\end{array}\right)+ \tag{42}\\
& +\mathcal{P}_{3}\left(\begin{array}{cc}
0 & -\Sigma_{12}^{3} \\
-\Sigma_{21}^{3} & 0
\end{array}\right)+\mathcal{P}_{4}\left(\begin{array}{cc}
0 & -\Sigma_{12}^{4} \\
-\Sigma_{21}^{4} & 0
\end{array}\right),
\end{align*}
$$

where the indexes $i, j=1,2$ in the self-energy $\Sigma_{i j}^{M}$ numerate dressing fermion fields and the indexes $M=1, \ldots 4$ are refered to the γ-matrix decomposition (39).

Appendix: Off-shell projection operators and fermion dressing

Reversing of (40) gives the matrix dressed propagator:

$$
\begin{align*}
G & =\mathcal{P}_{1}\left(\begin{array}{cc}
\frac{-W-m_{2}-\Sigma_{22}^{2}}{\Delta_{1}} & 0 \\
0 & \frac{-W-m_{1}-\Sigma_{11}^{2}}{\Delta_{2}}
\end{array}\right)+ \\
& +\mathcal{P}_{2}\left(\begin{array}{cc}
\frac{W-m_{2}-\Sigma_{22}^{1}}{\Delta_{2}} & 0 \\
0 & \frac{W-m_{1}-\Sigma_{11}^{1}}{\Delta_{1}}
\end{array}\right)+ \tag{43}\\
& +\mathcal{P}_{3}\left(\begin{array}{cc}
0 & \frac{\Sigma_{12}^{3}}{\Delta_{1}} \\
\frac{\Sigma_{21}^{3}}{\Delta_{2}} & 0
\end{array}\right)+\mathcal{P}_{4}\left(\begin{array}{cc}
0 & \frac{\Sigma_{12}^{4}}{\Delta_{2}} \\
\frac{\Sigma_{21}^{4}}{\Delta_{1}} & 0
\end{array}\right)
\end{align*}
$$

$\Delta_{1}=\left(W-m_{1}-\Sigma_{11}^{1}\right)\left(-W-m_{2}-\Sigma_{22}^{2}\right)-\Sigma_{12}^{3} \Sigma_{21}^{4}$,
$\Delta_{2}=\left(-W-m_{1}-\Sigma_{11}^{2}\right)\left(W-m_{2}-\Sigma_{22}^{1}\right)-\Sigma_{12}^{4} \Sigma_{21}^{3}=\Delta_{1}(W \rightarrow-W)$.

Appendix: Comparison with D.Arndt et al.

Note that our K-matrix amplitudes (11) may be rewritten in other form, close to the one used in: R. A. Arndt, J. M. Ford, and L. Roper, Phys.Rev. D32, 1085 (1985).

$$
\begin{align*}
& f_{s}(W)=-\frac{1}{8 \pi} \rho_{s} \hat{K}_{s}\left[1+\imath \rho_{s} P \rho_{s} \hat{K}_{s}(W) /(8 \pi)\right]^{-1} \rho_{s}, \tag{44}\\
& f_{p}(W)=\frac{1}{8 \pi} \rho_{p} \hat{K}_{p}\left[1-\imath \rho_{p} P \rho_{p} \hat{K}_{p}(W) /(8 \pi)\right]^{-1} \rho_{p} .
\end{align*}
$$

