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Introduction

Mixing of states (fields) is a well-known phenomenon existing in the
systems of neutrinos, quarks and hadrons. As for theoretical
description of mixing phenomena, a general tendency with time and
development of experiment consists in transition from a simplified
quantum-mechanical description to the quantum field theory methods.

Mixing of fermion fields has some specifics as compared with boson
case. Firstly, there exists y-matrix structure in a propagator.
Secondly, fermion and antifermion have the opposite P-parity, so
fermion propagator contains contributions of different parities. As a
result, besides a standard mixing of fields with the same quantum
numbers, for fermions there exists a mixing of fields with opposite
parities (OPF-mixing) at loop level, even if the parity is conserved in
Lagrangian.

Below we say about non-standard effect of OPF-mixing and
its manifestation in systems of baryon resonances.



Projection basis

We will use the off-shell projection operators A*:

Ai:1(1i£>, W = /72,

2 w

where W is the rest-frame energy.
Main properties of projection operators are:

AFAE = A%, AFAT =0, AF)® =~°AF,
We can decompose propagator (self-energy) in this basis:
2
G=>Y PuG", Pr=At, Py=A". (1)
M=1
If 4° takes part in game, it’s convenient to do as:

4
G = Z PuGM, Py =ATH%, Py=A"A5 (2)

M=1



Non-diagonal loop

First of all, look at the non-diagonal self-energy:

Wy :: Uy

Let parity is conserved in Lagrangian.
Mixing of fields with the same quantum numbers:

T2 = A@Q?) +pB(p®) =
AT [AW?)+ WB(W?)] + A~ [AW?) - WB(W?)]

Mixing of fields with opposite parities:

L2 = 2°CP) +/ D) =
= ATY° [CW?) + WDW?)] +A79° [C(W?) - WD(W?)]

Main statement: 15 # 0 for mixing of opposite parities fields.
Fermion specifics !



Appendix: Off-shell projection operators and fermion dressing

Inverse propagator in this basis looks as:

W —mq — %! 0
S(p):P1< 01 ! W—m2—2§2>+
W —my - T2 0
+732< 0 W —my — 2, + (3)

1 >
+P3<—2%1 o )P =y o )

where the indexes i, 7 = 1,2 in the self-energy Ef\f numerate dressing
fermion fields and the indexes M = 1,...4 are refered to the y-matrix
decomposition (39).



Appendix: Off-shell projection operators and fermion dressing

Reversing of (40) gives the matrix dressed propagator:

W — mo — 2%2 0
A
G= 1
Pl 0 W — my — Z%l +
Ag
w mo — 222
A 0
2
+,PQ 0 W — mi — Eh + (4)
A
o h o Zh
e B Y IR
~21 0 ~21 0
AQ A1

)( W —my — E22) 2?2231a



Where OPF-mixing can be seen?

Below we will discuss manifestation of OPF-mixing in 7N scattering.
There are two places, where we can identify this effect:

1. Simplest one is the pair of partial waves P;3, D13, where baryons
3/2F are produced. It was discussed in: A.Kaloshin,
E.Kobeleva, V.Lomov, Int. J.of Mod.Phys. A26 (2011)
2307 on the base of the matrix propagator.

2. OPF-mixing in another pair: Si1, Py (J¥ = 1/2%) is subject of
paper:A.Kaloshin, E.Kobeleva, V.Lomov,
arXiv:1306.6171. This required to develop a variant of
K-matrix, which includes this effect.

I will say mainly about last item: OPF-mixing in
partial waves Siq, Pi;.



Partial wave analysis (PWA) of 7N — 7N with I = 1/2

R.A.Arndt et al. PR C74 (2006) 045205; (gwdac.phys.gwu.edu)
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The pair of partial waves P;3, D13 looks as simplest case for
identification of the discussed OPF-mixing effect.



OPF-mixing and K-matrix

We need to discuss the effect of OPF-mixing in amplitudes of 7N
scattering and its implementation in framework of K-matrix
description. For a first step one may restrict oneself by a simplified
case: two resonance states and two channels.

Effective Lagrangians 7 NN’ without derivatives and conserving the
parity:

Lins = i N1 (@) N ()p(2) +hec.,  for JO(N1) =1/27,  (5)

Lint = 192 No(2)y° N(z)p(2) + h.c., for JP(Ny) =1/2F.  (6)
Let us consider two baryon states of opposite parities with masses m;
(JF =1/27), ma (JF =1/27) and two intermediate states 7N, nN.

Using the effective Lagrangians we can calculate contributions of
states N1, Ny to partial waves at tree level:



OPF-mixing and K-matrix

s-wave amplitudes:

E(ﬂ) +my) (91 93
tree N N) = _( T T
fs’+(ﬂ- e ) 8rW W—m1+W—|—m2

tree(ﬂ_N — WN) \/(EJ(\?) + mN) (E](\?) + mN) < 91,791,n 92,792,n )

8tW W—-—m1 W +mg
(m) 2
tree (EN + mN) 91.n 92,77
+ (N = aN) = -—oy (W — o T

and p-wave amplitudes:

(m) 2
tree _ (EN - mN) 91,7 92 T
p- (TN = 7N) = =y <—W—m1 W+ my

STW W —my —W—l—mg

(m) (m)
ftree(ﬂ_N _> 77N) _ \/(EN _mN) (EJ\;] _mN) < 91,791,n 92,792,n )
p,—

E(n) . 2
tree(nN N UN) ( N mN) ( 91, 927]

8tW W —-—my —W + mo



OPF-mixing and K-matrix

Here W = /s is the total CMS energy and E](:,T) (EJ(\?)) is nucleon
CMS energy of system 7N (nN)

W2+ m3, —m2

B T — (9)

Short notations for coupling constants, e.g. 91,7 = YN N7

The tree amplitudes (5)—(6) contain poles with both positive and
negative energy, originated from propagators of N7 and N fields of
opposite parities. Accounting the loop transitions results in dressing
of states and also in mixing of these two fields.

Note that W — —W replacement gives

E](\;r)+mN—>—(E](\?)—mN), (10)

so tree amplitudes (5)—(6) exhibit the MacDowell symmetry property
(S. W. MacDowell, Phys. Rev. 116 (1959) 774).

fo-(W) = =fs 4 (=W). (11)



OPF-mixing and K-matrix

In K-matrix representation for partial amplitudes
f=K(1—-PK)", (12)

diagonal matrix +P, constructed from CMS momenta, originates from
imaginary part of a loop. Therefore, K-matrix here is simply a matrix
of tree amplitudes that should be identified with amplitudes (5),(6).
As the result we come to representation of partial amplitudes for s-
and p-waves

=il =il
fs(W) = K,W)(1—PK,(W)) , f,(W)= KP(W)(l—zPKp(W()) : )

13
where the matrices K, K, (i.e. tree amplitudes (5),(6)), may be
written in factorized form

1 - 1 .

—gpsKst Ky = —ppKppp. (14)

K, =
8w



OPF-mixing and K-matrix

Here pg, pp are

EJ(\;T) +mn
W b
PS(W) =
0,
EI(\;T) —myN
W b
pp(W) =
0,

E'J(\?) — mnN
w

; (16)

and matrix P consists of CMS momenta as analytic functions of W.
In this case "primitive" K-matrices contain poles with both positive

and negative energy



OPF-mixing and K-matrix

2 2
gl,ﬂ" g2,7r 91,7929 92,792,n
K-S(W): W —my W + mo ngl W—|2—m2 ,
91,792,n 92,792,n gl,n gZ,n
W —my W4+me W —my W + mgo
(17)
2 2
91x 92 x 91,792, 92,792,n
o) = B cwy = | W W W W
91,792,n 92,792,n gl,n gQ,n
W —my —W—f—mg’ —W —my —W + mgy
(18)

Recall that m; is mass of J¥ = 1/27 state and mg is mass of

JP =1/2% one. Generalization of this construction for the case of
more channels and states is obvious.

Since CMS momenta have the property P(—W) = —P(W), the
MacDowell symmetry property (9) is extended from tree amplitudes
to unitarized K-matrix ones (11).



Naive expectations

Look again at tree partial amplitudes:
(EY +my) ( Gim Poom )

tree N = 7N) = —
st (TN = wN) 8TW W —my | W+ mg

(E](\;T) - mN) < g%,ﬂ' + g%,ﬂ' )

tree N N —
fp=(rN = wN) 8o W i = —

From a common sense one can expect that negative energy pole
should give a negligible effect in physical energy region. However, this
is not the case if corresponding coupling constant is large

| g2,= >>| 91,% |- One can compare decay widths of s- and p-states

T(Ny = 7N) = gX, -n®s, T(N2 = 7N) = g3,-n P, (19)

where ®,, ¢, are corresponding phase volumes. For resonance states
not far from threshold, with masses, e.g. 1.5-1.7 GeV, phase volumes
differ greatly, @5 > ®,. If both resonances have typical hadronic
width T' ~ 100 MeV, then coupling constants differ dramatically too,
| gNonN | >] gNyan |-



Inclusion of deriv.

Above we use the simplest effective Lagrangians (3)—(4) to derive tree
amplitudes. However, it is well-known, that spontaneous breaking of
chiral symmetry requires pion field to appear in Lagrangian only
through derivative

L = f2Na(2)y°7* N (2)d he, JP=1/2%, fo=—%2
= BN @) N (@)0u0(2) +hec. T R e

(20)
It is not difficult to understand how inclusion of derivative changes
tree amplitudes and, hence K-matrix. Pole contribution

m(k1)N(p1) = Na(p) = w(ke)N(p2) in that case takes the form:

& 1 &
T = f3u s *kyu(pr). 21
fyulp2)y vl (p1) (21)
With use of equations of motion, we see that inclusion of derivative at
vertex leads to the following modification of resonance contribution

1
p—M

. 1
—>f22(P+mN)ﬁ_

95 (b +my). (22)



Inclusion of der

Separation of the positive and negative energy poles is performed with
the off-shell projector operators A* = 1/2(1 + ﬁ/W)

2 9 2 _ 9
R e
(23)

where the first term gives contribution to p-wave and second one to
s-wave. Modification of the pole contributions in
"primitive" K-matrices (15)—(16) is evident
g5 — f2(W —my)?, for s-wave, (24)
g5 — f2(W +my)?, for p-wave. (25)

One can expect that the inclusion of derivatives most strongly affects
on threshold properties of s-wave due to dumping factor (W — my)?.



Partial amplitudes of 7N scattering

Note that our K-matrix differs from one used by other authors (e.g.
R.A.Arndt et al. PR C74 (2006) 045205) by:

» Another form of phase-space factors (QFT calculations)
» Presence of the negative energy poles in K

These two points together lead to MacDowell symmetry.

We will use our K-matrix for description of partial waves S1; and P
of mN scattering in the energy region W < 2 GeV. Following to idea
of M. Batinic et al, PR C51(1995) 2310, we will use three
channels of reaction: 7N, nN and o N, where the last is
"effective"channel, imitating different 77N states.

"Primitive" K-matrices have a form (15)—(16) but can contain several
JP =1/2% and J¥ = 1/2~ states.



First of all, let us try to describe S1; and P;; waves separately.
p-wave is described rather well by our formulas with derivative in
vertex (22)—(23), see Fig. 1. In this case the s-wave states are missing
in amplitudes, the p-wave K-matrix has two positive energy poles.

Puc. : The results of fitting of Pi1-wave. Dots — results of PWA
(R.A.Arndt et al. PR C74 (2006) 045205) solid lines represent our
amplitudes (11)—(16) in the presence of derivative in vertex (22)—(23).
K-matrix has only p-wave states. Partial wave normalization corresponds to
R.A.Arndt et al.: Im f = |f|* + (1 — n?)/4.



Quality of description is defined by:
x?/DOF = 273/95. (26)

The use of vertices without derivative leads to impairment of quality
of description: y2 > 350, again we need two poles with close masses.

Both variants give a negative background contribution to S1; wave,
comparable in magnitude with other contributions, as it seen on

Fig. 2. Variant without derivative in vertex gives a larger background
contribution, rapidly changing near thresholds. It seems that
description of Pj; partial wave without derivative in vertices
contradicts to data on S1;. On Fig. 2 there are shown some typical
curves, there exist different variants with sharp behavior near
thresholds. The presence of derivative in a vertex suppresses the
threshold region in background contribution due to factor (W —my)?,
but in resonance region this is rather large contribution, see Fig. 2.



Background in s-wave

Puc. : Background contribution to s-wave, generated by p-wave states, i.e.
in this case K-matrix for s-wave (15) has only negative energy poles. Solid
lines represent variant with derivative in vertex (corresponding to curves on
Fig. 1), dashed lines — variant without derivative in vertex.



Attempt to describe S1; without background has no success: it
doesn’t allow to reach even qualitative agreement with PWA.

As a next step, let us add the background contribution, arising from
p-wave states (solid lines on Fig. 1) with fixed parameters of p-wave.

Puc. : Results of s-wave fitting with fixed parameters for p-wave states.
Parameters of p-wave correspond to curves on Fig. 1, s-wave contains two
states with K-matrix masses 1.55 and 1.75 GeV.



One can see from Fig. 3 that quality of description is unsatisfactory in
this case but double-peak behavior is arisen in partial wave for the
first time. It means that to describe S1; wave a background
contribution is necessary and its value is close to solid line curves at

Fig. 1



Joint fit of S1; and P

Let’s perform the joint analysis of S7; and P;1, when resonance states
in one wave generate background in other and vice versa. In this case
K-matrices have poles with both positive and negative energy: we use
two s-wave and two p-wave poles. This leads to noticeable
improvement of description, as it seen from Fig. 4:

x2/DOF = 850/190.

Puc. : Result of joint fitting of S11 and Pii-waves of mIV scattering. Dashed
lines show real and imaginary parts of (unitarized) background
contribution.



Joint fit of S1; and P

At last, background can be generated not only by negative energy
poles but by other terms. We accounted it by adding to elastic
amplitudes 7N — N a smooth contributions of the form:

KB =A+BW -mn)?, KE=A+BW+mn)?  (27)
which do not violate the MacDowell symmetry property. Note that we

have quite good description x2/DOF = 584/187 and background
contribution in S is close to simplest variant of Fig. 2.

074
06
05

044

Puc. : Result of joint fitting of S11 and P11 waves of mN scattering.



Few remark after fit

» We used simplified description of 7N partial waves (o N is some
"quasi-channel") to recognize the effect of OPF-mixing in system
of baryons 1/2%. Rather unexpectedly we obtained a good
quality of description x?/DOF = 584/187, which is compartible
with much more comprehensive analyses up to 6 channels.

» It seems that OPF-mixing may be introduced into dynamical
models used for baryon physics, e.g. H. Kamano, S.
Nakamura, T.-S. Lee, and T. Sato, Phys.Rev. C81,
065207 (2010). Besides theoretical constrains it can have also
some practical meaning.



Poles in complex plane

In Table 1 we present the pole masses and widths obtained by
continuation of our amplitudes to complex W plane. As a whole, we
see that our values for m,, I', are rather close to previously obtained.
The only hint for disagreement is appearance at some sheets of a
stable pole 1/2* with m, ~ 1500 MeV instead of generally accepted

mass m, ~ 1365 MeV.

Partial wave, This work Some other works
PDG values
511, 1/2_
N(1535) (1510, 70) (1507, 87) (1502, 95), (1648, 80) [?]
N(1650) (1655, 165) (1659, 149) (1519, 129), (1669, 136) [?]
Py, 1/2%
N(1440) (1365, 190) (1365, 194) (1359, 162) [?]
(1500, 160) (1385, 164) [?]

(1387, 147) [?]

Tabmmma : Pole masses and widths (Mg, 'r) extracted from poles position

in the complex plane W: Wy = Mg —1['r/2.




Conclusions

» Effect of mixing of fermion fields with opposite parity can be
readily realized in the framework of K-matrix approach. It leads
to well-known MacDowell symmetry

i+ W) = = fig1,-(=W),

connecting two partial waves.

BUT: Taking OPF-mixing into account, MacDowell symmetry
leads to practical consequences: resonance in one partial wave
gives rise to background contribution in another and vice versa.

» This connection, as in case of 3/ 2% resonances, works mainly in
one direction: it generates large negative background in a wave
with lower orbital momentum.

» As for practical use: we suppose that this connection may be of
interest as a source of additional information about wave with

higher orbital momentum (in our case about P;; and baryons
1/2%).



tion operators and fermion dressing

We will use the off-shell projection operators A*:

Ai:1(1i£>, W = /p2,

2 W

where W is the rest-frame energy.
Main properties of projection operators are:

ATAT = AT, ATAT =0, ATH° =A°AF

AT+A" =1, AT-A =

S/



Appendix: Off-shell projection operators and fermion dressing

Dyson—Schwinger equation for dressed propagator G(p):
G(p) = Go + GEGo, (28)

where G is a bare propagator and X is a self-energy.
We can expand all elements in eq. (26) in the basis of projection
operators:

2
G=>Y PuG"Y, Pr=AT, Po=A". (29)

M=1

After it Dyson—Schwinger equation is reduced to equations on scalar

functions:
GM =G +cMzMG¥, M=1,2, (30)

or

(G—l)M — (Ggl)M M (31)



Decomposition of inverse dressed propagator:
Gl=PL(W-m-SY)+P (-W —m —X?).
Usual form of the self-energy is
S(p) = A(p®) + 5B (p?),

and its decomposition in projection basis:

>t = AW?) + WB(W?), ¥2 = A(W?) - WB(W?).

Note the property of coefficients in the projection basis:
Y2(W) = ZH-W).
Dressed propagator has a form:

1

G =P =

(W—m—Zl)—'_P2

Appendix: Off-shell projection operators and fermion dressing

(35)



Appendix: Off-shell projection operators and fermion dressing

When we have two fermion fields W;, the inclusion of interaction leads
also to mixing of these fields. In this case the Dyson—Schwinger
equation (26) acquire matrix indices:

Gij = (Go)ij + GuZr(Go)yy, 1,5, k,1=1,2. (36)
Therefore we have the same equation, but all factor are matrices 2 x 2.
G(p) = Go + GZGo, (37)

The simplest variant is when the fermion fields ¥; have the same
quantum numbers and the parity is conserved in the Lagrangian.
Inverse propagator in this case:

Gl =P ST (W) + PuS?(W) =
38
_ W —m — 2%1 _2%2 (38)

1 p—
—P1< _Eél W—mQ—E%Q )+PQS ( W)



endix: Off-shell projection operators and fermion dressing

The matrix coefficients as before have the symmetry property
S2(W) = SY(—W). To obtain the matrix dressed propagator G(p) one
should reverse the matrix coefficients:

G(p) = P1(ST (W)~ + Po(S*(W)) ™ (39)

We see that with use of projection basis the problem of fermion
mixing is reduced to studying of the same mixing matrix as for bosons
besides the obvious replacement s — m? — W — m.



Appendix: Off-shell projection operators and fermion dressing

First of all, look at the non-diagonal self-energy:

Wy :: Uy

Let parity is conserved in Lagrangian.
Mixing of fields with the same quantum numbers:

T2 = A@Q?) +pB(p®) =
AT [AW?)+ WB(W?)] + A~ [AW?) - WB(W?)]

Mixing of fields with opposite parities:

L2 = 2°CP) +/ D) =
= ATY° [CW?) + WDW?)] +A79° [C(W?) - WD(W?)]

Main statement: 15 # 0 for mixing of opposite parities fields.
Fermion specifics !



ndix: Off-shell projection operators and fermion dressing

Let us consider the joint dressing of two fermion fields of opposite
parities provided that the parity is conserved in a vertex. In this case
the diagonal transition loops ¥;; contain only I and p matrices, while
the off-diagonal ones Y12, Y91 must contain 'y5.

Projection basis should be supplemented by elements containing ~°, it
is convenient to choose the y-matrix basis as:

Pi=A%, Po=A", P3=AT5 Pi=A" (40)
In this case the y-matrix decomposition has four terms:
4
S=Y PusY, (41)
=1

where the coefficients S™ are matrices and have the obvious
symmetry properties S%(W) = S1(=W), S*(W) = S3(-W).



endix: Off-shell projection operators and fermion dressing

Inverse propagator in this basis looks as:

W —mq — %! 0
S(p):P1< 01 ! W—m2—2§2>+
W —my — %2, 0
+P2< 0 —W—m2—232 + (42)

0o -X3 0o -xi
+ P?, < _2%1 0 + P4 _24211 0 9

where the indexes i, 7 = 1,2 in the self-energy Ef\f numerate dressing
fermion fields and the indexes M = 1,...4 are refered to the y-matrix
decomposition (39).



Appendix: Off-shell projection operators and fermion dressing

Reversing of (40) gives the matrix dressed propagator:

W — mo — 2%2 0
A
G = i
Pl 0 W — my — Z%l +
Ag
w mo — 222
A 0
P 2 43
+P2 " W — my — E%l =+ ( )
Ay
o h o Zh
e B Y IR
~21 0 ~21 0
AQ A1

)( W —my — E22) 2?2231a



Appendix: Comparison with D.Arndt et al.

Note that our K-matrix amplitudes (11) may be rewritten in other
form, close to the one used in: R. A. Arndt, J. M. Ford, and L.
Roper, Phys.Rev. D32, 1085 (1985).

£.0) = = p [+ s Po R )/ (7)),
" (49)

V) = a1 =19y Pop (W) (8)] gy,



