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IntrodutionMixing of states (�elds) is a well-known phenomenon existing in thesystems of neutrinos, quarks and hadrons. As for theoretialdesription of mixing phenomena, a general tendeny with time anddevelopment of experiment onsists in transition from a simpli�edquantum-mehanial desription to the quantum �eld theory methods.Mixing of fermion �elds has some spei�s as ompared with bosonase. Firstly, there exists γ-matrix struture in a propagator.Seondly, fermion and antifermion have the opposite P -parity, sofermion propagator ontains ontributions of di�erent parities. As aresult, besides a standard mixing of �elds with the same quantumnumbers, for fermions there exists a mixing of �elds with oppositeparities (OPF-mixing) at loop level, even if the parity is onserved inLagrangian.Below we say about non-standard e�et of OPF-mixing andits manifestation in systems of baryon resonanes.



Projetion basisWe will use the o�-shell projetion operators Λ±:
Λ± =

1

2

(
1± p̂

W

)
, W =

√
p2,where W is the rest-frame energy.Main properties of projetion operators are:

Λ±Λ± = Λ±, Λ±Λ∓ = 0, Λ±γ5 = γ5Λ∓,We an deompose propagator (self-energy) in this basis:
G =

2∑

M=1

PMGM , P1 ≡ Λ+, P2 ≡ Λ−. (1)If γ5 takes part in game, it's onvenient to do as:
G =

4∑

M=1

PMGM , P3 ≡ Λ+γ5, P4 ≡ Λ−γ5. (2)



Non-diagonal loopFirst of all, look at the non-diagonal self-energy:
Σ12

Ψ1 Ψ2Let parity is onserved in Lagrangian.Mixing of �elds with the same quantum numbers:
Σ12 = A(p2) + p̂B(p2) =

= Λ+
[
A(W 2) +WB(W 2)

]
+ Λ−

[
A(W 2)−WB(W 2)

]Mixing of �elds with opposite parities:
Σ12 = γ5C(p2) + p̂γ5D(p2) =

= Λ+γ5
[
C(W 2) +WD(W 2)

]
+ Λ−γ5

[
C(W 2)−WD(W 2)

]Main statement: Σ12 6= 0 for mixing of opposite parities �elds.Fermion spei�s !



Appendix: O�-shell projetion operators and fermion dressingInverse propagator in this basis looks as:
S(p) = P1

(
W −m1 − Σ1

11 0
0 W −m2 − Σ1

22

)
+

+ P2

(
−W −m1 − Σ2

11 0
0 −W −m2 − Σ2

22

)
+

+ P3

(
0 −Σ3

12

−Σ3
21 0

)
+ P4

(
0 −Σ4

12

−Σ4
21 0

)
,

(3)
where the indexes i, j = 1, 2 in the self-energy ΣM

ij numerate dressingfermion �elds and the indexes M = 1, . . . 4 are refered to the γ-matrixdeomposition (39).



Appendix: O�-shell projetion operators and fermion dressingReversing of (40) gives the matrix dressed propagator:
G =P1




−W −m2 − Σ2
22

∆1
0

0
−W −m1 − Σ2

11

∆2


+

+P2




W −m2 − Σ1
22

∆2
0

0
W −m1 − Σ1

11

∆1


+

+P3




0
Σ3

12

∆1
Σ3

21

∆2
0


+ P4




0
Σ4

12

∆2
Σ4

21

∆1
0


 .

(4)
∆1 =

(
W −m1 − Σ1

11

)(
−W −m2 − Σ2

22

)
− Σ3

12Σ
4
21,

∆2 =
(
−W −m1 − Σ2

11

)(
W −m2 − Σ1

22

)
− Σ4

12Σ
3
21 = ∆1

(
W → −W

)
.



Where OPF-mixing an be seen?Below we will disuss manifestation of OPF-mixing in πN sattering.There are two plaes, where we an identify this e�et:1. Simplest one is the pair of partial waves P13, D13, where baryons
3/2± are produed. It was disussed in: A.Kaloshin,E.Kobeleva, V.Lomov, Int. J.of Mod.Phys. A26 (2011)2307 on the base of the matrix propagator.2. OPF-mixing in another pair: S11, P11 (JP = 1/2±) is subjet ofpaper:A.Kaloshin, E.Kobeleva, V.Lomov,arXiv:1306.6171. This required to develop a variant ofK-matrix, whih inludes this e�et.I will say mainly about last item: OPF-mixing inpartial waves S11, P11.



Partial wave analysis (PWA) of πN → πN with I = 1/2R.A.Arndt et al. PR C74 (2006) 045205; (gwda.phys.gwu.edu)
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OPF-mixing and K-matrixWe need to disuss the e�et of OPF-mixing in amplitudes of πNsattering and its implementation in framework of K-matrixdesription. For a �rst step one may restrit oneself by a simpli�edase: two resonane states and two hannels.E�etive Lagrangians πNN ′ without derivatives and onserving theparity:
Lint = g1N̄1(x)N(x)φ(x) + h.., for JP (N1) = 1/2−, (5)
Lint = ıg2N̄2(x)γ

5N(x)φ(x) + h.., for JP (N2) = 1/2+. (6)Let us onsider two baryon states of opposite parities with masses m1(JP = 1/2−), m2 (JP = 1/2+) and two intermediate states πN , ηN .Using the e�etive Lagrangians we an alulate ontributions ofstates N1, N2 to partial waves at tree level:



OPF-mixing and K-matrix
s-wave amplitudes:

f tree
s,+ (πN → πN) = − (E

(π)
N +mN )

8πW

(
g21,π

W −m1
+

g22,π
W +m2

)
,

f tree
s,+ (πN → ηN) = −

√(
E

(π)
N +mN

)(
E

(η)
N +mN

)

8πW

(
g1,πg1,η
W −m1

+
g2,πg2,η
W +m2

)
,

f tree
s,+ (ηN → ηN) = − (E

(η)
N +mN )

8πW

(
g21,η

W −m1
+

g22,η
W +m2

) (7)and p-wave amplitudes:
f tree
p,− (πN → πN) =

(E
(π)
N −mN )

8πW

(
g21,π

−W −m1
+

g22,π
−W +m2

)
,

f tree
p,− (πN → ηN) =

√(
E

(π)
N −mN

)(
E

(η)
N −mN

)

8πW

(
g1,πg1,η

−W −m1
+

g2,πg2,η
−W +m2

)
,

f tree
p,− (ηN → ηN) =

(E
(η)
N −mN )

8πW

(
g21,η

−W −m1
+

g22,η
−W +m2

)
. (8)



OPF-mixing and K-matrixHere W =
√
s is the total CMS energy and E

(π)
N

(
E

(η)
N

) is nuleonCMS energy of system πN
(
ηN

)

E
(π)
N =

W 2 +m2
N −m2

π

2W
. (9)Short notations for oupling onstants, e.g. g1,π = gN1Nπ.The tree amplitudes (5)�(6) ontain poles with both positive andnegative energy, originated from propagators of N1 and N2 �elds ofopposite parities. Aounting the loop transitions results in dressingof states and also in mixing of these two �elds.Note that W → −W replaement gives

E
(π)
N +mN → −

(
E

(π)
N −mN

)
, (10)so tree amplitudes (5)�(6) exhibit the MaDowell symmetry property(S. W. MaDowell, Phys. Rev. 116 (1959) 774).

fp,−(W ) = −fs,+(−W ). (11)



OPF-mixing and K-matrixIn K-matrix representation for partial amplitudes
f = K

(
1− ıPK

)−1
, (12)diagonal matrix ıP , onstruted from CMS momenta, originates fromimaginary part of a loop. Therefore, K-matrix here is simply a matrixof tree amplitudes that should be identi�ed with amplitudes (5),(6).As the result we ome to representation of partial amplitudes for s-and p-waves

fs(W ) = Ks(W )
(
1−ıPKs(W )

)−1
, fp(W ) = Kp(W )

(
1−ıPKp(W )

)−1
,(13)where the matries Ks, Kp (i.e. tree amplitudes (5),(6)), may bewritten in fatorized form

Ks = − 1

8π
ρsK̂sρs, Kp =

1

8π
ρpK̂pρp. (14)



OPF-mixing and K-matrixHere ρs, ρp are
ρs(W ) =




√
E

(π)
N +mN

W
, 0

0,

√
E

(η)
N +mN

W




, (15)
ρp(W ) =




√
E

(π)
N −mN

W
, 0

0,

√
E

(η)
N −mN

W




, (16)and matrix P onsists of CMS momenta as analyti funtions of W .In this ase "primitive"K-matries ontain poles with both positiveand negative energy



OPF-mixing and K-matrix
K̂s(W ) =




g21,π
W −m1

+
g22,π

W +m2
,

g1,πg2,η
W −m1

+
g2,πg2,η
W +m2

g1,πg2,η
W −m1

+
g2,πg2,η
W +m2

,
g21,η

W −m1
+

g22,η
W +m2


 ,(17)

K̂p(W ) = K̂s(−W ) =




g21,π
−W −m1

+
g22,π

−W +m2
,

g1,πg2,η
−W −m1

+
g2,πg2,η

−W +m2

g1,πg2,η
−W −m1

+
g2,πg2,η

−W +m2
,

g21,η
−W −m1

+
g22,η

−W +m2


(18)Reall that m1 is mass of JP = 1/2− state and m2 is mass of

JP = 1/2+ one. Generalization of this onstrution for the ase ofmore hannels and states is obvious.Sine CMS momenta have the property P (−W ) = −P (W ), theMaDowell symmetry property (9) is extended from tree amplitudesto unitarized K-matrix ones (11).



Naive expetationsLook again at tree partial amplitudes:
f tree
s,+ (πN → πN) = − (E

(π)
N +mN )

8πW

(
g21,π

W −m1
+

g22,π
W +m2

)

f tree
p,− (πN → πN) =

(E
(π)
N −mN )

8πW

(
g22,π

−W +m2
+

g21,π
−W −m1

)From a ommon sense one an expet that negative energy poleshould give a negligible e�et in physial energy region. However, thisis not the ase if orresponding oupling onstant is large
| g2,π |≫| g1,π |. One an ompare deay widths of s- and p-states

Γ(N1 → πN) = g2N1πN
Φs, Γ(N2 → πN) = g2N2πN

Φp, (19)where Φs, Φp are orresponding phase volumes. For resonane statesnot far from threshold, with masses, e.g. 1.5�1.7 GeV, phase volumesdi�er greatly, Φs ≫ Φp. If both resonanes have typial hadroniwidth Γ ∼ 100 MeV, then oupling onstants di�er dramatially too,
| gN2πN | ≫| gN1πN |.



Inlusion of derivativesAbove we use the simplest e�etive Lagrangians (3)�(4) to derive treeamplitudes. However, it is well-known, that spontaneous breaking ofhiral symmetry requires pion �eld to appear in Lagrangian onlythrough derivative
Lint = f2N̄2(x)γ

5γµN(x)∂µφ(x)+h.., JP = 1/2+, f2 =
g2

m2 +mN

.(20)It is not di�ult to understand how inlusion of derivative hangestree amplitudes and, hene K-matrix. Pole ontribution
π(k1)N(p1) → N2(p) → π(k2)N(p2) in that ase takes the form:

T = f2
2 ū(p2)γ

5k̂2
1

p̂−M
γ5k̂1u(p1). (21)With use of equations of motion, we see that inlusion of derivative atvertex leads to the following modi�ation of resonane ontribution

g22
1

p̂−M
→ f2

2 (p̂+mN )
1

p̂−M
(p̂+mN ). (22)



Inlusion of derivativesSeparation of the positive and negative energy poles is performed withthe o�-shell projetor operators Λ± = 1/2
(
1± p̂/W

)

f2
2 (p̂+mN )

1

p̂−mN

(p̂+mN) = Λ+ f2
2 (W +mN )2

W −M
+Λ− f2

2 (W −mN )2

−W −M
,(23)where the �rst term gives ontribution to p-wave and seond one to

s-wave. Modi�ation of the pole ontributions in"primitive"K-matries (15)�(16) is evident
g22 → f2

2 (W −mN )2, for s-wave, (24)
g22 → f2

2 (W +mN )2, for p-wave. (25)One an expet that the inlusion of derivatives most strongly a�etson threshold properties of s-wave due to dumping fator (W −mN)2.



Partial amplitudes of πN satteringNote that our K-matrix di�ers from one used by other authors (e.g.R.A.Arndt et al. PR C74 (2006) 045205) by:
◮ Another form of phase-spae fators (QFT alulations)
◮ Presene of the negative energy poles in K̂These two points together lead to MaDowell symmetry.We will use our K-matrix for desription of partial waves S11 and P11of πN sattering in the energy region W < 2 GeV. Following to ideaof M. Batini et al, PR C51(1995) 2310, we will use threehannels of reation: πN , ηN and σN , where the last is"e�etive"hannel, imitating di�erent ππN states."Primitive"K̂-matries have a form (15)�(16) but an ontain several

JP = 1/2+ and JP = 1/2− states.



Fit of P11First of all, let us try to desribe S11 and P11 waves separately.
p-wave is desribed rather well by our formulas with derivative invertex (22)�(23), see Fig. 1. In this ase the s-wave states are missingin amplitudes, the p-wave K-matrix has two positive energy poles.
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K-matrix has only p-wave states. Partial wave normalization orresponds toR.A.Arndt et al.: Im f = |f |2 + (1− η2)/4.



Fit of P11Quality of desription is de�ned by:
χ2/DOF = 273/95. (26)The use of verties without derivative leads to impairment of qualityof desription: χ2 > 350, again we need two poles with lose masses.Both variants give a negative bakground ontribution to S11 wave,omparable in magnitude with other ontributions, as it seen onFig. 2. Variant without derivative in vertex gives a larger bakgroundontribution, rapidly hanging near thresholds. It seems thatdesription of P11 partial wave without derivative in vertiesontradits to data on S11. On Fig. 2 there are shown some typialurves, there exist di�erent variants with sharp behavior nearthresholds. The presene of derivative in a vertex suppresses thethreshold region in bakground ontribution due to fator (W −mN)2,but in resonane region this is rather large ontribution, see Fig. 2.



Bakground in s-wave
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W,  GeV�èñ. : Bakground ontribution to s-wave, generated by p-wave states, i.e.in this ase K-matrix for s-wave (15) has only negative energy poles. Solidlines represent variant with derivative in vertex (orresponding to urves onFig. 1), dashed lines � variant without derivative in vertex.



Fit of S11Attempt to desribe S11 without bakground has no suess: itdoesn't allow to reah even qualitative agreement with PWA.As a next step, let us add the bakground ontribution, arising from
p-wave states (solid lines on Fig. 1) with �xed parameters of p-wave.
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W,  GeV�èñ. : Results of s-wave �tting with �xed parameters for p-wave states.Parameters of p-wave orrespond to urves on Fig. 1, s-wave ontains twostates with K-matrix masses 1.55 and 1.75 GeV.



Fit of S11

One an see from Fig. 3 that quality of desription is unsatisfatory inthis ase but double-peak behavior is arisen in partial wave for the�rst time. It means that to desribe S11 wave a bakgroundontribution is neessary and its value is lose to solid line urves atFig. 1



Joint �t of S11 and P11Let's perform the joint analysis of S11 and P11, when resonane statesin one wave generate bakground in other and vie versa. In this ase
K̂-matries have poles with both positive and negative energy: we usetwo s-wave and two p-wave poles. This leads to notieableimprovement of desription, as it seen from Fig. 4:
χ2/DOF = 850/190.
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W,  GeV�èñ. : Result of joint �tting of S11 and P11-waves of πN sattering. Dashedlines show real and imaginary parts of (unitarized) bakgroundontribution.



Joint �t of S11 and P11At last, bakground an be generated not only by negative energypoles but by other terms. We aounted it by adding to elastiamplitudes πN → πN a smooth ontributions of the form:
K̂B

s = A+B(W −mN )2, K̂B
p = A+B(W +mN )2, (27)whih do not violate the MaDowell symmetry property. Note that wehave quite good desription χ2/DOF = 584/187 and bakgroundontribution in S11 is lose to simplest variant of Fig. 2.
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W,  GeV�èñ. : Result of joint �tting of S11 and P11 waves of πN sattering.So, the performed joint analysis of and partial wavesdemonstrates that OPF-mixing gives rather marked e�et inprodution of baryons.



Few remark after �t
◮ We used simpli�ed desription of πN partial waves (σN is some"quasi-hannel") to reognize the e�et of OPF-mixing in systemof baryons 1/2±. Rather unexpetedly we obtained a goodquality of desription χ2/DOF = 584/187, whih is ompartiblewith muh more omprehensive analyses up to 6 hannels.
◮ It seems that OPF-mixing may be introdued into dynamialmodels used for baryon physis, e.g. H. Kamano, S.Nakamura, T.-S. Lee, and T. Sato, Phys.Rev. C81,065207 (2010). Besides theoretial onstrains it an have alsosome pratial meaning.



Poles in omplex planeIn Table 1 we present the pole masses and widths obtained byontinuation of our amplitudes to omplex W plane. As a whole, wesee that our values for mp, Γp are rather lose to previously obtained.The only hint for disagreement is appearane at some sheets of astable pole 1/2+ with mp ≈ 1500 MeV instead of generally aeptedmass mp ≈ 1365 MeV.Partial wave,PDG values This work Some other works
S11, 1/2−N(1535) (1510, 70) (1507, 87) (1502, 95), (1648, 80) [?℄N(1650) (1655, 165) (1659, 149) (1519, 129), (1669, 136) [?℄
P11, 1/2+N(1440) (1365, 190) (1365, 194) (1359, 162) [?℄(1500, 160) (1385, 164) [?℄(1387, 147) [?℄Òàáëèöà : Pole masses and widths (MR,ΓR) extrated from poles positionin the omplex plane W : W0 = MR − ıΓR/2.



Conlusions
◮ E�et of mixing of fermion �elds with opposite parity an bereadily realized in the framework of K-matrix approah. It leadsto well-known MaDowell symmetry

fl,+(W ) = −fl+1,−(−W ),onneting two partial waves.BUT: Taking OPF-mixing into aount, MaDowell symmetryleads to pratial onsequenes: resonane in one partial wavegives rise to bakground ontribution in another and vie versa.
◮ This onnetion, as in ase of 3/2± resonanes, works mainly inone diretion: it generates large negative bakground in a wavewith lower orbital momentum.
◮ As for pratial use: we suppose that this onnetion may be ofinterest as a soure of additional information about wave withhigher orbital momentum (in our ase about P11 and baryons

1/2+).



Appendix: O�-shell projetion operators and fermion dressing
We will use the o�-shell projetion operators Λ±:

Λ± =
1

2

(
1± p̂

W

)
, W =

√
p2,where W is the rest-frame energy.Main properties of projetion operators are:

Λ±Λ± = Λ±, Λ±Λ∓ = 0, Λ±γ5 = γ5Λ∓,

Λ+ + Λ− = 1, Λ+ − Λ− =
p̂

W
.



Appendix: O�-shell projetion operators and fermion dressingDyson�Shwinger equation for dressed propagator G(p):
G(p) = G0 +GΣG0, (28)where G0 is a bare propagator and Σ is a self-energy.We an expand all elements in eq. (26) in the basis of projetionoperators:

G =

2∑

M=1

PMGM , P1 ≡ Λ+, P2 ≡ Λ−. (29)After it Dyson�Shwinger equation is redued to equations on salarfuntions:
GM = GM

0 +GMΣMGM
0 , M = 1, 2, (30)or (

G−1
)
M

=
(
G−1

0

)
M − ΣM . (31)



Appendix: O�-shell projetion operators and fermion dressingDeomposition of inverse dressed propagator:
G−1 = P1 (W −m− Σ1) + P2 (−W −m− Σ2). (32)Usual form of the self-energy is

Σ(p) = A(p2) + p̂B(p2), (33)and its deomposition in projetion basis:
Σ1 = A(W 2) +WB(W 2), Σ2 = A(W 2)−WB(W 2). (34)Note the property of oe�ients in the projetion basis:

Σ2(W ) = Σ1(−W ).Dressed propagator has a form:
G = P1

1

(W −m− Σ1)
+ P2

1

(−W −m− Σ2)
. (35)



Appendix: O�-shell projetion operators and fermion dressingWhen we have two fermion �elds Ψi, the inlusion of interation leadsalso to mixing of these �elds. In this ase the Dyson�Shwingerequation (26) aquire matrix indies:
Gij = (G0)ij +GikΣkl(G0)lj , i, j, k, l = 1, 2. (36)Therefore we have the same equation, but all fator are matries 2× 2.

G(p) = G0 +GΣG0, (37)The simplest variant is when the fermion �elds Ψi have the samequantum numbers and the parity is onserved in the Lagrangian.Inverse propagator in this ase:
G−1 = P1S

1(W ) + P2S
2(W ) =

= P1

(
W −m1 − Σ1

11 −Σ1
12

−Σ1
21 W −m2 − Σ1

22

)
+ P2S

1(−W ).
(38)



Appendix: O�-shell projetion operators and fermion dressing
The matrix oe�ients as before have the symmetry property
S2(W ) = S1(−W ). To obtain the matrix dressed propagator G(p) oneshould reverse the matrix oe�ients:

G(p) = P1(S
1(W ))−1 + P2(S

2(W ))−1 (39)We see that with use of projetion basis the problem of fermionmixing is redued to studying of the same mixing matrix as for bosonsbesides the obvious replaement s−m2 → W −m.



Appendix: O�-shell projetion operators and fermion dressingFirst of all, look at the non-diagonal self-energy:
Σ12

Ψ1 Ψ2Let parity is onserved in Lagrangian.Mixing of �elds with the same quantum numbers:
Σ12 = A(p2) + p̂B(p2) =

= Λ+
[
A(W 2) +WB(W 2)

]
+ Λ−

[
A(W 2)−WB(W 2)

]Mixing of �elds with opposite parities:
Σ12 = γ5C(p2) + p̂γ5D(p2) =

= Λ+γ5
[
C(W 2) +WD(W 2)

]
+ Λ−γ5

[
C(W 2)−WD(W 2)

]Main statement: Σ12 6= 0 for mixing of opposite parities �elds.Fermion spei�s !



Appendix: O�-shell projetion operators and fermion dressingLet us onsider the joint dressing of two fermion �elds of oppositeparities provided that the parity is onserved in a vertex. In this asethe diagonal transition loops Σii ontain only I and p̂ matries, whilethe o�-diagonal ones Σ12,Σ21 must ontain γ5.Projetion basis should be supplemented by elements ontaining γ5, itis onvenient to hoose the γ-matrix basis as:
P1 = Λ+, P2 = Λ−, P3 = Λ+γ5, P4 = Λ−γ5. (40)In this ase the γ-matrix deomposition has four terms:

S =

4∑

M=1

PMSM , (41)where the oe�ients SM are matries and have the obvioussymmetry properties S2(W ) = S1(−W ), S4(W ) = S3(−W ).



Appendix: O�-shell projetion operators and fermion dressingInverse propagator in this basis looks as:
S(p) = P1

(
W −m1 − Σ1

11 0
0 W −m2 − Σ1

22

)
+

+ P2

(
−W −m1 − Σ2

11 0
0 −W −m2 − Σ2

22

)
+

+ P3

(
0 −Σ3

12

−Σ3
21 0

)
+ P4

(
0 −Σ4

12

−Σ4
21 0

)
,

(42)
where the indexes i, j = 1, 2 in the self-energy ΣM

ij numerate dressingfermion �elds and the indexes M = 1, . . . 4 are refered to the γ-matrixdeomposition (39).



Appendix: O�-shell projetion operators and fermion dressingReversing of (40) gives the matrix dressed propagator:
G =P1




−W −m2 − Σ2
22

∆1
0

0
−W −m1 − Σ2

11

∆2


+

+P2




W −m2 − Σ1
22

∆2
0

0
W −m1 − Σ1

11

∆1


+

+P3




0
Σ3

12

∆1
Σ3

21

∆2
0


+ P4




0
Σ4

12

∆2
Σ4

21

∆1
0


 .

(43)
∆1 =

(
W −m1 − Σ1

11

)(
−W −m2 − Σ2

22

)
− Σ3

12Σ
4
21,

∆2 =
(
−W −m1 − Σ2

11

)(
W −m2 − Σ1

22

)
− Σ4

12Σ
3
21 = ∆1

(
W → −W

)
.



Appendix: Comparison with D.Arndt et al.
Note that our K-matrix amplitudes (11) may be rewritten in otherform, lose to the one used in: R. A. Arndt, J. M. Ford, and L.Roper, Phys.Rev. D32, 1085 (1985).

fs(W ) = − 1

8π
ρsK̂s

[
1 + ıρsPρsK̂s(W )/(8π)

]−1
ρs,

fp(W ) =
1

8π
ρpK̂p

[
1− ıρpPρpK̂p(W )/(8π)

]−1
ρp.

(44)


