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1. Intro : Let the system tell the difference between the phases

Start from a fundamental theory that covers all phases !

We believe that this is Quantum Chromodynamics.

No other a priori knowledge should be necessary.

If we knew the relevant Hilbert space (which is expected

to be different in different parts of the phase diagram),

thermodynamics would be derived from thermal density

matrix or partition function:

ρ = exp−
1
T (H−µiNi) , Z = T̂rρ , T̂r(. . .) =

∑

n

〈n|(. . .)|n〉

µi are chemical potentials for some conserved charges Ni



The quantum mechanical trace is a sum over an Hilbert space,

e. g. over the colorblue a priori unknown energy eigenstates |n〉 of the

Hamiltonian (no matter whether they are single or many-particle

eigenstates !).

If we knew the partition function Z(T, µi), we could obtain

F = −T lnZ ,

p =
∂(T lnZ)

∂V
,

S =
∂(T lnZ)

∂T
,

N̄i =
∂(T lnZ)

∂µi
E = −pV + TS + µiN̄i

Since the free energy is extensive, F = fV , in the thermodynamic

limit it is more convenient to deal with the corresponding densities:

f =
F

V
, p = −f, s =

S

V
, ni =

N̄i

V
, ǫ =

E

V



In particular, pressure p and energy density ǫ define together

the trace anomaly, the entropy density, and the velocity of sound :

I(T ) = T µµ(T ) = T 5 ∂

∂T

p(T )

T 4
= ǫ− 3p, s =

ǫ + p

T
, c2s =

dp

dǫ

Since we do not know the eigenstates (even not qualitatively !), we

better use a formulation that does not presuppose that knowledge.

We believe to know the fundamental theory: take the path integral

over the fundamental fields (no matter whether they are confined

or can be represented – asymptotically – as free particles !).

Neither quarks nor gluons are “physical” particles in this sense !

Their lattice propagators show it : violation of spectral positivity !

Analytical properties are harder to extract from lattice simulations.



Then, let’s see in a simulation which phase is actually realized !

• Thermodynamic functions can witness only the sudden changes

accompanying phase changes, cannot show structural details !

• To recognize structural changes, other observables are necessary

(signals of symmetry breaking): order parameters.

•Correlators are more general indicators of phase changes.

Lifting a splitting between correlation lengthes (masses) also

may signal the restoration of symmetries.

•Change of topological structure characterizes the different phases.

•All symmetry-related signals will become clearly visible only

in the corresponding limit mq → ∞ (tantamount to gluodynamics)

or in the limit mq → 0 (chiral limit of QCD), not in real QCD !



The QCD transition at µ = 0 as function of quark masses

(Columbia plot) from arXiv:1203.5320 Petreczky
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Some words about path integrals and partition functions :

If interactions are switched off (quadratic action), both for

T = 0 and T > 0, a path integral can be presented in a more

familiar form :

Z0 = N

∫
Dφ e−S0(φ) = N ′(det∆−1)−1/2

∆−1 = (ω2
n + ω2)/T 2 is the inverse propagator in momentum space.

This leads to the more familiar expression :

lim
V→∞

lnZ0 = V

∫
d3p

(2π)3

[−ω
2T

− ln
(
1− e−

ω
T

)]



The integral over the first term diverges in the UV since ω ∼ |p|.

Invoke the renormalisation condition : vacuum has zero pressure

pphys(T ) = p(T )− p(T = 0)

Partition function for a free gas of spinless bosons

lnZ0 = −V
∫

d3p

(2π)3
ln
(
1− e−

ω
T

)

For the m = 0 case, the momentum integral can be done exactly.

Pressure per bosonic degree of freedom (no chemical potential, µ = 0)

p =
π2

90
T 4



For non-abelian gauge fields Aa
µ, each field component corresponds

to one bosonic mode, i.e. sum over a = 1, . . . N 2 − 1 and µ = 1 . . . 4.

This yields a factor of 4(N 2 − 1).

For gauge theories gauge fixing is necessary in order to invert

the two-point function. For the free photon or Yang-Mills gas,

two of the four bosonic Lorentz degrees of freedom get cancelled

by the corresponding ghost contributions.

Thus a factor of 2(N 2 − 1) instead of 4(N 2 − 1) (with two polarisation

states per massless vector particle) results.



Similar steps for a free Dirac field lead to the result

lnZ0 = 2V

∫
d3p

(2π)3

[
ln
(
1 + e−

ω−µ
T

)
+ log

(
1 + e−

ω+µ
T

)]

Factor of two : represents the two spin states of a fermion.

The two log-terms (with ±µ) are coming from fermion and

anti-fermion.

Momentum integration for one massless fermionic degree of

freedom (with µ = 0) gives the fermionic pressure per d.o.f.

p =
7

8

π2

90
T 4



Stefan-Boltzmann pressure of Nf flavors of quarks and antiquarks

(counting their N colors) plus corresponding gluons :

p

T 4
=

(
2(N 2 − 1) + 4NNf

7

8

)
π2

90

This can be summarised by the one-particle partition functions

for arbitrary masses mi (ω
2
i = m2

i + ~p2)

lnZ1
i (V, T ) = ηV νi

∫
d3p

(2π)3
ln(1 + η e−(ωi−µi)/T )

η = −1 for bosons and η = 1 for fermions, while νi gives the

degree of degeneracy (spin) for the particle of type i.

The general form of lnZ1
i (V, T ) is applicable also for non-interacting

(composite) particles, if and only if there are no internal d. o. f.



Hadron Gas Model (HG model, applicable for the confined phase) :

The general form of lnZ1
i (V, T ) is applicable also for non-interacting

hadrons, mesons = bosons and (anti-)baryons = fermions.

The confinement phase is interpreted as gas of individual hadrons.

This is reasonable as long as the energy density is not very high.

The deconfinement transition then seems to be not more than a

sudden proliferation of degrees of freedom at some temperature Tdec.

These new d.o.f. remain “frozen” in the confinement phase

(i.e. quarks inside hadrons, gluons in glueballs/usual hadrons).

Freezing (confinement) and deconfinement cannot be “explained”

just by these thermodynamic formulae.



The “bag pressure” B is merely a trick to make the two pressure

functions (hadron gas vs. quark-gluon gas) intersecting at some

Tdec, by downshifting of the steeper one (first order transition) :

phadron(Tdec) = pplasma(Tdec)−B .

Hadron Resonance Gas Model (HRG model) :

This is an attempt to take into account the interactions between

hadrons, increasing with increasing density, by including more

(and more massive) resonance states in the sum over lnZ1
i (V, T )

(including Particle Data Group table states up to ≈ 2 GeV).

The model describes reasonably well the onset of the phase

transition from the hadronic side (by an increasing number of

effective degrees of freedom, of hadron species becoming “active”).



Hagedorn model :

exponential mass spectrum → “maximal” hadronic temperature

at singularities of the partition function:

such a spectrum was enforced by the selfconsistent “strong

bootstrap” condition formulated by S. C. Frautschi in 1971

• “Statistical bootstrap model of hadrons”,

S. C. Frautschi, Phys. Rev. D3 (1971) 2821

replacing the ealier weak bootstrap condition of R. Hagedorn

• “Hadronic matter near the boiling point”,

R. Hagedorn, Nuovo Cim. A56 (1968) 1027



Alternative : instead of a maximal temperature, quark liberation !

Two important papers in 1975 : high temperature and high density

• “Exponential Hadronic Spectrum and Quark Liberation”,

N. Cabibbo and G. Parisi, Phys. Lett. B59 (1975) 67

• “Superdense Matter: Neutrons or Asymptotically Free Quarks?”,

John C. Collins and M.J. Perry, Phys. Rev. Lett. 34 (1975) 1353

Before this, Lattice Gauge Theory was invented in 1974 :

• “Confinement of Quarks”,

Kenneth G. Wilson, Phys. Rev. D10 (1974) 2445

Both developments demonstrate the “new thinking” after the

“November Revolution” (the J/ψ discovery) !



Application of LGT to the QCD transition :

The first real prediction of LGT : the deconfinement transition

• “A Monte Carlo Study of SU(2) Yang-Mills Theory at

Finite Temperature”, L. D. McLerran and B. Svetitsky,

Phys. Lett. B98 (1981) 195

• “Monte Carlo Study of SU(2) Gauge Theory at Finite

Temperature”, J. Kuti, J. Polonyi, and K. Szlachanyi,

Phys. Lett. B98 (1981) 199

Both discover deconfinement in the sense of center symmetry

breaking (to be described later).



The first lattice publications from Dubna have been following soon :

• “SU(3) Gluon Condensate from Lattice MC Data”,

E.-M. Ilgenfritz and M. Müller-Preussker,

Phys. Lett. B119 (1982) 395

• “The Static Q Anti-Q Force from Instanton Gas and

Numerical Lattice Calculations”, E.-M. Ilgenfritz and

M. Müller-Preussker, Z. f. Phys. C16 (1983) 339

• “Phase Transitions in the Euclidean and Hamiltonian

Approaches in the Lattice Gauge Theories at Finite

Temperature”, V.P. Gerdt and V.K. Mitrjushkin,

JETP Lett. 37 (1983) 474

Especially encouraged by D. V. Shirkov and M. G. Meshcheryakov



2. Lattice formulation for QCD thermodynamics : some basic facts

Path integral expression for the partition function :

Z(V, µf , T ; g,mf ) = T̂r
(
e−(H−µfQf )/T

)
=

∫
DADψ̄ Dψ e−Sg[Aµ] e−Sf [ψ̄,ψ,Aµ]

Euclidean formulation natural, not just a trick (Wick rotation)

to avoid the oscillating weight in Minkowski space (works for µ = 0) !

Euclidean gauge and fermion actions :

Sg[Aµ] =

1/T∫

0

dτ

∫

V

d3x
1

2
Tr Fµν(x)Fµν(x),

Sf [ψ̄, ψ, Aµ] =

1/T∫

0

dτ

∫

V

d3x

Nf∑

f=1

ψ̄f(x) (γµDµ +mf − µfγ0)ψf(x)



Covariant derivative with Aµ field and gauge coupling g

Dµ = (∂µ − igAµ), Aµ = T aAa
µ(x), a = 1, . . . , N 2 − 1

Field strength, non-linear in Aµ (non-Abelian)

Fµν(x) =
i

g
[Dµ, Dν] = ∂µAν − ∂νAµ − ig[Aµ, Aν]

Bosonic (commuting “c-numbers”) and fermionic fields (anticommuting,

defined by Grassmann calculus) have different temporal boundary

conditions over the finite “time” interval of length 1/T :

Aµ(τ,x) = Aµ(τ +
1

T
,x), ψf(τ,x) = −ψf(τ +

1

T
,x)



In a finite volume V = L3 and at temperature T

• allowed spatial momenta are pµ = (2nµπ)/L for µ = 1, 2, 3

• allowed “Matsubara” frequencies are

ω = 2n4πT for bosons (gluons) with periodic boundary conditions

ω = (2n4 + 1)πT for fermions (quarks) with antiperiodic b. c.

By discretizing space and time, a lattice N 3
s ×Nt is replacing

the continuum, making it suitable for numerical simulation.

nµ = 0, . . . , Ns − 1 and n4 = 0, . . . , Nt − 1

The lattice spacing a relates this to the continuum box :

L = Nsa V = L3 and 1
T = Nta



What replaces the gluon field Aµ(x) ?

Fundamental degrees of freedom are links (“transporters”)

between neighboring lattice sites :

Uµ(x) = P exp

(∫ 1

0

i a dλ Aµ(x + (1− λ)µ̂)

)

The standard Wilson gauge action in terms of links

Sg[U ] =
∑

x

∑

1≤µ<ν≤4

β

(
1− 1

3
ReTrUp

)

is expressed via elementary plaquettes (discrete version of curl !)

Up = Uµ(x)Uν(x + aµ̂)U †
µ(x + aν̂)U †

ν(x)

β replaces the gauge coupling g through β = 2N/g2.



The relation between a and β is set by renormalisation group :

aΛL =

(
6 b0
β

)−b1/2b20
e
− β

12b0 , for N = 3 colors

b0 =
1

16π2

(
11− 2

3
Nf

)
, b1 =

(
1

16π2

)2 [
102−

(
10 +

2

3

)
Nf

]

ΛL characterizes the kind of lattice actions (mainly gluonic action).

Deviations from this “two-loop asymptotic scaling” formula

(are inavoidable at low β) can be fixed by ad hoc calibration

simulations at T = 0 (i.e. Ns ≤ Nt), which are necessary to obtain

the function a(β), by fixing either ...



Find the function a(β) by fixing ...

• ... either the “Sommer scale” r0 or its variant r1 defined by
(
r2
dVQ̄Q(r)

dr

)

r=r0

= 1.65

(
r2
dVQ̄Q(r)

dr

)

r=r1

= 1.00

to a generally agreed physical value, say r0 ≈ 0.48 fm.

• ... or a measured vector meson mass, say mρ, to the physical

value.

• For most settings, the measured pseudoscalar masses mπ etc.

then differ strongly from the physical values !

• The ratio mπ/mρ is an a posteriori measure of quality, describing

how good the simulation approaches physical QCD.



• The simulation time behaves

CPU time ∝ (N 3
sNt)

5
4

(r0
a

)7 (mρ

mπ

)zπ

with high exponent zπ ≈ 6, the “Berlin wall” behavior !

• The limit mπ → mphysical
π is extremely costly !

Chiral perturbation theory (χPT) may do the extrapolation.

• For all finite-temperature studies it is important to record the

would-be pion mass mπ to characterize the setting in use !

• Typically, many sets of simulations are done, with varying mπ,

in order to get the corresponding crossover/transition

temperatures Tχ and to find a suitable chiral extrapolation.



Hamiltonian and transfer matrix :

The definition of transfer matrix in “coordinate Ui representation”

T [Ui(τ + 1), Ui(τ )] = e−aH =

∫
DU0(τ ) exp (−L[Ui(τ + 1), U0(τ ), Ui(τ )])

includes the integration over all timelike links linking 2 time slices.

Sg =
∑

τ

L[Ui(τ + 1), U0(τ ), Ui(τ )]

with

L[Ui(τ + 1), U0(τ ), Ui(τ )] =
1

2
L1[Ui(τ + 1)] + L2[Ui(τ + 1), U0(τ ), Ui(τ )]

+
1

2
L1[Ui(τ )]

L1[Ui(τ )] = − β

N

∑

p(fixed τ)

ReTrUp (spacelike at a single time)

L2[Ui(τ + 1), U0(τ ), Ui(τ )] = − β

N

∑

p(linking τ,τ+1)

ReTrUp (timelike only)



Partition function expressed as “matrix product” by multiple

integration over spacelike links Ui (located within time slices) :

Z =

∫ ∏

τ

(DUi(τ,x) T [Ui(τ + 1), Ui(τ )]) = T̂r(TNτ ) = T̂r(e−NτaH)

A time slice {Ui(τ )} encodes all possible states of the Hilbert

space. Importance sampling exhibits the differences between

phases. Vanishing overlap between the Hilbert spaces in the

limit V → ∞ ?

Qualitative changes are physically recognizable (not only !)

in equal-time correlators !

For Z, taking the trace, i.e. periodicity, requires :

Ui(τ = 1) = Ui(τ = Nτ + 1)



Including “dynamical fermions” means inclusion of a bilinear

fermion action in terms of Grassmann fields (interacting only

through the gauge field !)

Sf =
∑

x,y

ψ̄(x)Df
xy({U};mf)ψ(y)

into the total action. D is the Dirac operator.

The Grassmann Gauss integral can be done (only !) formally.

In observables which contain ψ and ψ̄, these can be contracted

by inserting everywhere fermion propagators (Df)−1({U})
(supposed to be known for the given gauge field background).



The full partition function contains the “fermion determinants”

coming from Grassmann Gaussian integration :

Z(Ns, Nt;β,mf) =

∫ Nt∏

τ=1

∏

x,µ

dUµ(τ,x)
∏

f

detDf({U};mf) e
−Sg[U ]

with thermal (timelike) boundary conditions

Uµ(τ,x) = Uµ(τ +Nt,x)

ψ(τ,x) = −ψ(τ +Nt,x)

and with the integration measure

dU = Haar measure on the compact Lie group SU (N)



For example, Nf degenerate Wilson fermions described by

SWf =
∑

x,y,f a4 ψ̄f(x)D
f
xy({U};mf)ψf(y)

= 1
2a

∑
x,µ,f a4 ψ̄f(x)[(γµ − r)Uµ(x)ψf(x + µ̂)

−(γµ + r)U †
µ(x− µ̂)ψf(x− µ̂)]

+
∑

x,f (m + 4
r

a
) a4 ψ̄f(x)ψf(x)

Effective action includes the determinants :

Seff[U ] = Sg[U ]−
∑

f

ln detDf({U};mf)



General terminology (for all kinds of lattice fermions)

•Gluodynamics/Yang-Mills theory : Nf = 0, no dynamical fermions;

“quenched approximation” of QCD, feedback of quarks impossible

• Nf = 2 “full QCD” : Nf = 2 degenerate flavors of first generation

(u and d quarks) made dynamical; chiral limit mu = md → 0

• Nf = 2 + 1 “full QCD” : one heavier flavor (s quark) added to the

first generation

• Nf = 3 QCD : all three flavors taken mass-degenerate, eventually

the chiral limit mu = md = ms → 0 is intended

• Nf = 2 + 1 + 1 “real QCD” : inclusion of two generations of light

(degenerate u and d) and heavy (non-degenerate s and c) quarks.

c quarks contribute to EoS already at temperature T > 200 MeV.



Euclidean measure :

positive as long as µB = 0, then fermion determinants are real-valued.

Great advantage : importance sampling is still possible !

• for pure gauge theories : local updates (heat bath or Metropolis)

• for theories with fermions : non-local, global “smart updates”

obtained by solving Hamilton’s equations of motion for Uµ(x)

(“trajectories” running in 5-th dimension time over τ = O(1)) with

– “potential energy” Upot = Seff[U ]

– “kinetic energy” Tkin =
1
2

∑
x,µ tr [Πµ(x)]

2,

applying Metropolis acceptance check w.r.t. the positive measure

weight ∝ exp (−Tkin − Upot)

This is the Hybrid Monte Carlo algorithm (and derivates of it)



Lattice fermions present a deeper theoretical problem, however :

In order to circumvent the fermion doubling problem, one has to

sacrifice chiral symmetry, γ5 D +D γ5 = 0, of the (massless) action.

Chiral symmetry is - after that step - either

• reduced, as for staggered (Kogut-Susskind) fermions, or

• broken completely, as for Wilson fermions.

This renders the study of the behaviour in the chiral limit difficult.

Chiral symmetry is optimally realized on the lattice using

• overlap (Neuberger) fermions, with γ5 D +D γ5 =
a
ρ D γ5 D

(D as solution of this “Ginsparg-Wilson relation”) or

• domain wall (Kaplan) fermions (in 4+1 dimensions).



Ideal solution ! Reaches the principal limit for chiral symmetry imposed

by discretization ! However, apart from other delicate algorithmic

problems, present day computing capacity is not sufficient for

mass production.



Chemical potential µB 6= 0 presents another hard practical problem !

This “sign problem” is not restricted to fermionic field theories !

A chemical potential, counting any kind of conserved charge,

is introduced by the substitution (Karsch and Hasenfratz, 1982)

U0(x, τ ) → U0(x, τ ) exp (+µqa) timelike forward link

U †
0(x, τ ) → U †

0(x, τ ) exp (−µqa) timelike backward link

µq acts as time component of an external imaginary Abelian gauge

field, while the same µq counts quark-minus-antiquark (baryon charge).

Along a forward Wilson line a weight exp (µq/T ) is accumulated,

for a baryon loop the weight factor is exp (µB/T ) = exp (3µq/T ).

Complex valuedness of fermion determinants can be concluded

from the γ5-hermiticity of Dirac operators (precisely, its violation) :

γ5 D γ5 = D† implies detD = [ detD ]∗



γ5-hermiticity is spoiled for µq 6= 0, when one has instead

γ5 D(µq) γ5 = D†(−µq) → determinant is complex

This is the fermionic origin of the sign problem. Doubling of flavors

would not render the weight factor real. This is the generic case !

There exist important exceptional cases without sign problem :

A. Imaginary chemical potential : for µq = iη the determinant is real.

Then (at least for two flavors) the weight is then positive.

Optimistic approach : simulate at µ2q < 0 and extrapolate to µ2q > 0.

Examples for analytic continuation : transition temperature,

screening lengthes etc. can be represented as analytic functions of µ2

But no direct access available to gauge field configurations that

would be corresponding to real µq 6= 0 ! (the “no-overlap problem”)



B. Isospin chemical potential : if for two flavors, the species have

opposite isospin charge, µu = µI and µd = −µI.

The Dirac operator of both flavors has block-diagonal form(
D(µI) 0

0 D(−µI)

)

or (
D(µI) 0

0 γ5D
†(µI)γ5

)

The common determinant is

det[D(µI)] det[γ5D
†(µI)γ5] = det[D(µI)] det[D

†(µI)] = | det[D(µI)]|2

Lesson :

“For finite isospin chemical potential, the determinantal weight

factor in the presence of two flavors (opposite in isospin) is real

and positive.”



C. Chiral (or axial) chemical potential µ5

Creates an imbalance between left handed and right handed matter

mimicking the presence of a topologically charged background field :

D(µ5) = γµDµ +m + µ5γ4γ5 in continuum

in lattice notation like Karsch/Hasenfratz :

[DW (µ5)]x,y = δx,y − κ
∑

i

[
(1− γi)Ui(x)δx+î,y + (1 + γi)U

†
i (x− î)δx−î,y

]

− κ
[
(1− γ4e

aµ5γ5)U4(x)δx+4̂,y + (1 + γ4e
−aµ5γ5)U †

4(x− 4̂)δx−4̂,y

]

with

e±aµ5γ5 = cosh(aµ5)± γ5 sinh(aµ5)

This again satisfies γ5-hermitecity : γ5D(µ5)γ5 = D†(µ5)

Consequently, the determinant is real-valued !



Simulation result : A current is induced through the chiral magnetic

effect (CME) in presence of an external magnetic field ~B acting on

electrical charges e :

~j =
1

2π2
µ5 e ~B

D. Other gauge groups :

For example, the gauge groups SU (2), G2 and SO(N) do not have

a sign problem !



3. The order parameters of two abstract phase structure problems

A. The quenched limit of QCD and Z(N)-symmetry

quarks infinitely heavy → pure gauge theory plus static quark fields

action invariant under standard gauge transformations

Sg[U
g] = Sg[U ] with U g

µ(x) = g(x)Uµ(x)g
−1(x + µ̂), g(x) ∈ SU (N)

with periodic boundary conditions both for U and g :

Uµ(τ,x) = Uµ(τ +Nτ ,x), g(τ,x) = g(τ +Nτ ,x)

In fact, also gauge transformations g′(x) of “topologically non-trivial kind”

are permitted, which are periodic only up to a constant matrix h :

g′(τ +Nτ ,x) = hg′(τ,x) , h ∈ SU (N)

Thus, g′(x) picks up a “twist” factor h winding once around the torus.



The gauge links, after an extended gauge transformation, behave

across the temporal boundary as

U g′
µ (τ +Nτ ,x) = hU g′

µ (Nτ ,x)h
−1

This is consistent with periodicity if and only if [h, U g′
i ] = 0, i.e.

h = z1 ∈ Z(N), center of SU (N) z = exp

(
i
2πn

N

)
, n ∈ {0, 1, 2, . . . N − 1} .

Lesson :

“Pure gauge theory at finite temperature is invariant under

gauge transformations with non-trivial winding, for any global

twist factor h ∈ Z(N), the center of the gauge group SU (N).”



Gauge invariant observables are sensitive to twists if and only if

they wind, too.

Example: “Wilson line” in the temporal direction closing onto

itself, nowadays called (untraced) “Polyakov loop”:

L(x) =

Nτ∏

x0

U0(x) .

Physically, this is the “propagator” of a static quark.

Under gauge transformations of the two sorts, it behaves

Lg(x) = g(x)L(x)g−1(x),

Lg
′
(x) = g′(1,x)L(x)g′

−1
(1 +Nτ ,x) = g′(1,x)L(x)g′

−1
(1,x)h−1 .

such that

Tr Lg = Tr L, Tr Lg
′
= z∗Tr L .



We conclude that the traced Polyakov loop

• is gauge invariant w.r.t. topologically trivial gauge transformations,

• picks up a center element z∗ when transformed with a non-trivial,

winding gauge transformation,

The Polyakov loop emerges as observable in the QCD path integral

with heavy quarks (to leading order in the hopping expansion).

Example: partition function for pure gauge theory with a single

static quark sitting at x:

ZQ =

∫
DU Tr L(x) e−Sg[U ] .

Hence, the expectation value is:

〈Tr L〉 = 1

Z

∫
DU Tr L e−Sg =

ZQ
Z

= e−(FQ−F0)/T ,



Lesson :

“VEV of Polyakov loop = exponential of free energy difference between

the Yang-Mills plasma with and without static quark inserted.”

Two limiting cases :

• For T → 0 Yang-Mills theory is confining. It would cost infinite

energy to place a single quark into the gluon plasma, FQ = ∞ and

〈Tr L〉 = 0

Center symmetry is manifest !

• T → ∞ corresponds to β → ∞, for which U0 → 1 and

〈Tr L〉 → Tr 1 = N .

A non-zero expectation value is no longer invariant under center

transformations → “spontaneous breaking of center symmetry”.



Lesson :

“QCD in the quenched limit has a true (non-analytic) deconfinement

phase transition, corresponding to the breaking of the global center

symmetry. The average of the Polyakov loop is the corresponding

order parameter.”

If dynamical quark fields are added, they will behave as

ψg(x) = g(x)ψ(x), ψ(τ +Nτ ,x) = −ψ(τ,x), ψg
′
(τ +Nτ ,x) = −hψ(τ,x)

Statistical mechanics requires anti-periodic boundary conditions

for fermions, therefore trivial h = 1 is the only permissible choice.

There is no center symmetry in the presence of dynamical quarks !



• Physically, if there are dynamical quarks, their pair production

screens the confining force (it leads to string breaking):

FQ is finite, and the QQ̄ potential stops rising at R = Rstring−breaking.

•Correspondingly, 〈Tr L〉 6= 0 for all temperatures, and the

Polyakov loop is no longer a true order parameter.

• In this case, a non-analytic phase transition as a function of

temperature is not realized; confined and deconfined regions

may be then analytically connected by a smooth crossover.

Example: With heavy quarks (mq = O(3 . . . 10) GeV) the first order

phase transition line of SU (3) Yang-Mills theory terminates, going

over into a crossover at some critical endpoint.

Would-be physics is governed by competition between explicit

and spontaneous breaking of center symmetry.



B. The chiral limit of QCD

Classical QCD Lagrangian in the limit of zero quark masses

is invariant under global chiral symmetry transformations

with the symmetry group UA(1)× SUL(Nf)× SUR(Nf).

• axial UA(1) is anomalous, quantum corrections break it down

to Z(Nf)

• remainder gets spontaneously broken to the diagonal subgroup,

SUL(Nf)× SUR(Nf) → SUV (Nf), giving rise to N 2
f − 1 massless

peudoscalar Goldstone bosons (pions, kaons etc.)

• the order parameter of chiral symmetry is the chiral condensate,

〈ψ̄ψ〉 = 1

N 3
sNt

∂

∂mf
lnZ =

1

N 3
sNt

〈trD−1
f 〉 ∝ 〈ρ(λ = 0)〉



This is the “Banks-Casher relation”, it holds since

〈ψ̄ψ〉 ∝ lim
m→0

〈
∑

eigenvalue i

1

i λi +m
〉 = lim

m→0

∫
dλ〈ρ(λ)〉 2m

λ2 +m2
= 〈ρ(λ = 0)〉

•A clear order parameter would mean :

〈ψ̄ψ〉 6= 0 for T < Tχ (chiral symmetry is spontaneously broken )

and 〈ψ̄ψ〉 = 0 for T > Tχ (when chiral symmetry is restored ).

• for zero quark mass there is a non-analytic finite temperature

phase transition corresponding to chiral symmetry restoration.

• For non-zero quark masses, chiral symmetry is broken explicitly.

The chiral condensate is then 〈ψ̄ψ〉 6= 0 for all temperatures.

•Again, in this case a non-analytic phase transition related to

chiral symmetry is not realized : there is an analytical crossover.



C. Physical QCD

•QCD with physical quark masses is very different both from the

chiral or quenched limit.

• Z(3) symmetry as well as chiral symmetry are explicitly broken.

• Still, physical QCD has confinement (in the sense of absence of

colored states, also of gluons) as well as three light pions as

“remnants” of chiral symmetry (and its breaking).

• In the presence of mass terms there is no true order parameter.

The expectation values of Polyakov loop and chiral condensate

are non-vanishing at any temperature.

•Hence, the deconfined or chirally symmetric phase is analytically

connected with the confined or chirally broken phase.



Polyakov loop L (left) and chiral condensate 〈ψ̄ψ〉 (right) together

with their susceptibilities show both transitions in two flavour QCD.

from Karsch et al. 2001
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However, center (a-)symmetry is intertwined with chiral symmetry

breaking within quenched and real QCD !

see: E. Bilgici, F. Bruckmann, J. Danzer, C. Gattringer, C. Hagen,

E.-M. I., A. Maas, Few Body Syst. 47 (2010) 125 , arXiv:0906.3957

Experiment : Calculate fermionic observables (chiral condensate etc.)

with valence quarks, which may differ from sea quarks by modified

temporal boundary conditions :

• for antisymmetric b. c. the standard result is reobtained;

• for periodic b. c. a fictive (valence) result is obtained;

• at which temperatures the results start to depend on b. c. ?

• how does the chiral condensate of valence quarks depend

on their (continuously varied) boundary condition ?



We consider general b. c.

ψ(x, Nt) = ei φ ψ(x, 0)

Observation :

In the low-temperature phase the boundary condition applied to (valence)

fermions does not play any role ! In the high-temperature phase various

quantities (the spectral gap or - if it vanishes - the spectral density near

zero eigenvalue ρ(0)) depend on φ !

Notice ! This is not real QCD. For quenched QCD all fermions are valence

quarks. The observation applies also when full QCD configurations are

analysed by valence quarks !

In other words : The way how center symmetry is broken in the gauge

system can be visualized by non-standard b. c. for fermions (focussing at

the same time on different types of topological excitations).



Define a generalized quark condensate :

S(φ) = −〈ψ̄ψ〉|φ =
1

V

∑

j

1

i λj(φ) +m

with Dirac eigenvalues λj(φ) depending on φ (modified temporal b. c.)

True quark condensate (quenched or dynamic) :

Σ(0) = S(φ = π) for antiperiodic b. c.

The dual quark condensate is the first Fourier component of S(φ):

Σ(1) =

∫ 2 π

0

d φ

2 π
S(φ) e−i φ

It behaves like the renormalized Polyakov loop. In literature:

“dual quark condensate” synonymous with “dressed Polyakov loop”



Quenched chiral condensate −〈ψψ〉 for anti-periodic (left) and periodic

(right) temporal fermion boundary conditions as a function of tempera-

ture. (from arXiv:0906.3957)
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Quenched spectral gap for anti-periodic (left) and periodic (right)

temporal fermion boundary conditions as a function of temperature.

(from arXiv:0906.3957)

200 300 400
T [MeV]

0

50

100

150

200

250

300

<
 Im

 λ
 >

 [M
eV

]

10
3
 x 6

12
3
 x 6

14
3
 x 6

anti-periodic b.c. 

200 300 400
T [MeV]

0

50

100

150

200

250

300

<
 Im

 λ
 >

 [M
eV

]

10
3
 x 6

12
3
 x 6

14
3
 x 6

periodic b.c. 



Left: the integrand S(φ) of the dual chiral condensate in the quenched

case as function of the boundary angle φ. (two bare quark masses and

two temperatures below and above Tdec. Right: the quenched dual chiral

condensate as function of the temperature. (from arXiv:0906.3957)
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The chiral condensate of the dynamical theory as function of the

boundary angle φ for various temperatures. (from arXiv:0906.3957)



The bare dual chiral condensate Σ(1) for the dynamical theory

as function of the temperature. (from arXiv:0906.3957)



The following qualitative features are left to numerical investigations :

• For which parameter values of QCD a non-analytic phase

transition is recovered, and what is its order?

•Are confinement and chiral symmetry breaking disappearing

at the same single transition or are there different transitions ?

Example : for adjoint quarks, Tχ(adjoint) >> Tχ(fund) ≈ Tdec !

• If there is just one transition, what is the driving mechanism ?

• If topological objects are responsible for the low-temperature

properties, how is topology restructured at the crossover ?

• If there is only one smooth crossover, how do the properties of

matter change in the different regions of the phase diagram ?

(precision results required !)



4. Searching for a transition along a line in the phase diagram

• Searching for the crossover/the crossovers by means of the

Polyakov loop, the chiral condensate and the corresponding

susceptibilities. For example, varying T along the axis µq = 0.

• For light quark masses and large Nt the Polyakov loop looses

much of its analytic power to describe “the (de)confinement

side” of the transition. Polyakov loop is no derivative of lnZ !

• Is the center symmetry really important for confinement, if

the theory contains light quarks ? The dual condensate relates

light quarks to center symmetry, as seen before !

•What do we associate with “deconfinement” ? The light quark

number may start to fluctuate “freely”. Thus, the quark number

susceptibility supersedes the Polyakov loop as deconfinement signal.



•Renormalized Polyakov loop (intention : removal of the finite-a effects)

〈Re(L)〉R = 〈Re(L)〉 exp (V (r0)/2T )

V (r0) is the zero-temperature potential at distance r0.

Aim: search for inflection point and for a Gaussian peak of susceptibi-

lity above background.

•Renormalized quark condensate (aim : remove divergent part ∝ a−2

〈ψ̄ψ〉R = Zp

(
〈ψ̄ψ〉 + c(g0)

µ0
a2

)

practically used

Rψ̄ψ =
〈ψ̄ψ〉(T, µ0)− 〈ψ̄ψ〉(0, µ0) + 〈ψ̄ψ〉(0, 0)

〈ψ̄ψ〉(0, 0)
The corresponding (disconnected) susceptibility of the quark conden-

sate is obtained as the variance over the ensemble. It shows a maximum

at the transition.



•Quark number susceptibilty : second derivative w.r.t µq taken at µq = 0

of ln detD = tr lnD

c2 =
∂2 ln detD(µq)

∂µ2q
= −tr

[
D−1∂D

∂µq
D−1∂D

∂µq

]
+ tr

[
D−1∂

2D

∂µ2q

]

These expressions are standard for the Taylor expansion in µq

used to explore the region of non-vanishing baryonic density.

Useful as an observable emphasizing the deconfinement at

vanishing baryonic density !



The second and fourth derivatives c2 and c4 as functions of temperature

Quark number susceptibility behaves like step function, the next higher

moment like a “usual” susceptibility. (from Ch. Schmidt hep-lat/0610116)
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The chiral condensate compared to the renormalized Polyakov

loop in full QCD from arXiv:1203.5320 Petreczky
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The chiral condensate compared to the light quark number suscepti-

bility in full QCD from arXiv:1203.5320 Petreczky
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What comes behind the transition ?

What distinguishes high from low temperature in real QCD ?

• The renormalized Polyakov loop is large.

• The renormalized quark condensate is small.

• The quark number susceptibility is large.

• The pressure and the energy density are large, however still

far from the Stefan-Boltzmann limit.

• The signal (driving force) for the “liberation of degrees of freedom”

is the trace anomaly (“interaction measure”).

• For pure Yang-Mills theory (no quarks) this is a very sharp signal !

The trace anomaly induces the rise of pressure and energy density.



The pressure (left) versus T/Tc for Nt = 4, 6 and 8 in pure gluodynamics.

The interaction measure of gluons (trace anomaly) (ǫ− 3p)/T 4 (right).

from Boyd et al. 1995



The pressure : gluons only, 2 light, 2 light + 1 heavy and 3 light flavors

from Karsch, Laermann and Peikert (2000)
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EoS recently obtained from lattice data at nB = 0 and Nf = 2 + 1 flavors !

Interaction measure (left) and pressure (right) from Nf = 2+1 lattice data

with physical quark masses (S. Borsanyi et al. Wuppertal-Budapest colla-

boration) from Bluhm, Alba, Alberico, Beraudo, Ratti, arXiv:1306.6188
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Left: T -dependent effective chemical potential for freezeout at Tfreeze = 150

MeV (solid: for baryons Ω−, Ξ−, Λ0 and p; dashed: for mesons η, K− and π+.

Right: speed of sound c2s(T ) (solid: HRG in equilibrium, dashed: partial

chem. equilibrium in hadronic phase, symbols: equilibrium lattice data.

from Bluhm, Alba, Alberico, Beraudo, Ratti, arXiv:1306.6188
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5. Phase transition and thermodynamics of twisted-mass fermions

For µq = 0 lattice QCD importance sampling by Hybrid Monte Carlo

works perfectly.

The problem here is only to control systematic effects of different fermion

formulations.

Staggered (Kogut-Susskind) quarks

• Lattice thermodynamics is dominated by staggered fermions and

improved variants of this (p4, asqtad, stout and HISQ).

This is computationally the cheapest method.

• The improvements ameliorate problems like taste symmetry breaking.

• The fundamental problem, however, remains unanswered : rooting,

locality of the action .... Theoretically not completely clear !



•Basic staggered action : 4 (degenerate) flavors, 16 d.o.f. per 24 cell.

“Rooting” is the trick to get the action for Nf independent flavors :

detD for Nf flavors =
(
(detDstaggered)

1
4

)Nf

→ can make the flavors non-degenerate (different charges etc.)

Wilson fermions are the next-popular choice

•Advantage : clear flavor interpretation.

•Breaks chiral symmetry completely, hopefully restored in continuum.

• Phase structure complicated, partly irrelevant at finite a.

•Considerably more CPU-intensive !

• Twisting probes spontaneous parity-flavor breaking that leads to

the Aoiki phase at very strong coupling (keep away from this !!).



Two ways to improve Wilson fermion simulations to O(a) :

•Clover improvement (adding a Pauli term, Sheikholeslami/Wohlert)

CP-PACS, WHOT, DIK (DESY-ITEP-Kanazawa) collaborations.

In this case, the hopping parameter κ drives the transition !

• Twisted mass fermions (chiral rotation within doublets, even number

of flavors): ETMC, tmfT-Collaboration (HU Berlin, Frankfurt, INFN

Frascati).

Advantage of twisted mass:

• at maximal twist, with κ set to κc(β) (then β drives the transition !)

the twisted mass term takes the role of the mass term,

while automatic O(a) improvement is guaranteed.

Observed first by R. Frezzotti, G. C. Rossi, JHEP 0408 (2004) 007



What is twisted mass ?

Fermion action in the physical basis Ψ̄, Ψ written (see Wilson’s r-term)

SF [Ψ , Ψ̄ , U ] = a4
∑

x

[
Ψ̄(x)

(
γµ

1

2a

(
∇µ +∇∗

µ

)
− ar

2
e−iωγ5τ

3∇∗
µ∇µ +M0

)
Ψ(x)

]

The physical basis Ψ̄, Ψ is related to the twisted basis ψ̄, ψ by the

non-anomalous chiral rotation

Ψ = exp
(
i
ω

2
γ5τ

3
)
ψ ,

Ψ̄ = ψ̄ exp
(
i
ω

2
γ5τ

3
)

with

M0 =
√
m2

0 + µ20 , tan(ω) = µ0/m0 ,

(with M0, the bare polar quark mass and ω, the bare twist angle).



For maximal twist, both bases related through :

Ψ =
1√
2
(1 + iγ5τ

3)ψ and Ψ̄ = ψ̄
1√
2
(1 + iγ5τ

3)

Introducing Wilson’s hopping parameter κ = 1/(2am0 + 8r)

and rescaling as usual
√
a3/(2κ)ψ → χ leads to the standard form

of the twisted fermion action (in the twisted basis) appearing

in the simulation code :

SF [χ , χ̄ , U ] =
∑

x

[
χ̄(x)

(
1 + i2κaµ0γ5τ

3
)
χ(x)

− κ
∑

µ

χ̄(x)
(
(r − γµ)Ux,µχ(x + µ̂) + (r + γµ)U

†
x−µ̂,µχ(x− µ̂)

) ]



This fermionic action is simulated together with tree-level Symanzik

improved gauge action :

public code available, see https://github.com/etmc/tmLQCD/

SG[U ] = β

[
c0
∑

P

(
1− 1

3
Re (tr [U (P )])

)
+ c1

∑

R

(
1− 1

3
Re (tr [U (R)])

)]

where β = 6/g20 and U (P ), U (R) are plaquette and rectangle loops.

Tree-level improvement condition : c0 + 8 c1 = 1, and c1 = −1/12.

Outlook to future work of tmfT :

In order to describe Nf = 2 + 1 + 1 flavors, add a second, non-degenerate

doublet:

SF [ψ , ψ̄ , U ] = a4
∑

x

[
ψ̄l(x)

(
DW [U ] +m0,l + iµlγ5τ

3
)
ψl(x)

]

+ a4
∑

x

[
ψ̄h(x)

(
DW [U ] +m0,h + iµσγ5τ

1 + µδτ
3
)
ψh(x)

]



Explorations of the full phase diagram for Nf = 2 summarized in a full

3-dimensional phase diagram (illustrating Creutz’ “cone conjecture”) :

0
∞

Aoki phase

∞

confinement

deconfinement

κ thermal transition/crossover surface
(possibly curved)

from first doubler
κc(β, T = 0)

β
κc(β, T = 0)

µ

quenched limit

confinement

1st order



What is the physically relevant branch ?

•Only the lower cone is connected with the quenched limit !

Varying the quark mass → ∞, a critical endpoint is passed,

at which the crossover goes over to a first order (under investigation).

The first order line ends in the quenched endpoint at κ = 0.

•How does a line of constant physics (LCP) pierce Creutz’ cone ?

– LCP should run at maximal twist !

– LCP must not run at µ0 = const !

The details for this analysis rest on calibration simulations at T = 0,

• done by the ETM Collaboration

• own simulations of the tmfT Collaboration



Locating the crossover

• Evaluated : three families of ensembles : A12, B12, C12

(one more becoming finished now : Z12)

• populate the three-dimensional phase diagram β, κ, µ0

• a β scan should fix the position of the crossover line

•maximal twist: requires tuning of κ = κc(T = 0, β)

• fixed pion mass: requires tuning of aµ0 = (aµ0)(β) = C exp (−β/(12β0))

(obtained from a one-loop fit with β0 =
11−2Nf/3

(4π)2
or from a two-loop fit)

• such fits for various families of T = 0 simulations based on data

of the ETM-Collaboration exist [published JHEP 08 097 (2010)]



280 320 400 480 700

mπ[MeV]

Z A B C D

Nτ = 6

8

10

12



List of β-scans

•A12: 323 × 12, 3.84 ≤ β ≤ 3.99,

mπ = 316(16) MeV, r0mπ = 0.673(42)

βχ = 3.89(3), Tχ = 202(7) MeV

•B12: 323 × 12, 3.86 ≤ β ≤ 4.35,

mπ = 398(20) MeV, r0mπ = 0.847(53)

βχ = 3.93(2), Tχ = 217(5) MeV

βdeconf = 4.027(14), Tdeconf = 249(5) MeV

•C12: 323 × 12, 3.90 ≤ β ≤ 4.07,

mπ = 469(24) MeV, r0mπ = 0.998(62)

βχ = 3.97(3), Tχ = 229(5) MeV

βdeconf = 4.050(15), Tdeconf = 258(5) MeV



mπ-dependence and chiral extrapolations are discussed in papers :

• arXiv:1102.4530v2 (F. Burger et al.) Phys. Rev. D 87 (2013) 074508

• arXiv:1212.0982 (F. Burger at Lattice 2012)

Global phase structure (for all β, κ, µ0) had been dicussed earlier in :

• arXiv:0905.3112 (E.-M. I., K. Jansen et al.) Phys. Rev. D 80 (2009)

094502



κc(T = 0, β) and the lattice spacing a(β)
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Chiral susceptibility and Polyakov loop susceptibility for B12

Gaussian fit
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σ2

ψ̄ψ

β

4.023.963.903.84

0.5

0.4

0.3

0.2

0.1

B12
χRe(L)

β

4.023.963.903.84

0.072

0.068

0.064

0.060

0.056



Renormalized 〈ψ̄ψ〉R and renormalized Polyakov loop 〈Re(L)〉R
combining data from B12 and B10 (Nt = 10 and Nt = 12)
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Chiral extrapolations for Tχ(mπ) for various scenarios (χPT)

Tχ(mπ) = Tχ(mπ = 0) + A m2/(β̃δ)
π

with critical indices β̃, δ corresponding to the respective

equivalence classes of three-dimensional spin models.

• O(4) : 2/(β̃δ) = 1.08 leads to Tχ(mπ = 0) = 152(26) MeV

• Z(2) : two cases mπ,c = 0 or mπ,c 6= 0;

lead to Tχ(mπ → 0) between O(4) and 1-st order scenario

• first order : in literature formally 2/(β̃δ) = 2 is taken;

leads to Tχ(mπ = 0) = 182(14) MeV

(applicability of these “critical indices” unclear !)



Chiral extrapolations for Tχ(mπ) for various scenarios
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Towards the Equation of State (EoS)

The trace anomaly is the primary quantity on the lattice

I

T 4
=
ǫ− 3p

T 4
= − T

V T 4

〈d lnZ
d ln a

〉
sub

= N 4
τBβ

1

N 3
σNτ

{
c0
3
〈ReTr

∑

P

UP〉sub

+
c1
3
〈ReTr

∑

R

UR〉sub

+Bκ〈χ̄DW[U ]χ〉sub

− [2(aµ)Bκ + 2κc(aµ)Bµ] 〈χ̄iγ5τ 3χ〉sub
}

〈. . .〉sub ≡ 〈. . .〉T>0 − 〈. . .〉T=0 denotes subtraction of vacuum contributions.



Bβ, Bµ and Bκ are (related to) derivatives of the bare parameters

with respect to the lattice spacing :

Bβ = a
dβ

da
, Bµ =

1

(aµ)

∂(aµ)

∂β
, Bκ =

∂κc
∂β

Evaluation of the pressure by integrating the identity

I

T 4
= T

∂

∂T

( p
T 4

)

along the line of constant physics (LCP):

p

T 4
− p0
T 4
0

=

∫ T

T0

dτ
ǫ− 3p

τ 5

∣∣∣∣
LCP

The available lattice data of I
T 4 have been fitted to the ansatz

I

T 4
= exp

(
−h1t̄− h2t̄

2
)
·
(
h0 +

f0 {tanh (f1t̄ + f2)}
1 + g1t̄ + g2t̄2

)

where t̄ = T/T0 and T0 is a free parameter in the fit.



For the D ensembles data from Nτ = 8, 10 have been fitted simultaneously.
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Still preliminary : EoS for the D ensembles (mπ ≈ 700 MeV)

Left: raw data for I, Middle: after tree-level corrections, Right: trace

anomaly, pressure and energy density.



For the B ensembles data from Nτ = 8, 10 and 12 have been fitted simulta-

neously.
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Left: raw data for I, Middle: after tree-level corrections, Right: trace

anomaly, pressure and energy density.



6. A special topic : Gluon and ghost propagators in Landau gauge

• Performing the Landau gauge fixing on a given ensemble of gauge field

configurations gives the possibility to study gluon and ghost propaga-

tors in straightforward way. (Problem : Gribov ambiguity)

•We have done this for pure gluodynamics (Nf = 0) in the vicinity of

the first order phase transition, and later for the relevant ensembles

of full QCD configurations (Nf = 2) over the crossover region.

•Non-perturbative continuum techniques (DSE and FRG) are based

on propagators and vertices : thermodynamics and various effective

potentials, e.g. for the Polyakov loop, expressed through propagators.

• The propagators for gluodynamics and full QCD appear in Dyson-

Schwinger equations (DSE). Lattice data allow crosschecks of the pre-

dictions by DSE relating quenched and non-quenched propagators.



Landau gauge

∇µAµ(x) =
∑

µ

(Aµ(x + µ̂/2)− Aµ(x− µ̂/2)) = 0

where

Aµ(x + µ̂/2) =
1

2iag0

(
Uxµ − U †

xµ

)
|traceless

can be enforced by maximization of the functional

FU [g] =
1

3

∑

x,µ

Re tr
(
gxUxµg

†
x+µ

)

with suitable gauge transformations gx (including twisted ones g′x !).

•Gauge fixing is performed for relevant ensembles of Monte Carlo

configurations, irrespective of their origin (quenched or dynamic).

•Ghosts are not explicit, studied only algebraically, by inversion

of the Faddeev-Popov operator.



•We have studied the quark propagator for the gluon configurations

generated with twisted mass fermions by the TMC : F. Burger et al.,

Phys.Rev. D 87 (2013) 034514, arXiv:1210.0838 [hep-lat]

•Our aim was to study the effect of the crossover on the gluon (and

ghost) propagator in presence of quarks.

• For quenched SU (3) gauge theory, the first order transition should

lead to the strongest relative change of the propagator.

• To set a benchmark, we investigated first the finite T propagators

for pure gauge theory !



Problem of Gribov copies turned out to be severe only in the extreme

infrared (IR) limit, i.e. practically irrelevant for the following analyses !

The aim was to find a good continuum parametrization for the propaga-

tors,

• over a relatively broad momentum interval,

• for a series of temperatures around the transition/crossover

temperature and ranging up to 3 T deconf,

in order to provide this to the practicioners of continuum approaches

(SDE and FRG) enabling crosschecks for their methods and approxima-

tions.



First step : quenched propagator study at finite T

R. Aouane et al., Phys. Rev. D 85 (2012) 034501

arXiv:1108.1735 [hep-lat] (with Wilson action, for various lattices)

Gluon propagator in momentum space as ensemble average :

Dab
µν(q) =

〈
Ãa
µ(k)Ã

b
ν(−k)

〉

qµ(kµ) =
2

a
sin

(
πkµ
Nµ

)
for Matsubara frequency q4 = 0

For non-zero temperature, Euclidean invariance is broken,

usefu to split Dab
µν(q) into two components, (Ng = N 2

c − 1 and Nc = 3)

• transversal DT (“chromomagnetic”) propagator

• longitudinal DL (“chromoelectric”) propagator

Dab
µν(q) = δab

(
P T
µνDT (q

2
4, ~q

2) + PL
µνDL(q

2
4, ~q

2)
)



Propagators DT,L (or their respective dimensionless dressing

functions ZT,L(q) = q2DT,L(q)) obtained from the Fourier transforms

DT (q) =
1

2Ng

〈
3∑

i=1

Ãa
i (k)Ã

a
i (−k)−

q24
~q 2
Ãa

4(k)Ã
a
4(−k)

〉

and

DL(q) =
1

Ng

(
1 +

q24
~q 2

)〈
Ãa

4(k)Ã
a
4(−k)

〉

The corresponding renormalized functions, in momentum

subtraction (MOM) schemes, can be obtained from

Zren
T,L(q, µ) ≡ Z̃T,L(µ)ZT,L(q)

J ren(q, µ) ≡ Z̃J(µ)J(q)

with the Z̃-factors being defined such that

Zren
T,L(µ, µ) = 1

J ren(µ, µ) = 1



Our main emphasis : Finite-volume and discretization studies,

providing continuum parametrizations for various temperatures,

as input (or benchmark) for finite-T continuum studies (within SDE

and FRG), with eventual extensions to finite baryonic density !

The gluon dressing function was fitted with the Gribov-Stingl formula

Zfit(q) = q2
c (1 + d q2n)

(q2 + r2)2 + b2

• fits of the momentum dependence of the propagators in the interval

0.6 GeV < q < 3.0 GeV

• in the temperature range up to 3 Tdec

0.65 < T/Tdeconf < 2.97

•Gribov copy and finite volume effects of minor importance

in the momentum range under study



While the first order nature of the phase transition is obvious,

no abrupt changes have been found in the propagators !



q dependence of DL and DT for various temperatures
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q and T dependence of the ghost dressing function
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It is not difficult to reconcile the first order phase transition with these

continuous changes of the propagators !

Our finite-temperature results for pure Yang-Mills theory have been

used by K. Fukushima and K. Kashiwa, arXiv:1206.0685v5 [hep-ph]

• for the effective potential for the Polyakov loop

• for reconstructing the Equation of State (EoS)

In leading order of the 2PI-formalism, the thermodynamical

potential can be approximated as follows in terms of the gluon

and ghost propagators :

1

T
Ωglue ≃ −1

2
tr lnD−1

gl + tr lnD−1
gh



For example, the inverse gluon propagator has been extracted

from our data for T < 1.2 Tc

D−1
gl (p

2) =
[
p2ZT (p

2)Tµν + ξ−1p2ZL(p
2)Lµν

]
δab

Results :

• The transition temperature has been successfully reconstructed

in terms of the Polyakov loop effective potential from the

T -dependent propagator data.

• The pressure and trace anomaly are obtained, respectively, good

and roughly correct.



Order parameter and EoS of pure Yang-Mills

Transition temperature and first rise of pressure successfully

reconstructed from the T -dependent propagator data !
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What about propagators from non-quenched simulations ?

How are non-quenched gluon propagators related to quenched ones ?

How good can SDE predict/postdict what will be/has been measured

on the lattice ?

C. S. Fischer and J. Luecker, “Progagators and phase structure of

Nf = 2 and Nf = 2 + 1 QCD”

Physics Letters B 718 (2013) 1036, arXiv:1206.5191,

also in: C. S. Fischer, L. Fister, J. Luecker, J. M. Pawlowski,

“Polyakov loop potential at finite density”, arXiv:1306.6022

Full set of Schwinger-Dyson equations is used to predict the T dependence

of full QCD propagators from the quenched ones, depending on mπ as

a parameter to be measured in the non-quenched simulations (crossover).



Full Dyson-Schwinger equations for the quark and the gluon propagator

−1
= +

−1 −1

=
−1

+ +

++

+ +

−1



Truncated gluon Dyson-Schwinger equation relating the quenched

and the non-quenched gluon propagator (for u, d and evtl. s quarks)

(yellow insert = quenched gluon propagator)

=
−1

+ 2
−1

+

s

u/d



By-product of this study : quark propagator at T 6= 0

(was not yet studied by us for twisted mass at T 6= 0)

Would be interesting to compare !



More recently, Phys. Rev. D 87 (2013) 114502, arXiv:1212.1102

“Landau gauge gluon and ghost propagators from lattice

QCD with Nf = 2 twisted mass fermions at finite temperature”

R. Aouane, F. Burger, E.-M. I., M. Müller-Preussker, A. Sternbeck

has provided the unquenched propagators for twisted mass ensembles

of the tmfT collaboration, leading to continuum parametrizations in

the momentum ranges :

• 0.4 GeV < q < 3.0 GeV for the gluon propagators (perfect fit !)

fitting parameter b2 in the Grivov-Stingl fit compatible with zero

(no splitting in complex conjugate poles visible in this momentum

range !)

• 0.4 GeV < q < 4.0 GeV for the ghost propagator (less good,

fit correct within few percent, a mass term mgh wouldn’t help),



Temperature range :

•Done for various temperatures in the range 180 MeV < T < 260 MeV

which were investigated in the “phase transition project”.

Renormalized propagators given for renormalization scale µ = 2.5 GeV .



The unrenormalized dressing functions, ZT (left panel), ZL (middle panel)

and for the ghost J (right panel) for various temperatures,

B12 for mπ = 398 MeV
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How are non-quenched gluon propagators related to quenched ones

in the crossover region ?

C. S. Fischer, L. Fister, J. Luecker, J. M. Pawlowski,

“Polyakov loop potential at finite density”, arXiv:1306.6022

Dressing functions ZT (left) and ZL (right) with and without dynamical

fermions from lattice and related through DSE
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Conclusions concerning twisted mass at finite temperature

• The Nf = 2 crossover structure and the investigation of its

chiral limit are close to completion.

• The results are in fair agreement with other results with

Wilson fermions (DIK collaboration) and other lattice fermions.

• The EoS is will be presented soon in full detail (F. Burger).

•Chiral crossover and deconfinement (hard to find) do not coincide.

• The effect of the crossover on the gluon propagator is visible.

Masses too large ! Longitudinal gluon propagator most sensitive.

• Interesting cross-checks with SDE (Ch. Fischer et al.) !

• Future orientation of the tmfT collaboration ?

We will turn to Nf = 2 + 1 + 1 simulations.



• Strange and charmed quarks are less important for finding the

chiral transition temperature. However, they are important for

the thermodynamics of the deconfined phase !

•A PRACE (Partnership for Advanced Computing in Europe)

project has been submitted by the tmfT collaboration.



7. Scanning the full phase diagram : Finite baryonic density

Let’s next discuss the generalization to non-zero baryon density, the

phase diagram in the T − µq plane. It is sufficient to consider µq ≥ 0.

If one could simply simulate at any µq, one could map out the

phase diagram by β-scans for all interesting µq or along fixed µq/T .

Unfortunately, importance sampling simulation at µq 6= 0 is impossible !

Four main possibilities to fight the sign (complex weight) problem :

•Analytical continuation from imaginary µq = iη (for selected results)

• Phase quenching : neglecting the phase of the determinant during

simulation, including it into the observable

•Reweighting across the β-µq plane

• Taylor expansion in µq in points along the β-axis



Hypothetic phase diagram of QCD (from Wikipedia)

after Ph. de Forcrand arXiv:1005.0539



What if one ignores the phase of the fermion determinant ?

This would give the phase diagram for QCD at finite isospin density

schematically, from Philipsen arXiv:1009.4089



Crossover vs. First Order Transition in the Phase Diagram of QCD

from Anyi Li arXiv:1002:4459



The Columbia plot extended into a third direction µ : will there

be a true phase transition (critical point) for physical quark masses ?

from Ph. de Forcrand and O. Philipsen hep-lat/0607017
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Can we get the phase transition curve directly from experiment ?

From central Pb+Pb (Au+Au) collisions at SIS, AGS, SPS and RHIC

the collision energy dependence of temperature and baryonic chemical

potential (both obtained from particle yields, say via THERMUS) has

been found

in the form (sNN is the center of mass energy of a single nucleon pair) ;

µB =
1.308

1 + 0.273
√
sNN

This µB enters the (chemical) “freeze-out” temperature Tfreeze(µB) close to

the phase transition (crossover) temperature at vanishing baryon density,

Tχ(µ = 0) = 0.166 GeV parametrized as follows :

Tfreeze(µ)

Tχ(µ = 0)
= 1− 0.023

(µB
T

)2
−O(

(µ
T

)4
)

J. Cleymans Phys. Rev. C 63 (2006) 034905



This has motivated the interest in lattice results for the µ dependence

of the phase transition temperature Tχ(µ) near Tχ(0) (it is not too hard).

Tχ(µ) must be an even function of µ near µ = 0.

Tχ(µ)

Tχ(µ = 0)
= 1−

∑

k

t2k

(µ
T

)2k

The curvature found on the lattice is much smaller than that of the

freeze-out curve :
Tχ(µ)

Tχ(µ = 0)
= 1− 0.0066(7)

(µ
T

)2

Similarly
βχ(µ)

βχ(µ = 0)
= 1−

∑

k

b2k

(µ
T

)2k

The coefficients have been determined at imaginary µ = iη.



A. Analytical continuation

This is the first example for analytic continuation.

• It turns out, that the freeze-out temperature is thre times more

curved downward than Tχ(µ).

•Moreover, the curvature seems to decrease in the continuum limit !

•However, the method is sensitive to the order of the series that is

fitted to the imaginary-µ data :

The coefficients at imaginary µ are alternating in sign and can

be determined only with large uncertainty.

Lesson :

“The chemical freeze-out happens deep inside the hadronic phase

and has no relation to the quark-gluon plasma.”



Continuation of βc from negative µ2 to positive µ2

from Ph. de Forcrand arXiv:1005.0539
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Sketch of the QCD crossover line Tc(µ) vs. the experimental

freeze-out curve, which has a larger curvature, near Tc(0).

from Ph. de Forcrand arXiv:1005.0539



Much more could be said about imaginary chemical potential :

• full view of the phase diagram with imaginary chemical potential

•Roberge-Weiss periodicity : η
T → η

T + 2 π
3

• construction of canonical ensembles for various numbers of baryons NB

• phase diagram in the T -nB (baryonic density) plane : mixed phases



The QCD Phase Diagram: Grand Canonical and Canonical View

from S. Kratochvila and Ph. de Forcrand hep-lat/0509143
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Both thermodynamic ensembles should be equivalent in the infinite

volume limit. However, this limit is difficult to achieve.

For large, quasi-continuous baryon numberB, ZC becomes a function

of the baryon density ρ :

Z
(q)
C (V, T, n = NB) = Z

(B)
C (V, T,B) = Z

(dens)
C (V, T, ρ)

Then

Z(V, T, µ) =

∫ +∞

−∞
dρ eV Nρµ/TZ

(dens)
C (V, T, ρ)

= lim
V→∞

∫ +∞

−∞
dρe−

V
T (f(ρ)−µρ)

with f(ρ) as the free energy density in canonical ensemble.

Finally, µ can be expressed as function of the baryon density ρ :

µ(ρ) =
1

N

∂f(ρ)

∂ρ



This function shows a behavior resembling the van der Waals gas.

This approach has been pursued numerically :

S. Kratochvila and Ph. de Forcrand, hep-lat/0509143

63 × 4 lattice, four degenerate staggered quarks, volume (1.8 fm)3

A. Alexandru, M. Faber, I. Horvath and K. F. Liu, hep-lat/0507020

Kentucky group :

63 × 4 lattice, clover-improved Wilson fermions Nf = 2, 3 and 4.



Left: The Maxwell construction allows to extract the critical chemical

potential and the boundaries of the co-existence region. Right: Comparing

the saddle point approximation (red) with the fugacity expansion (blue).

Strong finite-size effects in the latter obscure the first-order transition.

from S. Kratochvila and Ph. de Forcrand hep-lat/0509143
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The number of flavors is extremey important : Nf = 4 vs. Nf = 2

from Anyi Li arXiv:1002:4459
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Phase boundaries in the temperature vs. density plot for Nf = 4.

from Anyi Li arXiv:1002:4459
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Phase boundaries in the temperature vs. density plot for Nf = 4.

from S. Kratochvila and Ph. de Forcrand hep-lat/0509143
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Left: Phase boundaries in the temperature vs. density plot for Nf = 3.

Right: Transition line in the temperature vs. chemical potential plot.

from Anyi Li arXiv:1002:4459
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This looks rather systematic, however the lattices are too small.

There are possible systematic effects of the canonical ensemble

method.

One would like to confirm this in a more robust way, that works

also for large lattices (Taylor expansion), in order to veryfy the

first order character of the transition.



B. Phase quenching

Consider the exact partition function with nB 6= 0, i.e. µq 6= 0 :

ZB(β, µq) =

∫
D[U ] (detD(U, µq))

Nf e−βSG

Factorize the complex determinant into modulus and phase factor

ZB(β, µq) =

∫
D[U ] |detD(U, µq)|Nf ei Nf θe−βSG

Phase-quenched ensemble :

Zpq(β, µq) =

∫
D[U ] |detD(U, µq)|Nf e−βSG

Fortunately, this ensemble can also be sampled according to HMC,

if one interpretes this as the fixed-isospin ensemble with µI = µq

Zpq(β, µ) = ZI(β, µI = µ)

For even Nf

∣∣detD(U, µq)
Nf
∣∣ = detD(U,+µq)

Nf
2 detD(U,−µq)

Nf
2



such that phase quenching is equivalent to fixed isospin with µI = µq.

For Nf = 2

(detD(U, µq))
2 = |detD(U, µq)|2 e2 i θ

For an observable O we can consider two expectation values

〈O〉I =
1

ZI

∫
D[U ] O |detD(U, µq)|2 e−βSG (simulation possible)

〈O〉B =
1

ZB

∫
D[U ] O (detD(U, µq))

2 e−βSG (simulation impossible)

Nevertheless, the last average can be estimated by including the missing

phase factor into the observable : estimator

〈O〉B =
〈O e2 i θ〉I
〈e2 i θ〉I

where the averages are taken w.r.t. the phase quenched (pq), i.e. fixed-

isospin (I) ensemble. Phase quenching is a more general trick !



While the Monte Carlo process is guided by the fixed isospin ensemble,

the global phase factor has to be evaluated only after the trajectory is

finished, simultaneously with the observable O on the configuration.

The smallness of the denominator (“average phase factor”) quantifies the

severity of the sign problem !

When the denominator is small due to phase cancellations, the error

of the numerator is also big, and the estimate not reliable.

The denominator decreases exponentially with volume and 1/T

〈e2 i θ〉I ∝ e−
V
T∆f

where ∆f is the difference in free energy density between the systems

described by ZB and ZI = Zpq. This (intensive) difference ∆f is non-uniform

over the β-µq-plane ! This limits the reliable range there (low µq, high T ).



Results of a systematic investigation of the average phase factor :

• The sign problem is not severe for µq <
mπ
2

• Large differences exist between the free energy densities

of the phase-quenched and full theory for µq >
mπ
2
.

• The method becomes problematic, anyway, for large volumes.

• For high temperature the average phase factor doesn’t drop

as fast with volume as for T ≤ Tχ

“Phase quenching is problematic at low temperature and high density !”



Where the phase-quenched simulation fails

from Ph. de Forcrand arXiv:1005.0539
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C. Reweighting across the β-µq plane

An attempt to find curvature and critical endpoint (Fodor, Katz et al.)

What is the best reference ensemble ?

1. Replace (β, µq) by (β, 0) ! “horizontal reweighting”

“Glasgow method”, failed because of bad overlap between

the simulated and the (unknown) target ensemble

2. Replace (β, µq) by (β′, 0) (with some suitable β′) !

“multiparameter reweighting” or “Budapest method”,

working successfully.

3. A convincing example for µ→ i η : (accessible to direct simulation)

condensate 〈ψ̄ψ〉 should rise with η (as seen in direct simulation),

opposite to real µq !



Glasgow (horizontal) vs. Budapest (multiparameter) reweighting



In both cases the reference ensemble is on the β axis, with real

determinant.

The role of the “phase” above is played here by the reweighting factor

R =
detD(U, µq) e

−βSG

detD(U, 0) e−β′SG

While the Monte Carlo process is guided by the (β′, µ = 0) ensemble

the global reweighting factor R has to be evaluated only after each

trajectory is finished, simultaneously with the observable O.

estimator :

〈O〉B =
〈O R〉reference
〈R〉reference

Hidden problem : “overlap problem” or better: “problem of insufficient

overlap”



The “reference ensemble” might not contain enough configurations

falling into the “target ensemble”, such that this bias cannot be corrected

simply by reweighting.

U

S
µ=0 finite µ



Testing the methods at imaginary µ by comparison with direct

simulation. Failure of the Glasgow method due to the overlap

problem. (from Z. Fodor and S. D. Katz hep-lat/0111064)

Budapest method reproduces the exact result, Glasgow method not !



Special method of Fodor and Katz rapidly evaluating determinants :

• shift the µ-dependence into two time slices

• factorization of the µq-dependence

detD(µq) = e−3N3
sNtµq det

(
P − eNtµq

)

P is the “reduced fermion matrix” ( a 2NN 3
s × 2NN 3

s matrix)

with two time slices.

When all 2NN 3
s eigenvalues λi of the reduced matrix are known,

detD(µq) = e−NN
3
sNtµq

2NN3
s∏

i=1

(
eNtµq − λi

)

Thus the reweighting factor is faster evaluated, while the sampling runs

with real positive weight detD(µq = 0) at β′ 6= β !

The “reduced fermion matrix technique” is broadly applied.



A useful tool for QA : one can define an “overlap measure” α :

Definition : “α is the overlap measure, if a randomly selected fraction

α of configurations of the “reference ensemble” (where they occur

equally weighted) acquires a weight 1− α when taken as members

of the “target ensemble” (where they are not equally weighted).”

The optimal overlap is α = 50 %

The grey area (next figure) is not accessible by reweighting from

the reference point (β′, µq = 0).



Left: Relief map of the overlap measure. The red line (the line of the

crossover !) is determined by the peaks of susceptibility. (from F. Csikor

et al. hep-lat/0401016) Right: Best pathes for reweighting in β-µ plane.

(schematically from F. Csikor et al. hep-lat/0301027)

weight lines
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Finding the line of the crossover and the critical endpoint

from F. Csikor et al. hep-lat/0301027



The method of Lee-Yang zeroes :

Adding an imaginary part to β allows to study the Lee-Yang

zeroes of the theory : these are the zeroes of the partition function.

When the Lee-Yang zeroes in the limit V → ∞ approach the real axis

this signals that a real singularity (phase transition) appears.

At finite volume, the pattern of the nth Lee-Yang zeroes βnLY is

Im β
(n)
LY = C(2n + 1).

When a crossover turns into a first order transition, the location

of the (extrapolated) lowest Lee-Yang zero touches the real axis,

C → 0.



Locating the critical endpoint by the lowest Lee-Yang zero

(extrapolated to V → ∞) (Im β
(0)
LY ) in the complex β plane.

from Z. Fodor and S. D. Katz hep-lat/0111064



This fixes the critical endpoint : F. Csikor et al. hep-lat/0301027

For 2 + 1 flavors the Wuppertal-Budapest group has obtained

µEB = 725± 35 MeV TE ≈ 160± 3.5 MeV Tc(µ = 0) = 172± 3 MeV

(has been later updated !)



Update of the critical point (small square) in physical units.

Dotted line for the crossover, solid line for the first order phase transition.

The small square shows the endpoint. Combining all uncertainties

one obtains TE = 162± 2 MeV and µE = 360± 40 MeV.

from Z. Fodor and S. D. Katz hep-lat/0402006



Compared to the previous finding, the light quark masses were

reduced by a factor three, while the largest volume has been

increased by a factor three.

This simulation is still far from the continuum limit (Nt = 4) :

a =
1

4Tc
∼ O(0.25 fm) (1)



Doubts are still allowed : The critical endpoint lies too close to the

critical line for pion condensation (in phase-quenched simulations).

from Splittorff hep-lat/0505001
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D. Taylor expansion in µq, from points along the β-axis

• The chemical potential enters always in the combination µq/T .

•Reweighting gives µq-dependence (in principle, at least).

• In fact, reweighting is restricted to small µq/T and small V .

• The error analysis of results of reweighting is difficult,

a breakdown might even not be noticed (Glasgow method).

Rescue : Observables can be obtained as power series in µq/T .

By now has become the “bread and butter method”.

Only by Taylor expansion a reliable V → ∞ behavior can be

determined giving access to intensive quantites like p.

p(T, µq) = p(T, 0) + ∆p(T, µq)



∆p is an even function of µq/T (since Z(µq/T ) = Z(−µq/T ))

∆p(T, µq)

T 4
=

∞∑

k=1

c2k(T )
(µq
T

)2k

The Taylor coefficients stem from derivatives w.r.t. µq of the determinant,

more precisely
∂ ln detD(µq)

∂µq
= tr

[
D−1∂D

∂µq

]

and higher derivarives. Only even derivatives are non-vanishing. There-

fore

c2k =

〈
tr ( polynomial of order 2k in D−1 and

∂D

∂µq
)

〉

|µq=0

Taylor coefficients are easily calculable (in principle !) in simulations

at µq = 0, practically obtained by means of of stochastic estimators.

These observables become increasingly noisy with larger k.



The first two Taylor coefficients c2 and c4 as functions of temperature

look very nice.

from Ch. Schmidt hep-lat/0610116
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The Taylor coefficient c6 and the quark number susceptibility χq

(for three values of µq), all as functions of temperature.

from Ch. Schmidt hep-lat/0610116
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In principle, knowledge of c2k should give all thermodynamics :

• The equation of state (EoS)

• The transition line Tc(µq)

• The critical endpoint (µEc , T
E
c )

For all bulk quantities similar series expansions exist :

nq
T 3

= 2c2
µq
T

+ 4c4

(µq
T

)3
+ 6c6

(µq
T

)5
+ . . .

χq
T 2

= 2c2 + 12c4

(µq
T

)2
+ 30c6

(µq
T

)4
+ . . .



Going to higher density (higher µq/T ) meets difficulties :

• higher order k is required

• the coefficients become more noisy

• the computation needs large volumes

A better way by simulations at

• imaginary baryonic chemical potential (µq = iηq)

• imaginary isospin chemical potential (µI = iηI)

has been proposed/explored.

(see M. D’Elia and F. Sanfilippo arXiv:0904.1400)



For the prediction of quantum number fluctuations it is important

to discriminate between different quarks:

p

T 4
=

1

V T 3
lnZ(T, µu, µd, µs) =

∑

ijk

1

i!j!k!
χudsijk

(µu
T

)i (µu
T

)i (µd
T

)j

χudsijk =
∂ i+j+kp/T 4

∂(µu/T )i∂(µd/T )j∂(µs/T )k

or

different charges (baryon charge, strangeness, electric charge) ;

p

T 4
=

1

V T 3
lnZ(T, µB, µS, µQ) =

∑

ijk

1

i!j!k!
χudsijk

(µu
T

)i (µu
T

)i (µd
T

)j

χBQSijk =
∂ i+j+kp/T 4

∂(µB/T )i∂(µQ/T )j∂(µS/T )k



Meaning of the first two expansion coefficients for some charge X :

2cX2 =
1

V T 3
〈N 2

X〉

24cX4 =
1

V T 3

(
〈N 4

X〉 − 3〈N 2
X〉2
)

This is variance and kurtosis.

Intensively discussed in experimental searches for the critical endpoint.



8. Deep inside the phase diagram : Properties of dense matter

Results of two collaboration for the Equation of State (EoS)

1) MILC and hotQCD collaborations,

light and strange quarks at almost physical quark masses µl and µs

Temporal extent Nt = 4 and 6 (distance from continuum limit):

differences are visible

Calculations up to O(µ6) (up to c6)

Comparison with HRG (Hadron Resonance Gas, taking the empirical

hadron masses [to several GeV] with their baryonic charge into account)

2) BMW collaboration, light and strange quarks

Calculations up to O(µ2) (up to c2)

Data for Nt = 6, 8, 10, 12, quantities can be extrapolated to continuum limit



Change in the pressure due to µ 6= 0 (MILC+hotQCD)



Difference between the pressure at µ > 0 and µ = 0 (BMW)



The trace anomaly for non-zero µL (BMW, compared with HRG)



What else might be interesting ?

For the hadronization process on top of the freeze-out curve (inside the

“hadronic phase”) the following observables will be of large interest:

• screening lengths

• quark condensate 〈q̄q〉, other condensates ...

• hadron masses

• hadron radii

see: A. Hart, M. Laine, and O. Philipsen,

hep-lat/0010008 hep-ph/0004060



9. Outlook

Much more should be said about properties of the quark-gluon plasma :

• input for hydrodynamics : EoS under construction, velocity of sound

•many applications of Kubo-type formulae, like ...

• viscosity : an ideal fluid ?

• heat conductivity

• electric conductivity

• other transport coefficients

• di-lepton spectral function

• heavy quark diffusion

• jet quenching


