Dark matter search (KIMS) and Neutrino-less double beta decay search (AMoRE)

Korea Invisible Mass Search Advanced Mo-based Rare process Experiment

HongJoo Kim (KyungPook National Univ.) The 7th APCTP-BLTP JINR Joint Workshop Modern Problems in Nuclear and Elementary Particle Physics, Baikal, Russia July 14-19, 2013

Contents

- Introduction
- **KIMS**

Dark matter search with CsI(Tl) crystals
Pulse shape discrimination and annual modulation
Upgrade and Prospect

AMoRE
 Why CaMoO4 ?
 Development of CaMoO4 crystals
 Development of cryogenic detector with the CaMoO4 crystal
 Prospects

Biginning 1997-

- 1997 : First discussion on WIMP search (cryogenic detector).
- 1998-2002 : Feasibility studies on CsI(Tl) crystals for DM search.
- 2003 : Construction of Y2L.
- 2003 : Proposed a double beta decay using CaMoO₄ (CMO).
- 2005. 12 2006. 3 4 CsI crystal ran → limits (PLB & PRL paper)
- 2005-2007 : Large CMO grown by Russian collaborator.
- 2009. 9 2012. 8. 12 CsI crystals → PSD limits (PRL paper)
- 2009 : AMoRE collaboration formed.
- 2010-11 : Characterization of ⁴⁰Ca¹⁰⁰MoO₄ & background study
- 2007- : CMO R&D in bolometer mode.
- 2012. 10 2013. 12 12 CsI crystals in test mode. \rightarrow PMT upgrades.
- 2014 : Center for Underground Nuclear, Particle, Astrophysics (CUNPA) got funded by IBS

II Yangyang(Y2L) Underground Laboratory

(Upper Dam)

1000m

Korea Hildro & Nuclear Power Co. Yangyan J Pumped Storage Power Plant

(Power Plant)

(Lower Dam

Evidences for Dark Matter (~25% of Universe)

Gravitational Lensing

Not visible, but gravitationally evident!

Why CsI(Tl) Crystals for WIMP search?

- Large mass with an affordable cost
 → Good for AM study
- High light yield ~60,000/MeV
- Pulse shape discrimination
 → Moderate background rejection
- Easy fabrication and handling
- Cs & I (SI cross section ~ A²)
 Cs & I are sensitive to SD interaction

CsI(Tl) Crystal 8x8x30 cm³ (8.7 kg) 3" PMT (9269QA) : Quartz window, RbCs P.C. ~5 Photo-electrons/keV

KIMS (Korea Invisible Mass Search)

2000 @ CPL, began in the vinyl room

Seoul National University: H.C.Bhang, J.H.Choi, S.H. Choi, K.W.Kim, S.C.Kim, S.K.Kim, J.H.Lee, J.I.Lee, J.K.Lee, M.J.Lee, S.J.Lee, J.Li, X.Li, S.S.Myung, S.L.Olsen, I.S.Seong Sejong University: U.G.Kang, Y.D.Kim Kyungpook National University: H.J.Kim, J.H.So, J.Y.Lee Yonsei University: Y.J.Kwon Ewha Womans University: I.S.Hahn Seoul City University : Douglas Leonard Korea Research Institute of Standard Sciences : Y.H.Kim, K.B.Lee, M.K. Lee Tsinghua University : Y.Li, Q.Yue, J. Li

Mineral oil 30cm

Copper shield Polyethylene Lead shield Moderator(Muon Det.)

12 x CsI(Tl) crystal

1:30t

KIMS with 104.4 kg CsI(Tl)

12 crystals(104.4kg) in operation

- 2.5 year data (Sep. 2009 Feb. 2012)
- Background Level : 2~3 cpd/kg/keV
- Source calibration with ⁵⁵Fe & ²⁴¹Am
 Backgrounds are well understood.

Pulse shape discrimination

Nuclear recoil event rates (PSD analysis)

PSD result on WIMP search @KIMS

Total exposure: 24524.3 kg days S.C. Kim et al., PRL 108 181301 (2012)

Annual Modulation Signals

Data taking :75.53 ton days during 2.5 years

Energy Spectrum

15

2~4 cpd/kg/keV

2~6 keV : 0.0021±0.0062 (0.0122 90% CL Positive Limit),
 3~6 keV : 0.0008±0.0068 (0.0119 90% CL Positive Limit)

Spin-independent : $\sigma_{W-n}^{SI} = \sigma_0 \frac{\mu_n^2}{\mu_A^2} \frac{1}{A^2}$, Spin-dependent : $\sigma_{W-n,p}^{SD} = \sigma_0 \frac{\mu_{n,p}^2}{\mu_A^2} \frac{3}{4} \frac{J}{(J+1)} \frac{1}{\langle S_{n,p} \rangle^2}$

KIMS Perspectives

I. Upgrade of CsI(Tl) crystal detector

- Change PMTs to more sensitive and lower noise ones.
- Lower threshold ~ 1.5keV, < 1 counts/(keV kg day).</p>

II. KIMS-NaI

- Duplicate DAMA experiment.
- Develop ultra-low background NaI(Tl) crystals through international collaboration (ANAIS, DM-ICE group @ south pole)
- KIMS is ready to house NaI(Tl) crystals and 1st crystal will be installed at Y2L this summer.

III. KIMS-CMO200 (AMoRE-DARK)

- natCanatMoO₄ crystals ~ 200 kg year data.
- High sensitivity in low mass WIMP.
- Good nuclear recoil separation is expected. Need to be developed.

WIMP search perspectives & KIMS

Double beta decay process

Theoretical Issues

 $1/T^{0\nu}_{1/2} = G^{0\nu}(E_0,Z) |M^{0\nu}|^2 < m_{\beta\beta} >^2/m_e^2$

 $G^{0\nu}(E_0,Z)$: phase space factor (~ $Q_{\beta\beta}{}^5)$: higher Q-value is better.

- M⁰v-Nuclear Matrix Element, hard to calculate
 - Model dependent
 - Motivation to measure several isotopes

andidate nuclei with Q>2 MeV					
Candidate	Q (MeV)	Abund. (%)			
⁴⁸ Ca→ ⁴⁸ Ti	4.271	0.187			
⁷⁶ Ge→ ⁷⁶ Se	2.040	7.8			
⁸² Se→ ⁸² Kr	2.995	9.2			
⁹⁶ Zr→ ⁹⁶ Mo	3.350	2.8			
¹⁰⁰ Mo→ ¹⁰⁰ Ru	3.034	9.6			
¹¹⁰ Pd→ ¹¹⁰ Cd	2.013	11.8			
$^{116}Cd \rightarrow ^{116}Sn$	2.802	7.5			
$^{124}Sn \rightarrow ^{124}Te$	2,228	5.64			
¹³⁰ Te→ ¹³⁰ Xe	2.533	34.5			
¹³⁶ Xe→ ¹³⁶ Ba	2.479	8.9			
$^{150}Nd \rightarrow ^{150}Sm$	3.367	5.6			

AMoRE Experimental sensitivity

AMoRE has one of best sensitive exps.

Experiment	$\beta\beta$ candidate	Q-value[keV]	Enrichm.	$N_{\beta\beta} \times 10^{26}$	Start [y]	<m< th=""></m<>
GERDA	⁷⁶ Ge	2039	yes	3.2	2013	73-203
Majorana	⁷⁶ Ge	2039	yes	2.4	2014	106-295
MaGe	⁷⁶ Ge	2039	yes	68	2020	43-120
CUORE	¹³⁰ Te	2527.5	no	9.6	2014	40-94
Lucifer	⁸² Se	2995	yes	1.3	2014	35-94
AMore	¹⁰⁰ Mo	3034	yes	3	?	27-63
SNO+	¹⁵⁰ Nd	3370	no	1.8	2014	172-180
Kamland-Zen	¹³⁶ Xe	2476	yes	4	2013-2015	25
Candles	⁴⁸ Ca	4270	no	0.04	2011	500
Candles-enr	⁴⁸ Ca	4270	yes	1	?	IH
Exo-200	¹³⁶ Xe	2476	yes	2.3	2011	87-221 @2y
Exo-Full	¹³⁶ Xe	2476	yes	20	?	16-40
Next-100	¹³⁶ Xe	2476	yes	4	2015	90 @6y
Next-1t	¹³⁶ Xe	2476	yes	30	?	38 @(3+3)y
COBRA	¹¹⁶ Cd	2809	yes	nd	?	50
SuperNemo	⁸² Se	2995	yes	7.3	2014	40-105
Moon	⁸² Se/ ¹⁰⁰ Mo	2995/3134	yes	30	?	IH
DCBA	¹⁵⁰ Nd	3370	yes	10	?	30

LowNu11, Seoul

Silvia Capelli - ββ0v: experimental review

AMoRE Collaboration (June 2013)

Korea (49)

Seoul National University : H.Bhang, S.Choi, M.J.Kim, S.K.Kim, M.J.Lee, S.S.Myung, S.Olsen, Y. Sato, K.Tanida, S.C.Kim, J.Choi, H.S.Lee, J.H.Lee, J.K.Lee, X.Li, J.Li, H.Kang, H.K.Kang, Y.Oh, S.J.Kim, E.H.Kim, K.Tshoo, D.K.Kim(24)
Kyungpook national University : H.J.Kim, J.So, Y.S.Hwang, J.Y.Lee, G. Rooh, S.Khan, L. Ali(7)
Sejong University : Y.D.Kim, E.-J.Jeon, K. Ma, J.I.Lee, W.Kang, J.Hwa (5)
Korea Research Institute of Standards and Science : Y.H.Kim, K.B. Lee, M.K. Lee, W.S. Yoon, H.J. Lee, S.J. Lee, Y.S. Jang, Y.N. Yuryev, H.S.Park, J.H.Kim, J.M.Lee (11)
Ehwa Woman's University: I.S.Hahn, H.S.Lee (2)
Sungsil University: M.-K. Cheoun, E.J. Ha, K.S. Choi (3)
Semyung University: S. J. Kang (1)

Russia (18)

ITEP(Institute for Theoretical and Experimental Physics) : V.Kornoukhov, P. Polozov, N.Khanbekov (3) JSC-FORMOS Materials : V.V. Alenkov, O.A. Buzanov (2) Baksan National Observatory : A.Ganggapshev, A.Gezhaev, V.Gurentsov, V.Kuzminov, V.Kazalov, O.Mineev, S.Panasenko, S.Ratkevich, A.Verensnikova, S.Yakimenko, N.Yershov, K.Efendiev, Y.Gabriljuk (13)

Ukraine(11)

INR(Institute for Nuclear Research) : F.Danevich, V.Tretyak, V.Kobychev, A.Nikolaiko, D.Poda, R.Boiko, R.Podviianiuk, S.Nagorny, O.Polischuk, V.Kudovbenko, D.Chernyak(11)

China(3) *Tsinghua University*: J.Li, Y. Li, Q.Yue(3)

Germany(3)

University of Heidelberg : C.Enss, A. Fleischmann, L. Gastaldo (3)

5 countries 13 institutions 84 collaborators

CaMoO₄ crystal development

CaMoO₄ Characterization:

Temperature dependence of CaMoO₄

From RT to 7K, light yield increase factor 6 (V.B. Mikhailik et al., NIMA 583 (2007) 350)

CMO absolute light yield @RT: 4900+-590 ph/MeV (H.J. Kim et al., IEEE TNS 57 (2010) 1475) -> Light yield at cryogenic temp. : ~ 30,000 ph/MeV

-> Highest light yield among Mo contained crystals.

4π CsI(Tl) active setup with Pb shielding at Y2L

2v EC+β⁺, β⁺β⁺ study with 2 back to back γ tagging
 (1) Sr-84 : SrCl₂ (4.6×10¹⁷ yr by 90%CL)
 (2) Mo-92 : CaMoO4 (2.3×10²⁰ yr NIMA 654, 157 (2011))
 2) CMO internal background study with active veto

⁴⁰Ca¹⁰⁰MoO₄ crystals from Russia

• SB28 weight 196 g • SB29 weight 390 g • S35 weight ~300 g

Background spectra of SB28

Basic idea of Low Temperature Detectors

We want to use bolometer technique to increase the sensitivity of $0\nu\beta\beta$ search with CMO crystal.

Total deposited energy measured \rightarrow Ultimate energy resolution.

MMC (Metallic Magnetic Calorimeter) for LTD

Principle of operation

- 1. Energy absorption in CMO crystal.
- 2. Phonon & Photon generation.
- 3. Temperature increase (gold film).
- 4. Magnetization of MMC decrease.
- 5. SQUID pickup the change.

Advantage of MMC

- Fast rising signal. (critical for lower 2νββ random coincidence.)
- Fairly easy to attach to absorber.
- Excellent Energy resolution

Large CMO crystal (216 g) was tested

Energy Resolution

• 194 hour measurement at the overground laboratory (KRISS).

	1461 keV	2615 keV
FWHM (keV)	8.85 ± 0.62	9.94 ± 1.28

Table 2. Energy resolution before and after the combination with the detected light.

	ZnSe	ZnSe and Light
	[keV FWHM]	[keV FWHM]
1461 keV	13.4 ± 1.0	12.2 ± 0.8
2615 keV	16.3 ± 1.5	13.4 ± 1.3

Recent R&D result of Lucifer group. arXiv:1303.4080v1

Pulse shape discrimination capability

- 1. α/β events show different pulse shapes (FOM=6).
- 2. Light sensor study is under way (better α/β separation)

GEANT4 Simulation of for AMoRE @ Y2L

Shielding 20cm PE + 10cm Scin + 15cm Pb + 1cm Al + 5cm Pb + 1cm Cu+

CaMoO4

- ⁴⁰Ca 100%, ¹⁰⁰Mo 100% cell size: D(5cm)xH(5cm) 0.426kg Total 432 (6 x 6 x 12 array) 184kg
- CaMoO4 support : Cu (1cm, ring structure)

Simulation study of material backgrounds

Background source	Activity [µBq/kg]	Background [10 ⁻⁴ DBU]	Anti- Coincidence Reduction factor
²⁰⁸ Tl, internal	10	0.36	5
²⁰⁸ Tl, in copper	16	0.22	4
²¹² BiPo, internal	10	0.08	1.2
²¹² BiPo, in copper	16	0.36	1.1
²¹⁴ BiPo, internal	10	0.11	2.4
²¹⁴ BiPo, in copper	60	1.8*	2
⁸⁸ Y, internal	20	0.19	2.3
Random pileups from 2v2β	2.6×10^{3}	1.2	1
Total		4.3	

* Can be reduced further by teflon coating on the Cu surface.

⁴⁸Ca Enrichment/Depletion at KAERI (Korea Atomic Energy Research Institute)

- ALSIS (<u>A</u>dvanced <u>L</u>aser <u>S</u>table <u>I</u>sotope <u>S</u>eparation)
- -> AMoRE-Ca (⁴⁸CaMoO4 crystal) for ⁴⁸Ca O-DB search Possible

AMoRE Summary and Prospect

- Large volume of low background ⁴⁰Ca¹⁰⁰MoO4 have been developed and characterized.
- Cryogenic MMC technique with CMO is successful.
- CUNPA got funded (AMoRE project included).
- AMoRE-10kg will be constructed in 3 years.
- If Phase-I is successful, we will move to Phase-II and explore neutrino mass of 20-50 meV region.

	Phase I	Phase II
Mass	10kg	200kg
Background (keV kg year)-1	10-3	10-4
Sensitivity (m _{ee}) (meV)	80-250	20-50
Schedule	2015-2016	2017-2019

Thank you for Attention

WIMP Searches

- 1) Indirect Search
 - Detect secondary particle (neutrino, electron, positron, gamma...) produced by annihilation of WIMPs
 - Space, Ground, Underground experiment
- 2) Direct Search : Detect elastic WIMP scattering at underground
- 3) Search at Collider experiment : LHC

Y2L(YangYang Lab) 10th year (2003-2012)

2000 @ CPL, began in the vinyl room

Year 2013 is the 11th year of Y2L. We have running Y2L for 10 years.

1st installation of shielding for KIMS experiment.

Detection scheme for the AMoRE Project

CMO (⁴⁰Ca¹⁰⁰MoO₄)

- Scintillating crystal
- High Debye temperature: $T_D = 438$ K,

Two detection channels : phonon + light -> alpha induced background rejection

MMC

Dilution refrigerator for AMoRE-10

Pulse shape

- Signals showed 0.5 ms rise-time at 30 mK.
- Fast rise-time is quite important for $2\nu\beta\beta$ random coincidence rejection.
- Faster rise-time than bolometer technique (factor 10)

B.A. Barabash, J. Phys. G: Nucl. Part. Phys. 39(2012)085103

Isotope enrichment Price Level

	Criteria for the Best Ο νββ Isotope						
Isotope	Q., G.	T ² νββ	Isotope Enrichment			0νββ	
	(MeV)	(y ⁻¹)	(10^{20} y)	Abundance (%)	Method	Price Level	Project
¹⁸⁰ Te	2.533	1.70	6.8	33.8 → 95	GC	0.3	CUORE
¹⁸⁶ Xe	2.462	1.81		8.9 → 90	GC	0.2	EXO
76Ga	2.039	0.24	15	15 7.8 → 90	60	1	GERDA
- Ge	2.000	0.24	10		60	(\$80/g)	MAJORANA
⁸² Se	2.995	1.08	0.92	9.2 → 90	GC	1.5	SuperNEMO
¹⁰⁰ Mo	3.034	1.75	0.07	9.6 → 90	GC	1	AMORE
¹¹⁶ Cd	2.802	1.89	0.28	7.5 → 90	GC	2.5	
⁴⁸ Ca	<u>4.274</u>	<u>2,44</u>	<u>0.44</u>	0.187 → 25	EMIS ALSIS	160 < 5	CANDLES
¹⁶⁰ Nd	3.667	8.00	0.08	5.6 → 90	EMIS	170	
⁹⁶ Zr	3.350	2.24	0.28	2.8 → 60	EMIS	400	-

Do-Young Jeong, KAERI

Production capacity of Mo-100 at the ECP

The ECP (Electrochemical plant) Zelenogorsk, Russia Current capacity is 0,6 kg of Mo-100/month (7-8 kg/ year).

The working gas for Moly enrichment (MoF6) is extremely corrosive: once a machine is de dicated to Moly enrichment, there is no going back. You simply scrap the machine wh en the program is completed.

We received preliminary assurances that a scale-up of current production is planned bec ause of worldwide shortage of Mo-99 for Tc99m generator production.

New proved technology: production of Mo-99 in the activation reaction: 98Mo(n,g)99Mo (reactor) and 100Mo(gamma,n)99Mo (e-linac)

As result, new productivity will be about 2,4 kg of Mo-100 per month \sim 28 kg per year

=> Is it possible to produce in China?

¹⁰⁰Mo, ⁴⁰Ca enriched materials

Mo-100 isotope production: The ECP (Electrochemical plant) Zelenogorsk, Krasnoyarsky kray, Siberia

 ¹⁰⁰MoO₃ oxide with mass of Mo-100 : 2,5 kg <u>Enrichment</u>: Mo-100 = 96,1% <u>Impurities (the results from ICP MS measurements):</u>

U <= 0.00007 ppm (< 0,07 ppb) and <= 0.0002 ppm (< 0,2 ppb) Th <= 0.0001 ppm (< 0,1 ppb) and <= 0.0007 ppm (< 0,7 ppb) ²²⁶Ra < 2,3 mBq/kg, ²²⁸Ac < 3,8 mBq/kg Current capacity is 0,6 kg of Mo-100 per month (7-8 kg per year).

The industrial separator SU20 Lesnoy, Sverdlovky region

27 kg of Ca-40 (40 CaCO₃) is available now at EKP, Lesnoy Ca-48 < 0,001%

Plots for all material backgrounds

Dark matter sensitivity of CaMoO₄ cryogenic experiment

