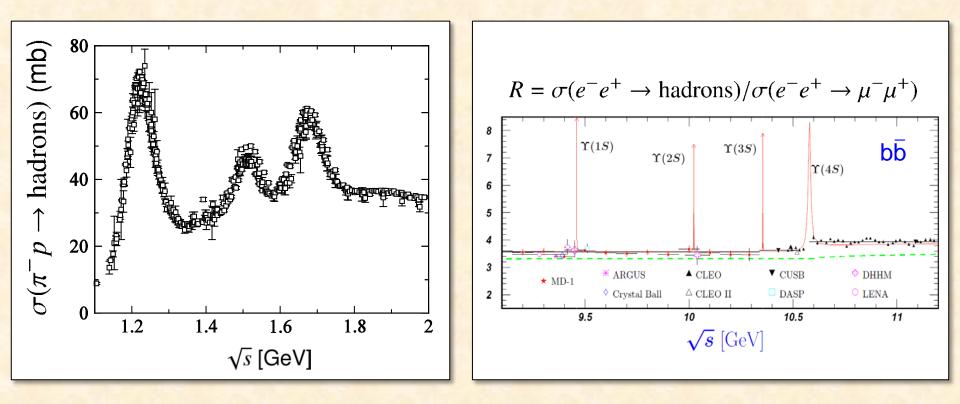
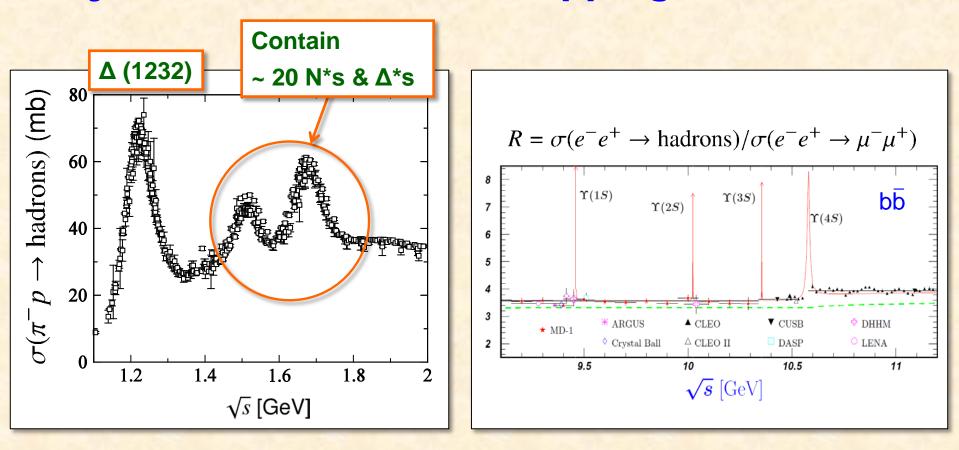
Dynamical coupled-channels approach to light-flavor baryon spectroscopy

Hiroyuki Kamano Research Center for Nuclear Physics (RCNP) Osaka University


Baikal Workshop, Bolshiye Koty, Irkutsk, Russia, July 14-19, 2013

Outline

1. Background and motivation for N* spectroscopy

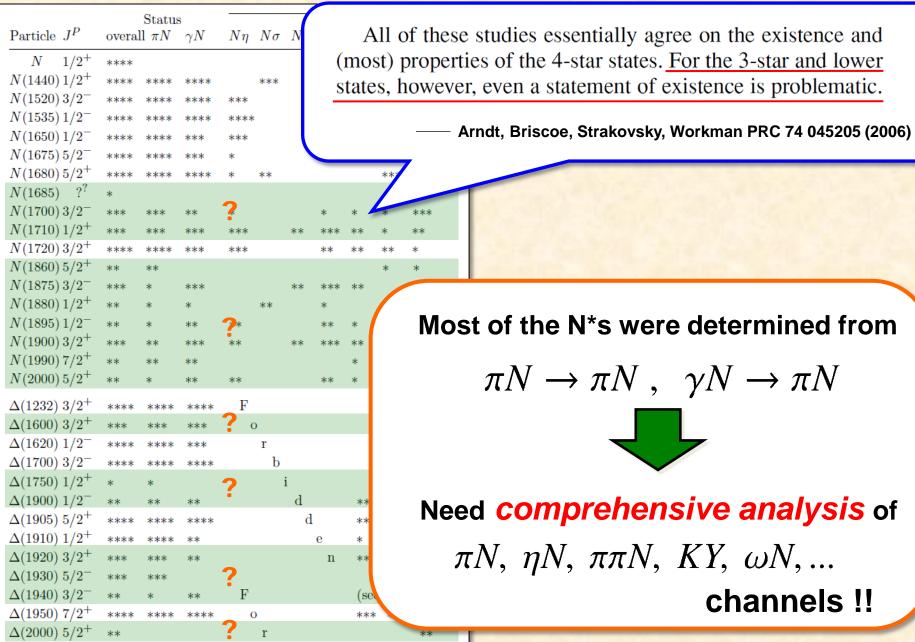

- 2. Results of ANL-Osaka Dynamical Coupled-Channels (DCC) analysis of πN and γN reactions
 - Brief description of ANL-Osaka DCC model
 - Results of 6-channel DCC analysis (2006-2009)
 - Results of 8-channel DCC analysis (2010-2012) -> arXiv: 1305.4351
- 3. Ongoing projects and future plans with ANL-Osaka DCC approach
- 4. Summary

Light-flavor baryon spectroscopy : Physics of broad & overlapping resonances

- Width: a few hundred MeV.
 [(width/mass) ~ 0.1 0.2]
- ✓ Resonances are highly overlapping in energy except ∆(1232).
- ✓ Width: ~10 keV to ~10 MeV
 [(width/mass) ~ 10⁻³ 10⁻⁴]
- Each resonance peak is clearly separated.

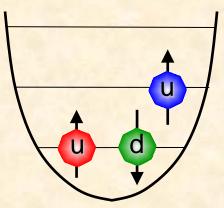
Light-flavor baryon spectroscopy : Physics of broad & overlapping resonances

- Width: a few hundred MeV.
 [(width/mass) ~ 0.1 0.2]
- ✓ Resonances are highly overlapping in energy except ∆(1232).
- ✓ Width: ~10 keV to ~10 MeV
 [(width/mass) ~ 10⁻³ 10⁻⁴]
- ✓ Each resonance peak is clearly separated.


N* states and PDG *s

D		Status								
Particle J^P	overa	$\ln \pi N$	γN	$N\eta$	$N\sigma$	$N\omega$	ΛK	ΣK	$N\rho$	$\Delta \pi$
$N = 1/2^+$	****									
$N(1440) 1/2^+$	****	****	****		***				*	***
$N(1520) 3/2^-$	****	****	****	***					***	***
$N(1535) 1/2^-$	****	****	****	****	:				**	*
$N(1650) 1/2^-$	****	****	***	***			***	**	**	***
$N(1675) 5/2^{-1}$	****	****	***	*			*		*	***
$N(1680) 5/2^+$	****	****	****	*	**				***	***
N(1685) ??	*									
$N(1700) 3/2^{-1}$	***	***	**	*			*	*	*	***
$N(1710) 1/2^+$	***	***	***	***		**	***	**	*	**
$N(1720) 3/2^+$	****	****	***	***			**	**	**	*
$N(1860) 5/2^+$	**	**							*	*
$N(1875) 3/2^{-}$	***	*	***			**	***	**		***
$N(1880) 1/2^+$	**	*	*		**		*			
$N(1895) 1/2^{-}$	**	*	**	**			**	*		
$N(1900) 3/2^+$	***	**	***	**		**	***	**	*	**
$N(1990) 7/2^+$	**	**	**					*		
$N(2000) 5/2^+$	**	*	**	**			**	*	**	
$\Delta(1232) \ 3/2^+$	****	****	****	\mathbf{F}						
$\Delta(1600) \ 3/2^+$	***	***	***	(C				*	***
$\Delta(1620) \ 1/2^{-}$	****	****	***		r				***	***
$\Delta(1700) \ 3/2^{-}$	****	****	****		b				**	***
$\Delta(1750) \ 1/2^+$	*	*			İ	i				
$\Delta(1900) \ 1/2^{-}$	**	**	**			d		**	**	**
$\Delta(1905) 5/2^+$	****	****	****			d		***	**	**
$\Delta(1910) \ 1/2^+$	****	****	**				e	*	*	**
$\Delta(1920) \ 3/2^+$	***	***	**				n	***		**
$\Delta(1930) \ 5/2^{-}$	***	***								
$\Delta(1940) \ 3/2^{-}$	**	*	**	F				(see	en ir	$\Delta \eta$
$\Delta(1950) 7/2^+$	****	****	****	C	D			***	*	***
$\Delta(2000) 5/2^+$	**				r					**

N* states and PDG *s

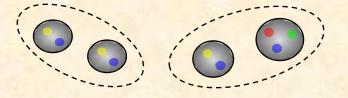

		Transferrance (1.
		Status	3			-/														
Particle J^P	overa	ll πN		Nn	$N\sigma$	N		A	11 o	f the	ese s	tuđ	dies	s ess	entia	allv a	agree	on t	he ex	istend
			1	'		-	(•	•			
$N = 1/2^+$	****						(mos	t) [proper	erties	5 OI	n tu	ne 4-	star	state	s. <u>Fo</u>	r the	3-sta	r and
$N(1440) 1/2^+$	****	****	****		***		S	tate	s. h	owev	ver.	eve	en a	a sta	teme	ent o	f exis	tence	e is p	roble
$N(1520) 3/2^-$	****	****	****	***			_		- ,		,								r	
$N(1535) 1/2^-$	****	****	****	****	¢						A	-J4	D!		C1==					74 0 45
$N(1650) 1/2^-$	****	****	***	***							- Arn	ατ,	BLI	ISCOE	, Stra	KOVSE	ky, Wo	гктаг	IPRC	74 043
$N(1675) 5/2^{-1}$	****	****	***	*																
$N(1680) 5/2^+$	****	****	****	*	**				***											
N(1685) ??	*																			
$N(1700) 3/2^-$	***	***	**	?			*	*	*	***										
$N(1710) 1/2^+$	***	***	***	***		**	***	**	*	**										
$N(1720) 3/2^+$	****	****	***	***			**	**	**	*										
$N(1860) 5/2^+$	**	**							*	*										
$N(1875) 3/2^-$	***	*	***			**	***	**		***										
$N(1880) 1/2^+$	**	*	*		**		*													
$N(1895) 1/2^{-}$	**	*	**	2*			**	*												
$N(1900) 3/2^+$	***	**	***	**		**	***	**	*	**										
$N(1990) 7/2^+$	**	**	**					*												
$N(2000) 5/2^+$	**	*	**	**			**	*	**											
$\Delta(1232) \ 3/2^+$	****	****	****	F																
$\Delta(1232) \ 3/2^+$ $\Delta(1600) \ 3/2^+$		****	****	?	-					***	- 12									
$\Delta(1600) 3/2$ $\Delta(1620) 1/2^{-1}$	***	***		•					*	***	- 17									
	****	****	***		r h				***	***										
$\Delta(1700) \ 3/2^{-}$ $\Delta(1750) \ 1/2^{+}$	****	****	****		b ;				**	***										
	*	*		?	i															
$\Delta(1900) 1/2^{-}$	**	**	**			d		**	**	**										
$\Delta(1905) 5/2^+$	****	****	****			d		***	**	**										
$\Delta(1910) 1/2^+$	****	****	**				е	*	*	**										
$\Delta(1920) \ 3/2^+$	***	***	**	0			n	***		**										
$\Delta(1930) 5/2^{-1}$	***	***		•				,												
$\Delta(1940) \ 3/2^{-1}$	**	*	**	F				(see	n ir	$\Delta \eta$										
$\Delta(1950) 7/2^+$	****	****	****	_	D			***	*	***	_ 17									
$\Delta(1950) 7/2$ $\Delta(2000) 5/2^+$																				

N* states and PDG *s

Hadron spectrum and reaction dynamics

- Various static hadron models have been proposed to calculate hadron spectrum and form factors.
 - Quark models, Bag models, Dyson-Schwinger approaches, Holographic QCD,...
 - ➤ Excited hadrons are treated as stable particles. → The resulting masses are real.

Constituent quark model


Hadron spectrum and reaction dynamics

- Various static hadron models have been proposed to calculate hadron spectrum and form factors.
 - Quark models, Bag models, Dyson-Schwinger approaches, Holographic QCD,...
- In reality, excited hadrons are "unstable" and can exist only as resonance states in hadron reactions.

*

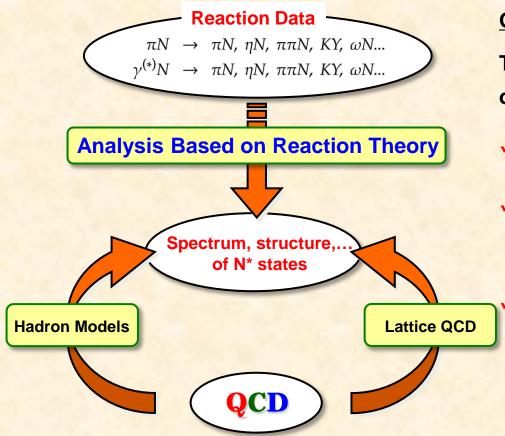
"molecule-like" states

"Mass" becomes complex !! → "pole mass"

core (bare state) + meson cloud

bare state

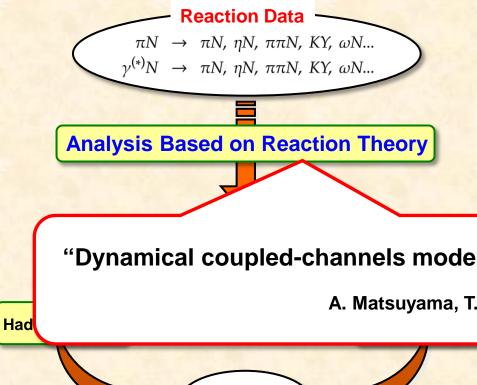
Hadron spectrum and reaction dynamics


- Various static hadron models have been proposed to calculate hadron spectrum and form factors.
 - Quark models, Bag models, Dyson-Schwinger approaches, Holographic QCD,...
 - Excited hadrons are treated as stable particles. > The resulting masses are real.
- In reality, excited hadrons are "unstable" and can exist only as resonance states in hadron reactions.

"Mass" becomes complex !! → "pole mass"

What is the role of reaction dynamics in interpreting the hadron spectrum, structures, and dynamical origins ??

N* spectroscopy with ANL-Osaka Dynamical Coupled-Channels (DCC) approach


Objectives and goals:

Through the comprehensive analysis of world data of πN , γN , N(e,e') reactions,

- Determine N* spectrum (pole masses)
- Extract N* form factors (e.g., N-N* e.m. transition form factors)

Provide reaction mechanism information necessary for interpreting N* spectrum, structures and dynamical origins

N* spectroscopy with ANL-Osaka Dynamical **Coupled-Channels (DCC) approach**

Objectives and goals:

Through the comprehensive analysis of world data of πN , γN , N(e,e') reactions,

Determine N^{*} spectrum (pole masses)

Extract N* form factors

"Dynamical coupled-channels model of meson production reactions"

A. Matsuyama, T. Sato, T.-S.H. Lee Phys. Rep. 439 (2007) 193

bn

structures and dynamical origins

For details see Matsuyama, Sato, Lee, Phys. Rep. 439,193 (2007)

✓ Partial wave (LSJ) amplitudes of $a \rightarrow b$ reaction:

$$T_{a,b}^{(LSJ)}(p_a, p_b; E) = V_{a,b}^{(LSJ)}(p_a, p_b; E) + \sum_c \int_0^\infty q^2 dq V_{a,c}^{(LSJ)}(p_a, q; E) G_c(q; E) T_{c,b}^{(LSJ)}(q, p_b; E)$$

coupled-channels effect

Reaction channels:

$$a, b, c = (\gamma^{(*)}N, \pi N, \eta N, \pi \Delta, \sigma N, \rho N, K \Lambda, K \Sigma, \omega N \cdots)$$
$$\pi \pi N$$

Transition Potentials:

$$V_{a,b} = v_{a,b} + Z_{a,b} + \sum_{N^*} \frac{\Gamma_{N^*,a}^{\dagger} \Gamma_{N^*,b}}{E - M_{N^*}}$$

Exchange potentials Z-diagrams bare N* states

For details see Matsuyama, Sato, Lee, Phys. Rep. 439,193 (2007)

✓ Partial wave (LSJ) amplitudes of $a \rightarrow b$ reaction:

$$T_{a,b}^{(LSJ)}(p_a, p_b; E) = V_{a,b}^{(LSJ)}(p_a, p_b; E) + \sum_{c} \int_{0}^{\infty} q^2 dq V_{a,c}^{(LSJ)}(p_a, q; E) G_c(q; E) T_{c,b}^{(LSJ)}(q, p_b; E)$$
coupled-channels effect
$$Meson-Baryon Green functions G_{MB}$$

$$MB = \pi N, \eta N, K\Lambda, K\Sigma, \omega N$$

$$MB = \pi \Delta, \rho N, \sigma N$$
Stable channels
$$MB = \pi \Delta, \rho N, \sigma N$$

$$Quasi 2-body channels$$

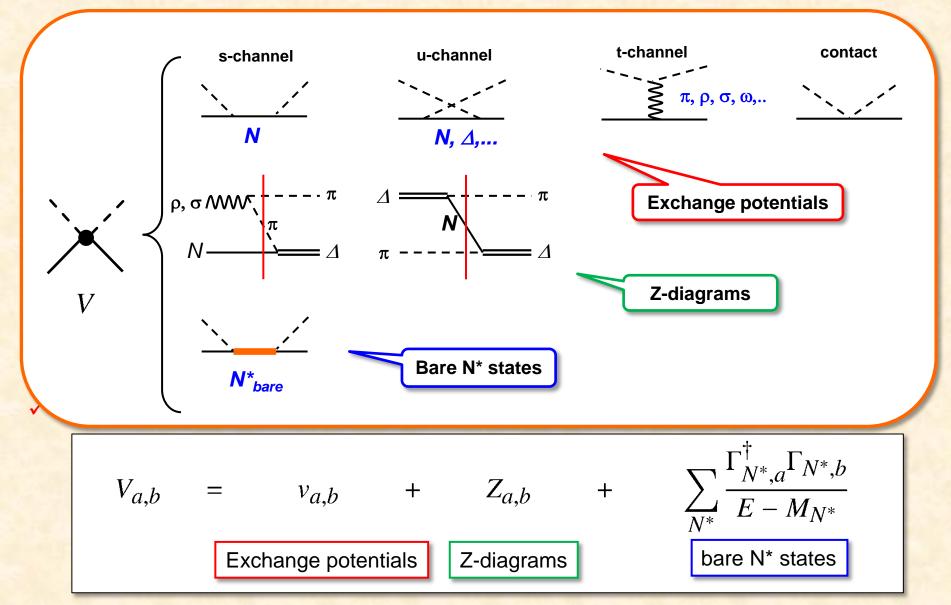
$$\pi - - - \pi N \longrightarrow N$$

For details see Matsuyama, Sato, Lee, Phys. Rep. 439,193 (2007)

✓ Partial wave (LSJ) amplitudes of $a \rightarrow b$ reaction:

$$T_{a,b}^{(LSJ)}(p_a, p_b; E) = V_{a,b}^{(LSJ)}(p_a, p_b; E) + \sum_c \int_0^\infty q^2 dq V_{a,c}^{(LSJ)}(p_a, q; E) G_c(q; E) T_{c,b}^{(LSJ)}(q, p_b; E)$$

coupled-channels effect


Reaction channels:

$$a, b, c = (\gamma^{(*)}N, \pi N, \eta N, \pi \Delta, \sigma N, \rho N, K \Lambda, K \Sigma, \omega N \cdots)$$
$$\pi \pi N$$

Transition Potentials:

$$V_{a,b} = v_{a,b} + Z_{a,b} + \sum_{N^*} \frac{\Gamma_{N^*,a}^{\dagger} \Gamma_{N^*,b}}{E - M_{N^*}}$$

Exchange potentials Z-diagrams bare N* states

For details see Matsuyama, Sato, Lee, Phys. Rep. 439,193 (2007)

For details see Matsuyama, Sato, Lee, Phys. Rep. 439,193 (2007)

✓ Partial wave (LSJ) amplitudes of a \rightarrow b reaction:

$$T_{a,b}^{(LSJ)}(p_a, p_b; E) = V_{a,b}^{(LSJ)}(p_a, p_b; E) + \sum_c \int_0^\infty q^2 dq V_{a,c}^{(LSJ)}(p_a, q; E) G_c(q; E) T_{c,b}^{(LSJ)}(q, p_b; E)$$

coupled-channels effect

Reaction channels:

$$a,b,c = (\gamma^{(}$$

Would be possible to relate with hadron states of the static hadron models (quark models, DSE, etc.) excluding meson-baryon continuums.

Transition Potentials:

$$V_{a,b} = v_{a,b} + Z_{a,b} + \sum_{N^*} \frac{\Gamma_{N^*,a}^{\dagger} \Gamma_{N^*,b}}{E - M_{N^*}}$$

Exchange potentials Z-diagrams bare N* states

For details see Matsuyama, Sato, Lee, Phys. Rep. 439,193 (2007)

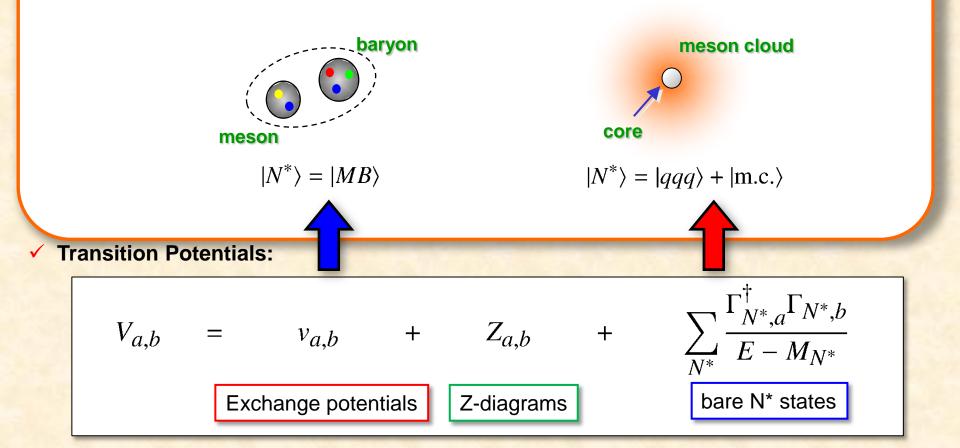
✓ Partial wave (LSJ) amplitudes of $a \rightarrow b$ reaction:

$$T_{a,b}^{(LSJ)}(p_a, p_b; E) = V_{a,b}^{(LSJ)}(p_a, p_b; E) + \sum_c \int_0^\infty q^2 dq V_{a,c}^{(LSJ)}(p_a, q; E) G_c(q; E) T_{c,b}^{(LSJ)}(q, p_b; E)$$

coupled-channels effect

Reaction channels:

$$a, b, c = (\gamma^{(*)}N, \pi N, \eta N, \pi \Delta, \sigma N, \rho N, K \Lambda, K \Sigma, \omega N \cdots)$$
$$\pi \pi N$$


Transition Potentials:

$$V_{a,b} = v_{a,b} + Z_{a,b} + \sum_{N^*} \frac{\Gamma_{N^*,a}^{\dagger} \Gamma_{N^*,b}}{E - M_{N^*}}$$

Exchange potentials Z-diagrams bare N* states

For details see Matsuyama, Sato, Lee, Phys. Rep. 439,193 (2007)

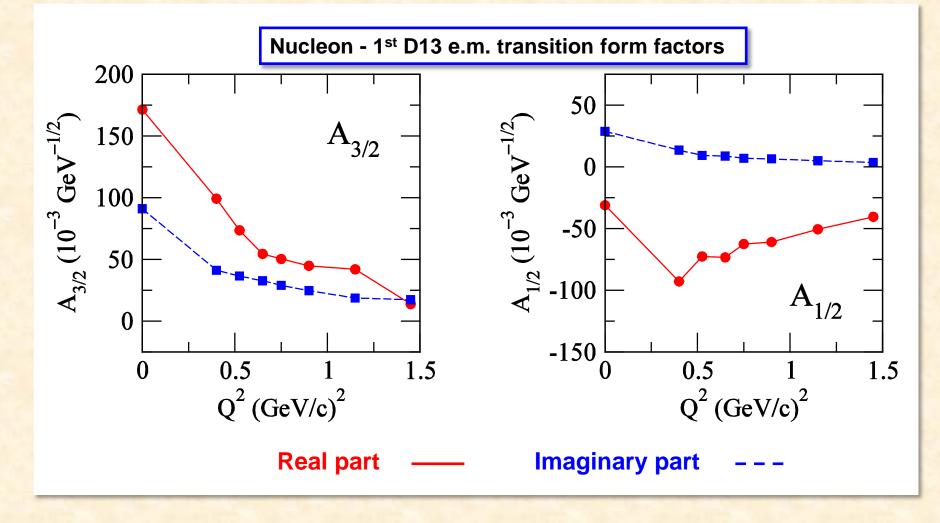
✓ Partial wave (LSJ) amplitudes of $a \rightarrow b$ reaction:

Physical N*s will be a "mixture" of the two pictures:

DCC analysis (2006-2009)

Hadronic part	$\gamma N, \pi N, \eta N, \pi \Delta, \rho N, \sigma N$ coupled-channels calculations were performed.
$\pi N \rightarrow \pi N$: Analyzed to construct a hadronic part of the model up to W = 2 GeV
	Julia-Diaz, Lee, Matsuyama, Sato, PRC76 065201 (2007)
$\pi N \rightarrow \eta N$: Analyzed to construct a hadronic part of the model up to W = 2 GeV
	Durand, Julia-Diaz, Lee, Saghai, Sato, PRC78 025204 (2008)
$\pi N \rightarrow \pi \pi N$: Fully dynamical coupled-channels calculation up to W = 2 GeV
	Kamano, Julia-Diaz, Lee, Matsuyama, Sato, PRC79 025206 (2009)
	Hadronic part $\pi N \rightarrow \pi N$ $\pi N \rightarrow \eta N$ $\pi N \rightarrow \pi \pi N$

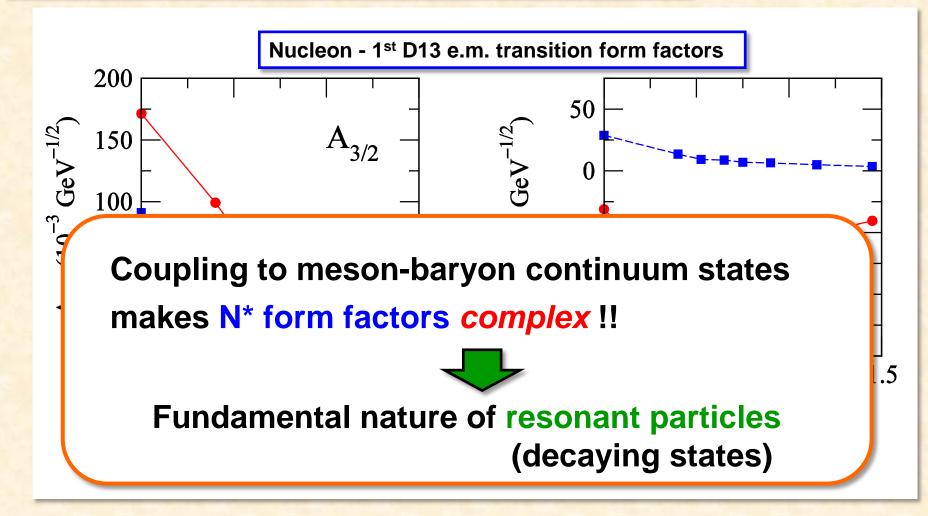
Electromagnetic part


$\checkmark \gamma^{(*)} N \rightarrow \pi N$: Analyzed to construct a E.M. part of the model up to $W = 1.6 \text{ GeV}$ and $Q^2 = 1.5 \text{ GeV}^2$
	(photoproduction) Julia-Diaz, Lee, Matsuyama, Sato, Smith, PRC77 045205 (2008)
	(electroproduction) Julia-Diaz, Kamano, Lee, Matsuyama, Sato, Suzuki, PRC80 025207 (2009)
\checkmark γ N → π π N	: Fully dynamical coupled-channels calculation up to W = 1.5 GeV
	Kamano, Julia-Diaz, Lee, Matsuyama, Sato, PRC80 065203 (2009)

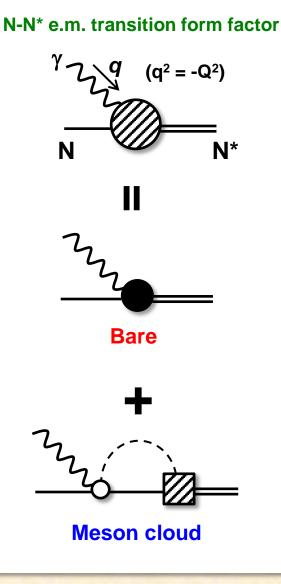
Extraction of N* parameters

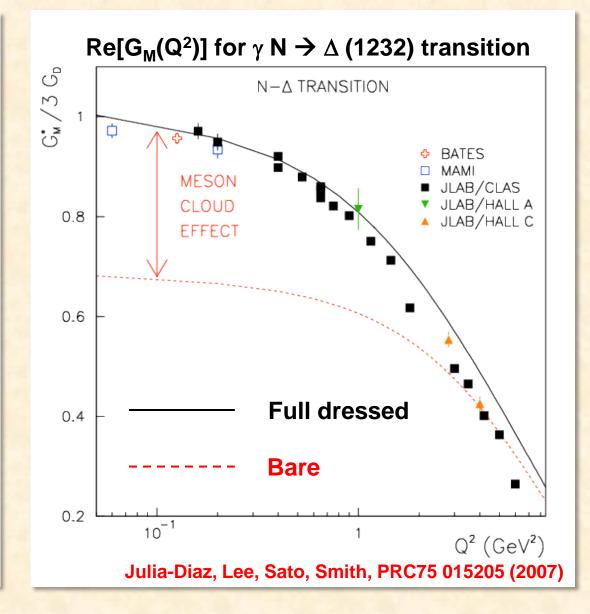
~	Extraction of N* pole positions & new interpretation on the dynamical origin of P11 resonances
	Suzuki, Julia-Diaz, Kamano, Lee, Matsuyama, Sato, PRL104 065203 (2010)
~	Stability and model dependence of P11 resonance poles extracted from pi N \rightarrow pi N data
	Kamano, Nakamura, Lee, Sato, PRC81 065207 (2010)
~	Extraction of $\gamma N \rightarrow N^*$ electromagnetic transition form factors
	Suzuki, Sato, Lee, PRC79 025205 (2009); PRC82 045206 (2010)

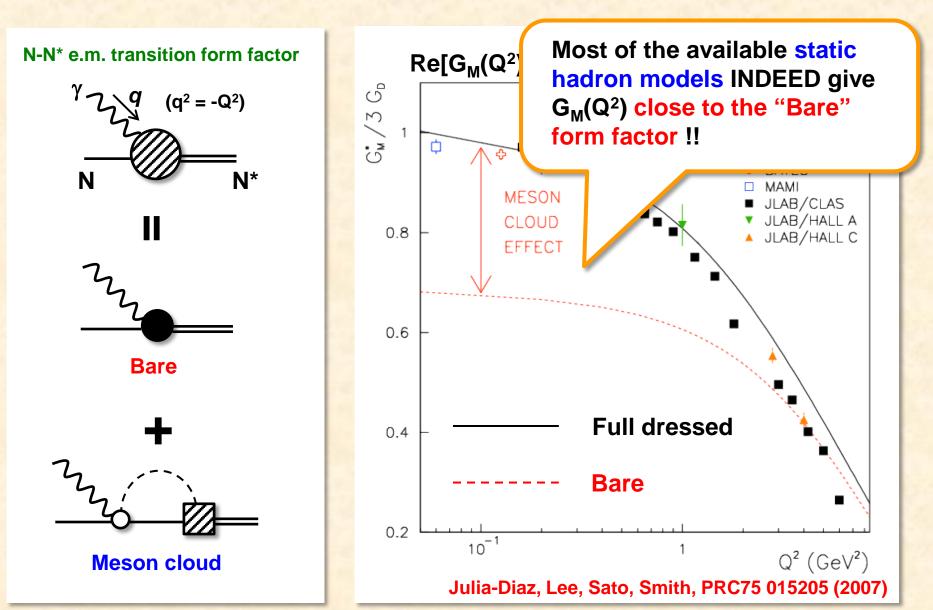
Consequences of reaction dynamics (1/3): Complex nature of resonance parameters


Extracted from analyzing the p(e,e' π)N data (~ 20,000) from CLAS

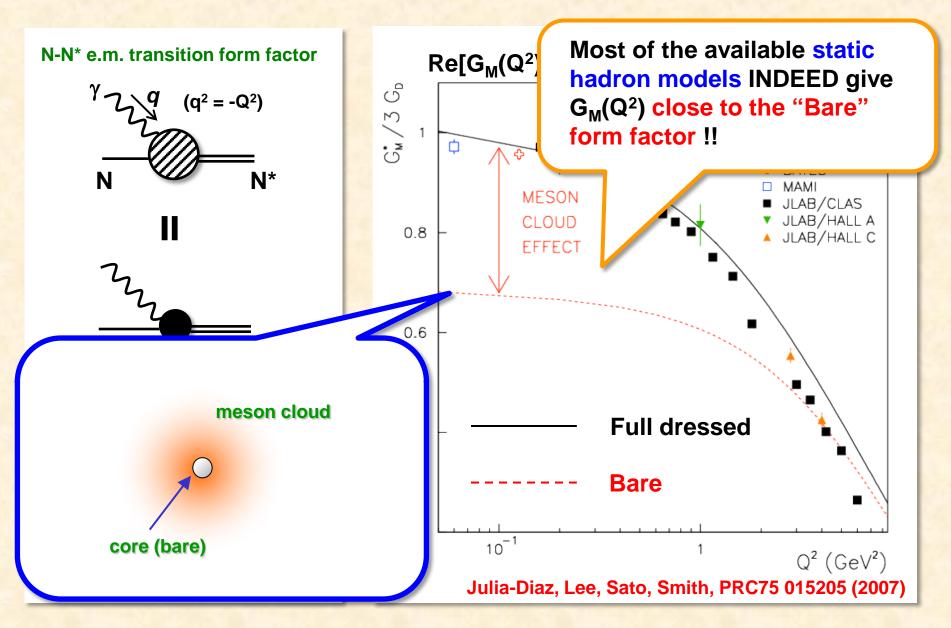
Julia-Diaz, Kamano, Lee, Matsuyama, Sato, Suzuki PRC80 025207 (2009) Suzuki, Sato, Lee, PRC82 045206 (2010)


Consequences of reaction dynamics (1/3): Complex nature of resonance parameters

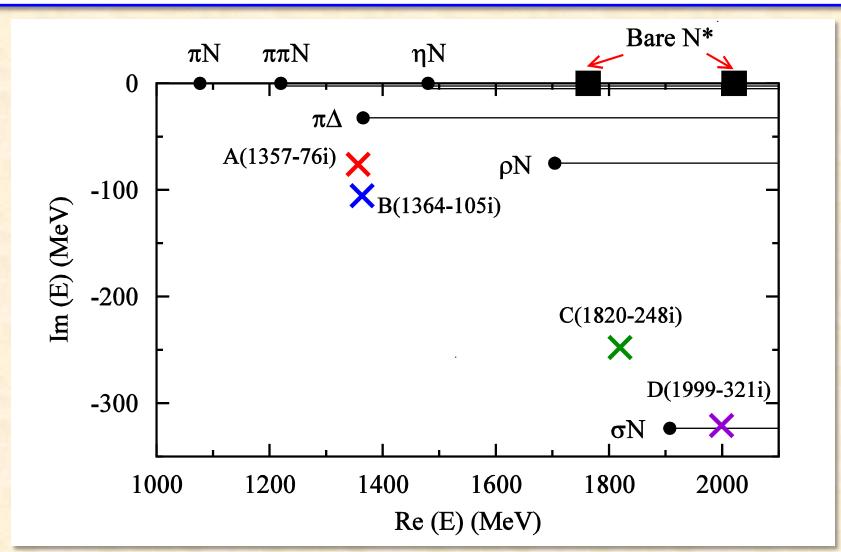

Extracted from analyzing the p(e,e' π)N data (~ 20,000) from CLAS


Julia-Diaz, Kamano, Lee, Matsuyama, Sato, Suzuki PRC80 025207 (2009) Suzuki, Sato, Lee, PRC82 045206 (2010)

Consequences of reaction dynamics (2/3): Meson cloud effect

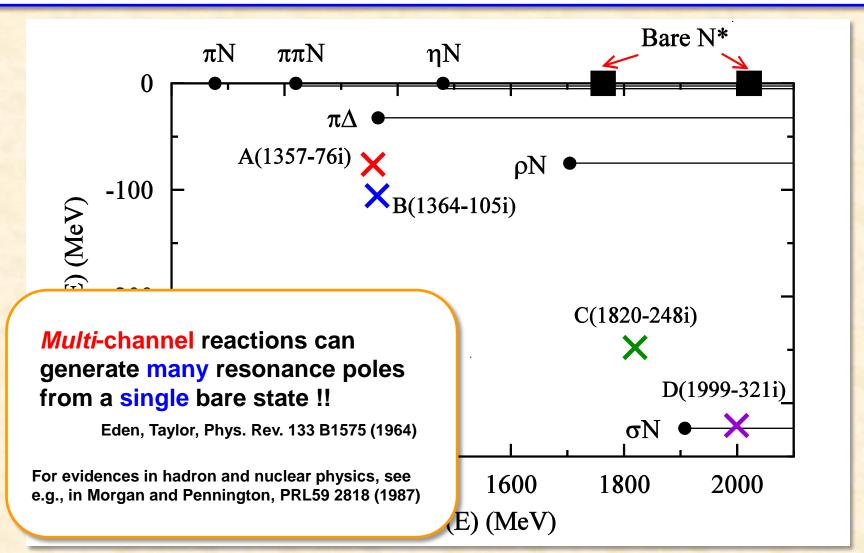


Consequences of reaction dynamics (2/3): Meson cloud effect


Consequences of reaction dynamics (2/3): Meson cloud effect

Consequences of reaction dynamics (3/3): Dynamical origin of nucleon resonances

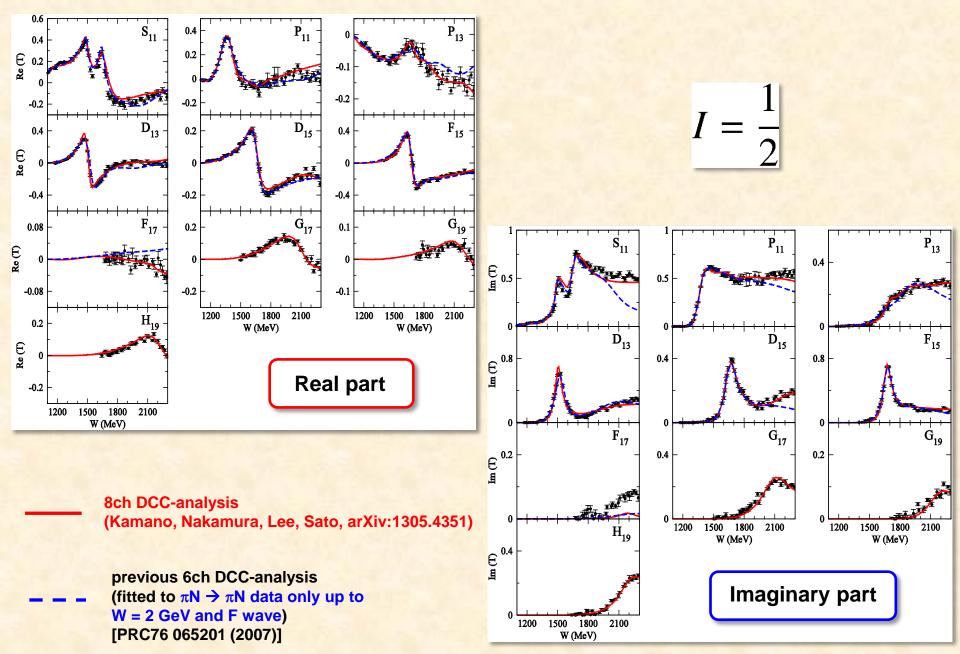
Suzuki, Julia-Diaz, Kamano, Lee, Matsuyama, Sato, PRL104 065203 (2010)


(Complex) pole masses and dynamical origin of I=1/2, $J^P = 1/2^+$ resonances

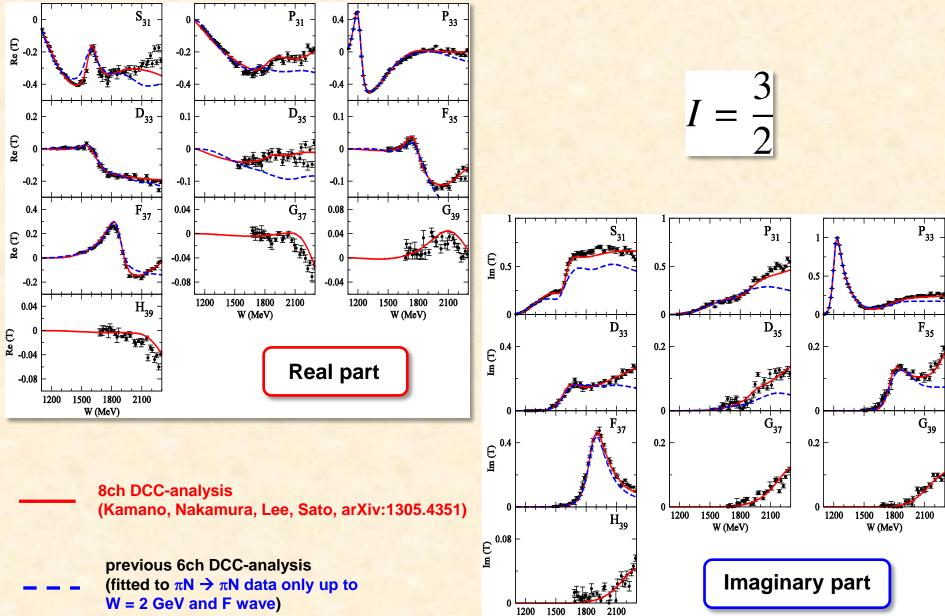
Consequences of reaction dynamics (3/3): Dynamical origin of nucleon resonances

Suzuki, Julia-Diaz, Kamano, Lee, Matsuyama, Sato, PRL104 065203 (2010)

(Complex) pole masses and dynamical origin of I=1/2, $J^P = 1/2^+$ resonances



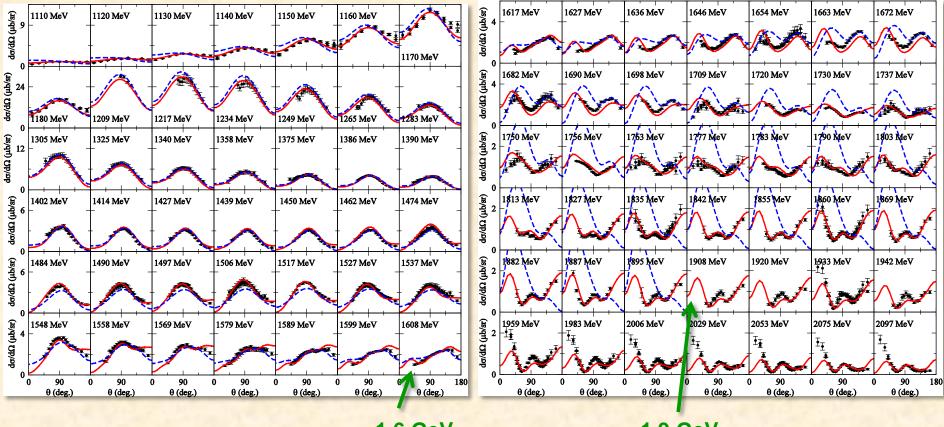
ANL-Osaka DCC analysis


Fully combined analysis of πN , $\gamma N \rightarrow \pi N$, ηN , $K\Lambda$, $K\Sigma$ reactions !! (more than 22,000 data of unpolarized & polarized observables to fit)

	2006 - 2009	2010 - 2012
 # of coupled channels 	<mark>6 channels</mark> (γΝ,πΝ,ηΝ,πΔ,ρΝ,σΝ)	<mark>8 channels</mark> (γΝ,πΝ,ηΝ,πΔ,ρΝ,σΝ,ΚΛ,ΚΣ)
$\checkmark \pi p \rightarrow \pi N$	< 2 GeV	< 2.3 GeV
✓ γ $p \rightarrow \pi N$	< 1.6 GeV	< 2.1 GeV
✓ πp → ηN	< 2 GeV	< 2.1 GeV
✓ γp → ηp		< 2.1 GeV
✓ $\pi p \rightarrow K\Lambda, K\Sigma$	_	< 2.1 GeV
✓ γ $p \rightarrow K^+\Lambda$, KΣ		< 2.1 GeV
		Kamano, Nakamura, Lee, Sato arXiv:1305.4351

Partial wave amplitudes of πN scattering

Partial wave amplitudes of πN scattering



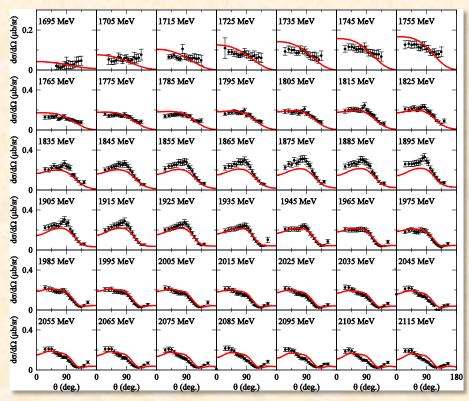
W (MeV)

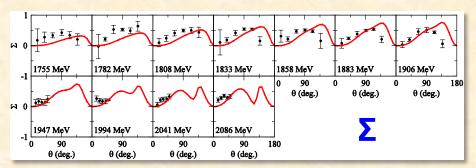
[PRC76 065201 (2007)]

$\gamma p \rightarrow \pi^0 p$ reaction

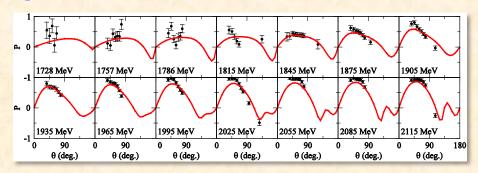
DCS

1.6 GeV

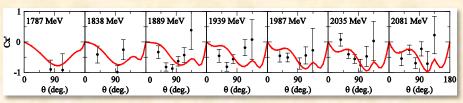

1.9 GeV

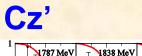

8ch DCC-analysis (Kamano, Nakamura, Lee, Sato, arXiv:1305.4351)

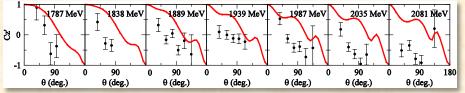
previous 6ch DCC-analysis (fitted to $\gamma N \rightarrow \pi N$ data only up to W = 1.6 GeV) [PRC77 045205 (2008)]

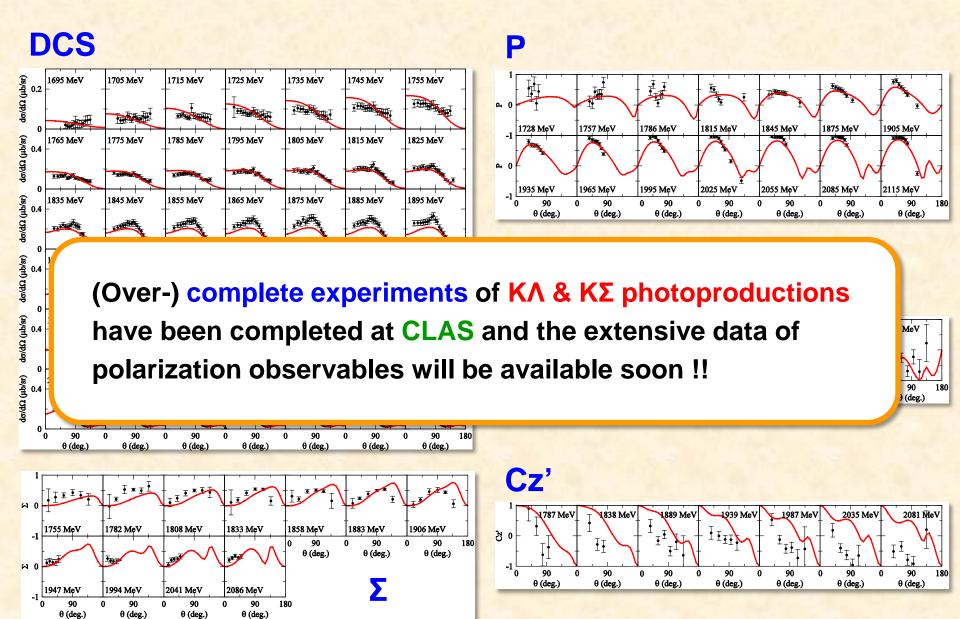

$\gamma p \rightarrow K^+ \Sigma^0$ reaction

DCS

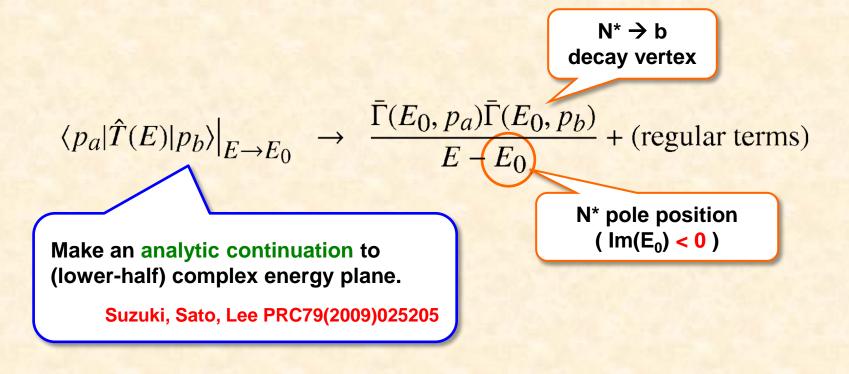





Ρ



$\mathbf{v} \mathbf{p} \rightarrow \mathbf{K}^+ \mathbf{\Sigma}^0$ reaction



θ (deg.)

Definition of N* parameters

Definitions of

- N* masses (spectrum)
- ✓ N^{*} → MB, γ N decay vertices
- ➔ Pole positions of the amplitudes
- ➔ Residues^{1/2} of the pole

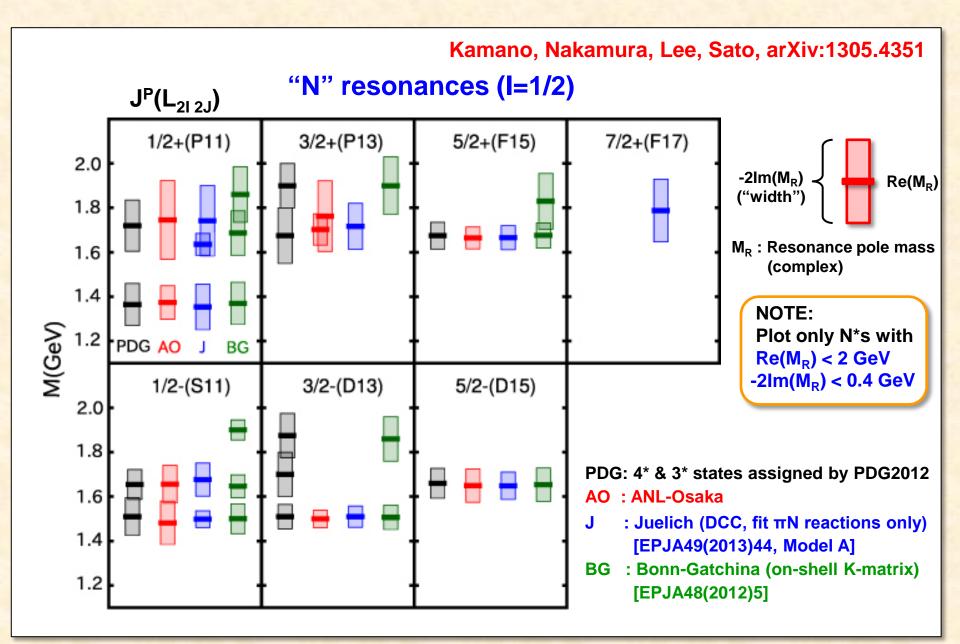
Definition of N* parameters

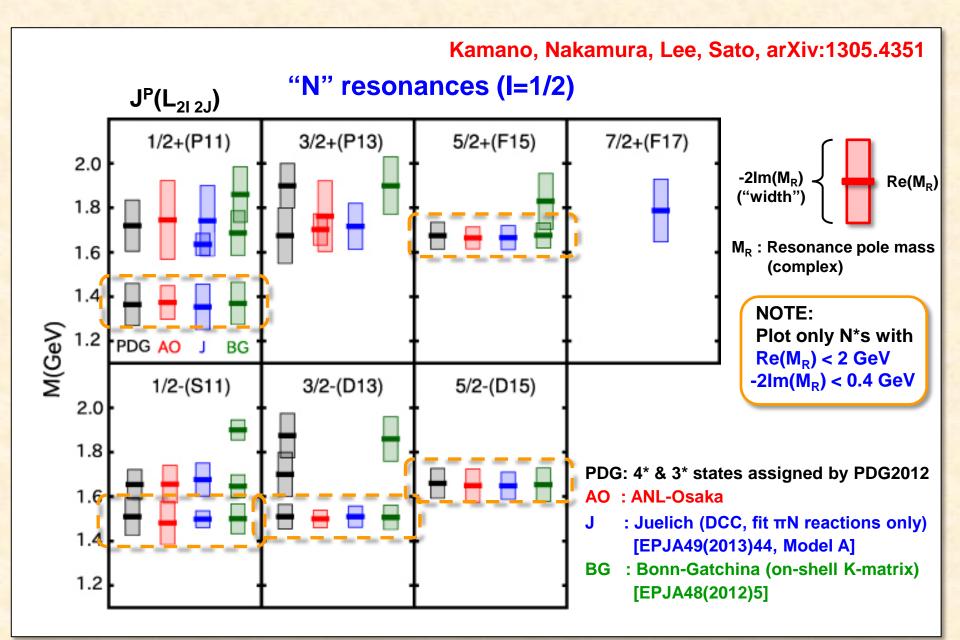
Definitions of

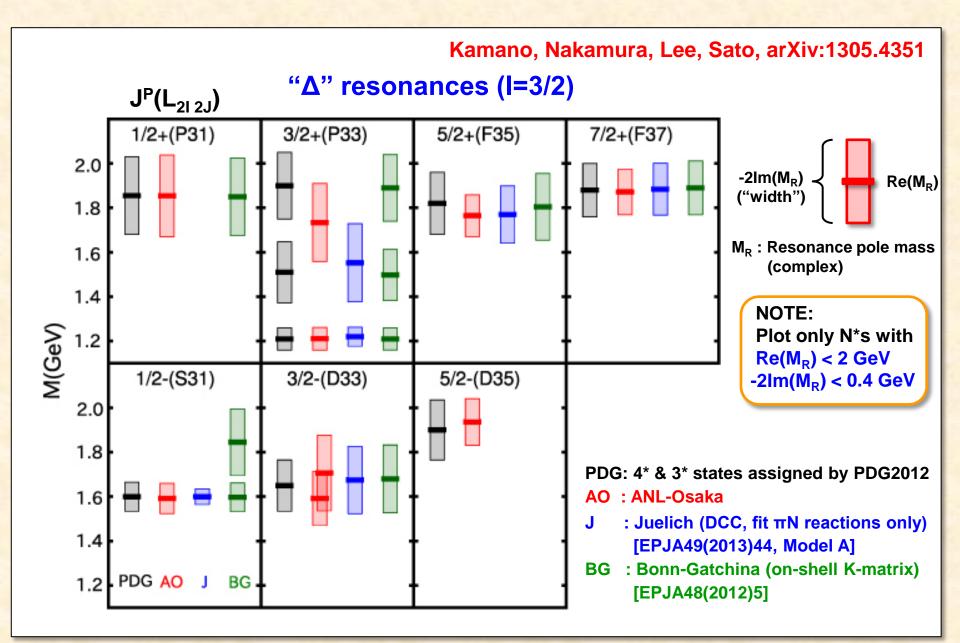
- N* masses (spectrum)
- ✓ N^{*} → MB, γ N decay vertices
- ➔ Pole positions of the amplitudes
- ➔ Residues^{1/2} of the pole

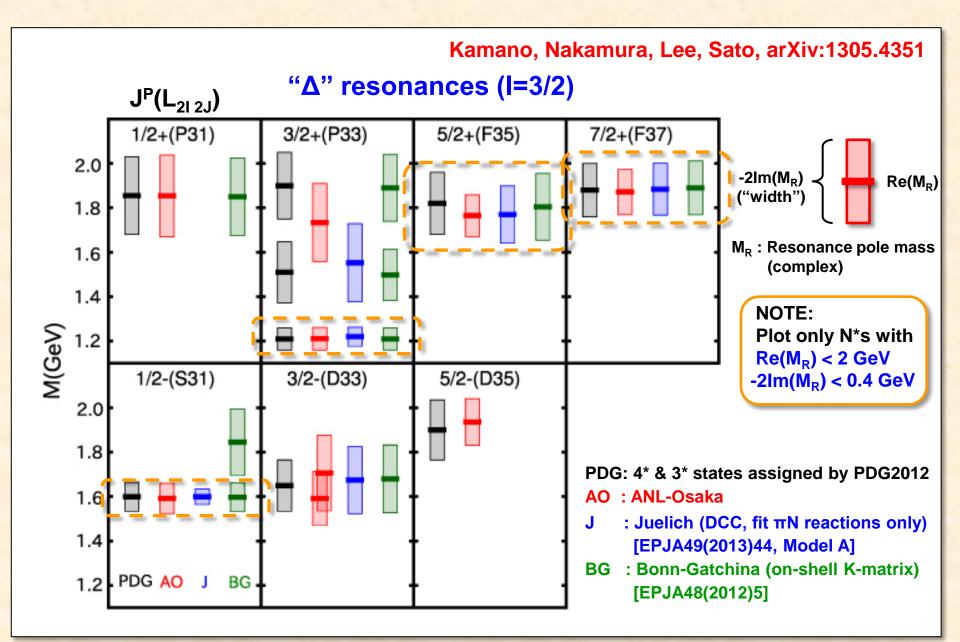
 $N^* \rightarrow b$

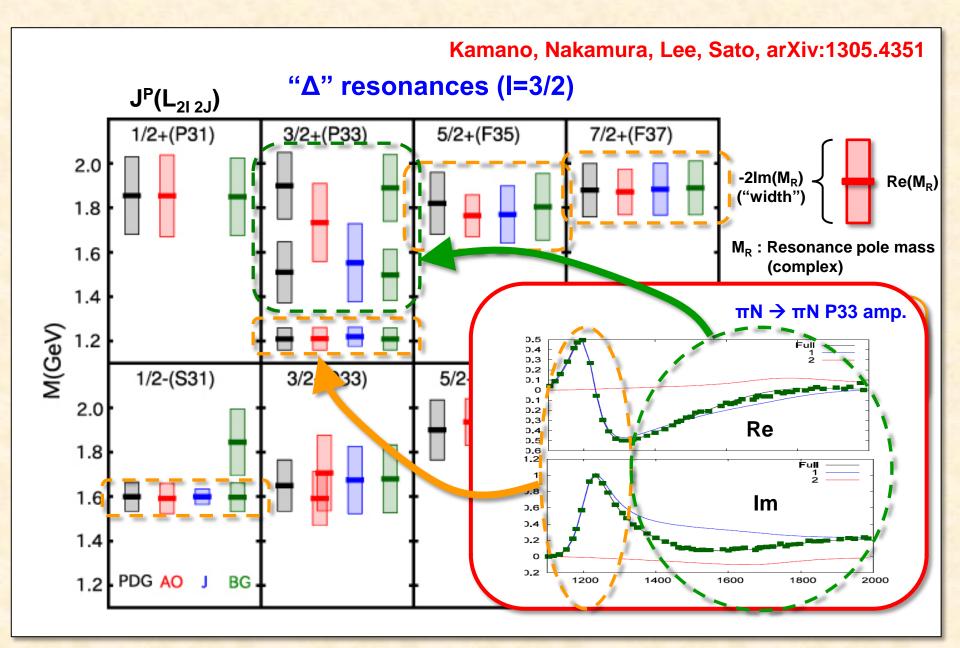
Consistent with the resonance theory based on Gamow vectors

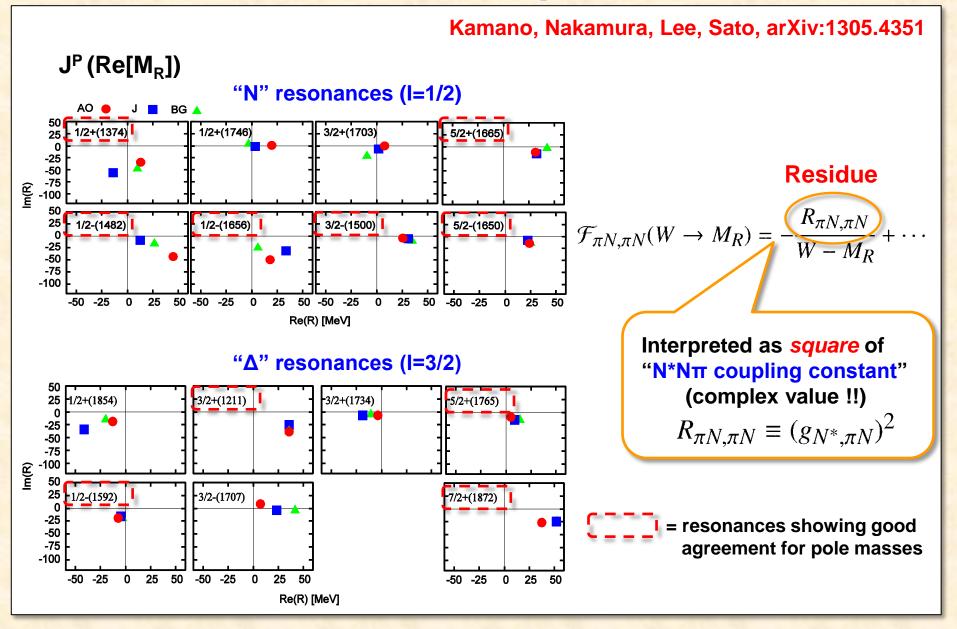

G. Gamow (1928), R. E. Peierls (1959), ... A brief introduction of Gamov vectors: de la Madrid et al, quant-ph/0201091


(complex) energy eigenvalues = pole values


transition matrix elements


= (residue)^{1/2} of the poles


Spectrum of N* resonances



Residues of πN scattering amplitudes at resonance poles

Helicity amplitudes of **γp** → N* transition at resonance poles

Particle $J^P(L_{2I2J})$		ANL-(Osaka		1	Bonn-Gat	tchina [23]	Good agreement:	
(10 ⁻³ GeV ^{-1/2})	A_3	3/2	A_1	/2	A_{3}	/2	A1/	/2	1 st P33
	Re	Im	Re	Im	Re	Im	Re	Im	
$N(1482) \ 1/2^{-}(S_{11})$	-	-	159.	24.	-	-	115.1	14.1	Qualitative agreement:
$N(1656) \ 1/2^{-}(S_{11})$	-	-	29.	-28.	-	-	32.6	-5.2	1 st S11
$N(1374) \ 1/2^+(P_{11})$	-	-	-49.	10.	-	-	-34.7	27.1	2 nd S11
$N(1746) \ 1/2^+(P_{11})$	-	-	-24.	83.	-	-	54.2	-9.6	1 st P11
$N(1703) \ 3/2^+(P_{13})$	70.	-8.	-234.	-8.	63.4	135.9	110.0	0.0	1 st D13
$N(1763) \ 3/2^+(P_{13})$	-44.	1.	126.	-72.	-	-	-	-	1 st D15
$N(1500) \ 3/2^{-}(D_{13})$	93.	11.	-38.	-2.	131.9	4.6	-21.0	0.0	1 st S31
$N(1702) \ 3/2^{-}(D_{13})$	40.	-36.	11.	23.	-37.	0.0	3.8	43.8	1 st F37
$N(1650) 5/2^{-}(D_{15})$	30.	-13.	5.	-2.	24.6	-8.5	23.1	-6.6	1 F37
$N(1665) \ 5/2^+(F_{15})$	38.	2.	-53.	5.	133.9	-4.7	-11.8	5.5	
$\Delta(1592) \ 1/2^-(S_{31})$	-	-	113.	-2.	-	-	51.4	-8.1	
$\Delta(1702) \ 1/2^{-}(S_{31})$	-	-	35.	3.	-	-	29.5	51.1	
$\Delta(1854) \ 1/2^+(P_{31})$	-	-	-51.	9.	-	-	17.6	14.8	
$\Delta(1211) \ 3/2^+(P_{33})$	-257.	12.	-129.	34.	-250.9	39.7	-123.9	42.6	
$\Delta(1734) \ 3/2^+(P_{33})$	18.	135.	23.	68.	-39.6	10.6	-34.1	40.6	
$\Delta(1592) \ 3/2^{-}(D_{33})$	-89.	-76.	-123.	-38.	-	-	-	-	
$\Delta(1707) \ 3/2^{-}(D_{33})$	32.	-121.	20.	-56.	120.2	120.2	109.3	130.2	
$\Delta(1936) \ 5/2^-(D_{35})$	34.	-9.	50.	-19.	-	-	-	-	
$\Delta(1765) \ 5/2^+(F_{35})$	0.	-18.	-1.	-8.	-50.0	0.0	23.0	-9.8	
$\Delta(1872) \ 7/2^+(F_{37})$	-76.	-2.	-61.	10.	-95.3	11.7	-71.5	8.8	

Kamano, Nakamura, Lee, Sato, arXiv:1305.4351

Helicity amplitudes of **γp** → N* transition at resonance poles

Kamano, Nakamura, Lee, Sato, arXiv:1305.4351

Particle $J^P(L_{2I2J})$		ANL-0	Osaka		I	Bonn-Gat	tchina [23]	Good agreement:	
(10 ⁻³ GeV ^{-1/2})	A_3	/2	A_1	$A_{1/2}$ $A_{3/2}$			$A_{1/2}$	2	1 st P33
	Re	Im	Re	Im	Re	Im	Re	Im	
$N(1482) \ 1/2^{-}(S_{11})$	-	-	159.	24.	-	-	115.1	14.1	Qualitative agreement:
$N(1656) \ 1/2^{-}(S_{11})$	-	-	29.	-28.	-	-	32.6	-5.2	1 st S11
$N(1374) \ 1/2^+(P_{11})$	-	-	-49.	10.	-	-	-34.7	27.1	2 nd S11
$N(1746) \ 1/2^+(P_{11})$	-	-	-24.	83.	-	-	54.2	-9.6	1 st P11
$N(1703) \ 3/2^+(P_{13})$	70.	-8.	-234.	-8.	63.4	135.9	110.0	0.0	1 st D13
$N(1763) \ 3/2^+(P_{13})$	-44.	1.	126.	-72.	-	-	-	-	1 st D15
$N(1500) \ 3/2^{-}(D_{13})$	93.	11.	-38.	-2.	131.9	4.6	-21.0	0.0	1 st S31
$N(1702) \ 3/2^{-}(D_{13})$	40.	-36.	11.	23.	-37.	0.0	3.8	43.8	1 st F37
$N(1650) \ 5/2^{-}(D_{15})$	30.	-13.	5.	-2.	24.6	-8.5	23.1	-6.6	18137
$N(1665) \ 5/2^+(F_{15})$	38.	2.	-53.	5.	133.9	-4.7	-11.8	5.5	
$\Delta(1592) \ 1/2^-(S_{31})$	-	-	113.	-2.	-	-	51.4	-8.1	
$\Delta(1702) \ 1/2^{-}(S_{31})$	-	-	35.	3.	-	-	29.5	51.1	
$\Delta(1854) \ 1/2^+(P_{31})$	-	-	-51.	9.	-	-	17.6	14.8	
$\Delta(1211) \ 3/2^+(P_{33})$	-257.	12.	-129.	34.	-250.9	39.7	-123.9	42.6	
$\Delta(1734) \ 3/2^+(P_{33})$	18.	135.	23.	68.	-39.6	10.6	-34.1	40.6	
$\Delta(1592) \ 3/2^{-}(D_{33})$	-89.	-76.	-123.	-38.	-	-	-	-	
$\Delta(1707) \ 3/2^{-}(D_{33})$	32.	-121.	20.	-56.	120.2	120.2	109.3	130.2	
$\Delta(1936) \ 5/2^-(D_{35})$	34.	-9.	50.	-19.	-	-	-	-	
$\Delta(1765) \ 5/2^+(F_{35})$	0.	-18.	-1.	-8.	-50.0	0.0	23.0	-9.8	
$\Delta(1872) \ 7/2^+(F_{37})$	-76.	-2.	-61.	10.	-95.3	11.7	-71.5	8.8	

Helicity amplitudes of **γp** → N* transition at resonance poles

Kamano, Nakamura, Lee, Sato, arXiv:1305.4351

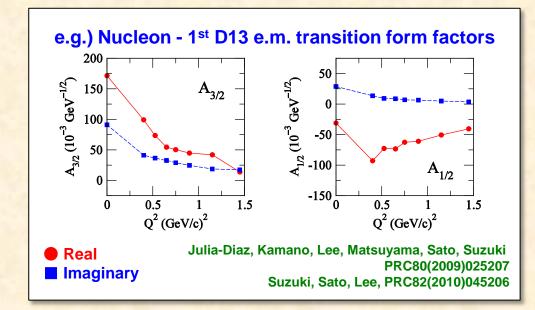
Particle $J^P(L_{2I2J})$		ANL-O	saka		Bo	onn-Gato	china [23]		Good agreement:
(10 ⁻³ GeV ^{-1/2})	$A_{3/2}$		A_1	/2	$A_{3/2}$		$A_{1/2}$	2	1 st P33
	Re	Im	Re	Im	Re	Im	Re	Im	
$N(1482) \ 1/2^{-}(S_{11})$	-	-	159.	24.	-	-	115.1	14.1	Qualitative agreement:
$N(1656) \ 1/2^{-}(S_{11})$	-	-	29.	-28.	-	-	32.6	-5.2	1 st S11
$N(1374) \ 1/2^+(P_{-})$			40	10			247	97.1	1 011

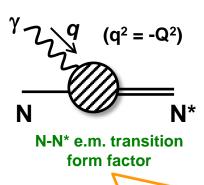
Extracted resonance coupling constants and helicity amplitudes seem much more sensitive to the analysis performed than the resonance pole masses !!

$\Delta(1854) \ 1/2^+(P_{31})$	-	-	-51.	9.	-	-	17.6	14.8
$\Delta(1211) \ 3/2^+(P_{33})$	-257.	12.	-129.	34.	-250.9	39.7	-123.9	42.6
$\Delta(1734) \ 3/2^+(P_{33})$	18.	135.	23.	68.	-39.6	10.6	-34.1	40.6
$\Delta(1592) \ 3/2^{-}(D_{33})$	-89.	-76.	-123.	-38.	-	-	-	-
$\Delta(1707) \ 3/2^{-}(D_{33})$	32.	-121.	20.	-56.	120.2	120.2	109.3	130.2
$\Delta(1936) \ 5/2^-(D_{35})$	34.	-9.	50.	-19.	-	-	-	-
$\Delta(1765) \ 5/2^+(F_{35})$	0.	-18.	-1.	-8.	-50.0	0.0	23.0	-9.8
$\Delta(1872) \ 7/2^+(F_{37})$	-76.	-2.	-61.	10.	-95.3	11.7	-71.5	8.8

N(1746) N(1703)

N(1763) N(1500)

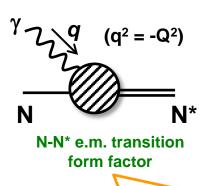

N(1702) N(1650)


N(1665)

 $\frac{\Delta(1592)}{\Delta(1702)}$

Further study of N* spectroscopy with the current ANL-Osaka DCC model

- Extraction of N-N* e.m. transition form factors via the analysis of electroproduction reactions
 - Extend our early analysis [PRC80(2009)025207] of p(e,e'π)N data from CLAS6 to higher Q² region: 1.5 → 6.0 (GeV/c)²
 - (Hopefully) see how the transition between hadron and quark-gluon degrees of freedom occurs as Q² increases.

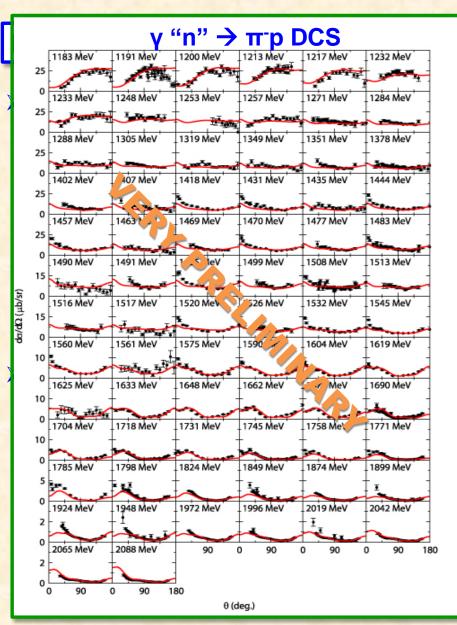


Expected to be a crucial source of information on internal structure of N*s !!

Further study of N* spectroscopy with the current ANL-Osaka DCC model

- Extraction of N-N* e.m. transition form factors via the analysis of electroproduction reactions
 - Extend our early analysis [PRC80(2009)025207] of p(e,e'π)N data from CLAS6 to higher Q² region: 1.5 → 6.0 (GeV/c)²
 - (Hopefully) see how the transition between hadron and quark-gluon degrees of freedom occurs as Q² increases.

Study of photoproduction reactions off a "neutron" target

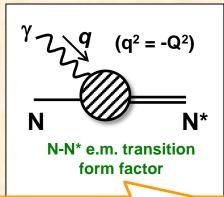

Expected to be a crucial source of information on internal structure of N*s !!

For I=1/2 N* states, *BOTH* proton-N* and neutron-N* e.m. transition form factors are needed for decomposing to isoscalar and isovector form factors.

→ Necessary for *neutrino-induced* reactions !!

-

- Explore a possible existence of N* states that strongly couple to "neutron"-target photoproductions.



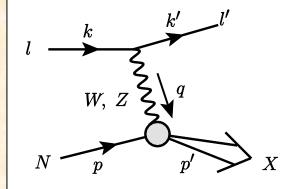
he current ANL-Osaka DCC model

actors via the analysis of

5207] of aion: 1.5 → 6.0 (GeV/c)²

hadron and Q² increases.

"neutron" target


Expected to be a crucial source of information on internal structure of N*s !!

eutron-N* e.m. transition form factors are isovector form factors.


ctions !!

hat strongly couple to "neutron"-target

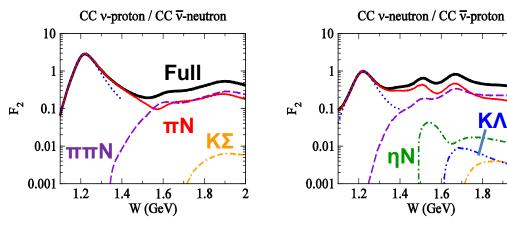
Application to neutrino-induced reactions in GeV-energy region

Precise knowledge of neutrino-nucleon/nucleus interactions is necessary for reliable extractions of neutrino parameters (CP phase, mass hierarchy, etc.) from the future neutrino-oscillation experiments.

Application to neutrino-induced reactions in GeV-energy region

k'

X

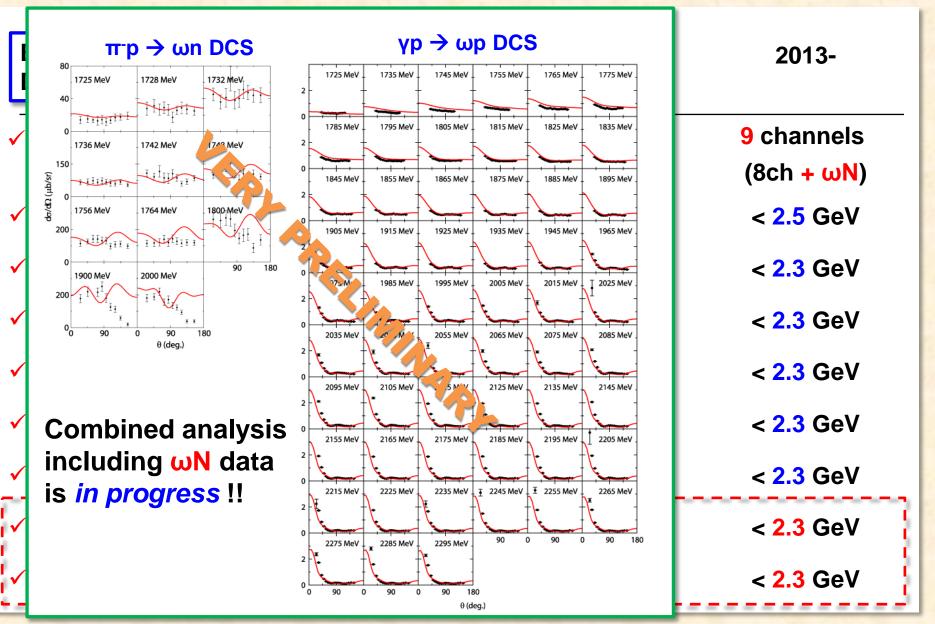

W, Z

р

N

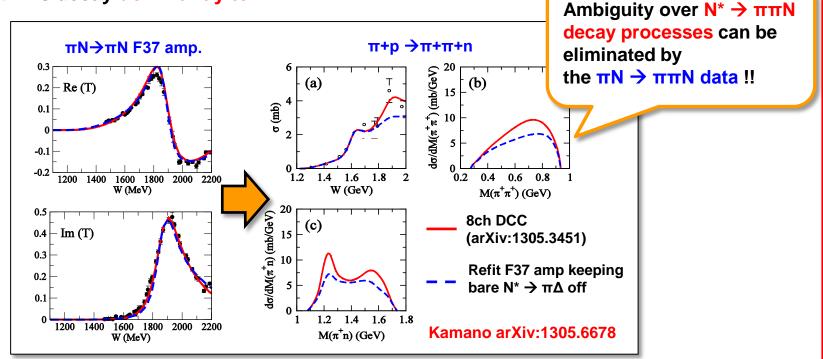
Precise knowledge of neutrino-nucleon/nucleus interactions is necessary for reliable extractions of neutrino parameters (CP phase, mass hierarchy, etc.) from the future neutrino-oscillation experiments.

First application of 8ch DCC model to neutrino-nucleon reactions in N* region (forward angle limit)



Kamano, Nakamura, Lee, Sato, PRD86(2012)097503

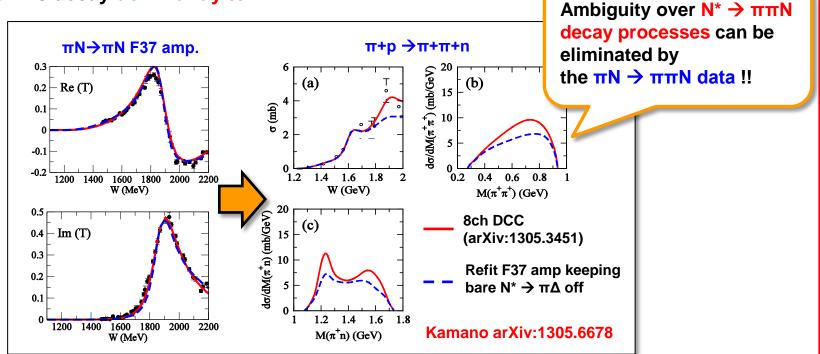
2


Extending DCC analysis	2006-2009	2010-2012 (arXiv:1305.4351)	
✓ # of coupled channels	6 channels (γΝ,πΝ,ηΝ,πΔ,ρΝ,σΝ)	8 channels (6ch + KΛ, KΣ)	
✓ π р→ πN	< 2 GeV	< 2.3 GeV	
✓ γp → πN	< 1.6 GeV	< 2.1 GeV	
√ πр → ηр	< 2 GeV	< 2.1 GeV	
✓ үр → ηр	_	< 2.1 GeV	
✓ πp → KΛ, KΣ	_	< 2.1 GeV	
✓ γp → KΛ, KΣ	_	< 2.1 GeV	

Extending DCC analysis	2006-2009	2010-2012 (arXiv:1305.4351)	2013-
 # of coupled channels 	6 channels (γΝ,πΝ,ηΝ,πΔ,ρΝ,σΝ)	8 channels (6ch + KΛ, KΣ)	9 channels (8ch + ωN)
✓ π р→ πN	< 2 GeV	< 2.3 GeV	< <mark>2.5</mark> GeV
✓ γp → πN	< 1.6 GeV	< 2.1 GeV	< <mark>2.3</mark> GeV
✓ πр → ηр	< 2 GeV	< 2.1 GeV	< <mark>2.3</mark> GeV
✓ үр → ηр	_	< 2.1 GeV	< <mark>2.3</mark> GeV
✓ πp → KΛ, KΣ	—	< 2.1 GeV	< <mark>2.3</mark> GeV
✓ γp → KΛ, KΣ		< 2.1 GeV	< <mark>2.3</mark> GeV
√ π ⁻ p → ωn			< <mark>2.3</mark> GeV
l			< 2.3 GeV

After the 9-channel analysis, next task is to include $\pi\pi N$ data !!

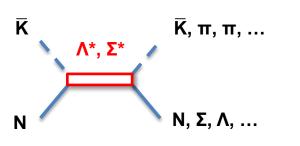
- > $\pi\pi N$ has the largest cross section in πN and γN reactions above W = 1.6 GeV.
 - (Precise data of $\pi N \rightarrow \pi \pi N$ will be available from J-PARC [K. Hicks et al., J-PARC P45])
- > Most N*s decay dominantly to $\pi\pi N$.

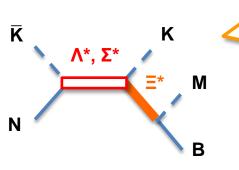


After the 9-channel analysis, next task is to include $\pi\pi N$ data !!

> $\pi\pi N$ has the largest cross section in πN and γN reactions above W = 1.6 GeV.

(Precise data of $\pi N \rightarrow \pi \pi N$ will be available from J-PARC [K. Hicks et al., J-PARC P45])

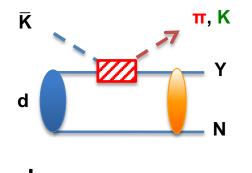

> Most N*s decay dominantly to $\pi\pi N$.

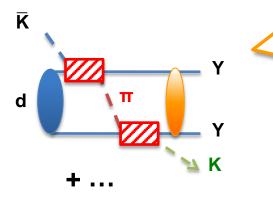


Before the combined analysis including $\pi\pi N$ data, need further improvement/tune of the analysis code.

Y* spectroscopy via DCC analysis of kaon-induced reactions

Nucleon target

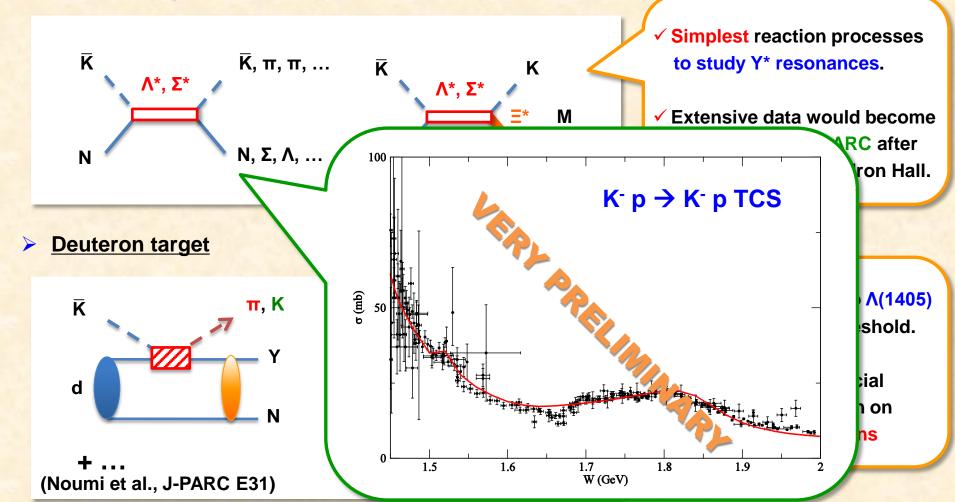



Simplest reaction processes to study Y* resonances.

 Extensive data would become available from J-PARC after the extension of Hadron Hall.

Deuteron target

+ ... (Noumi et al., J-PARC E31)

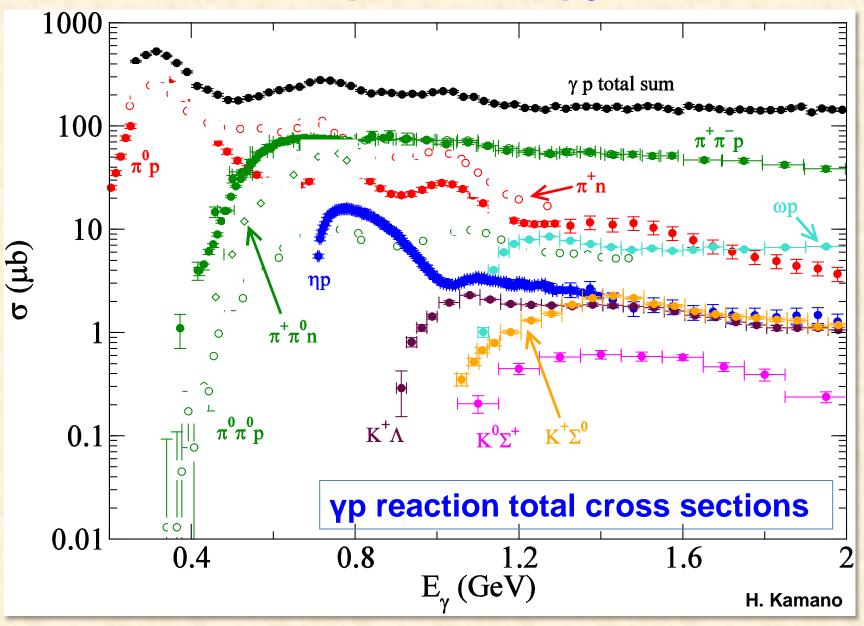


Contribution Directly accessible to Λ(1405)region below $\overline{K}N$ threshold.

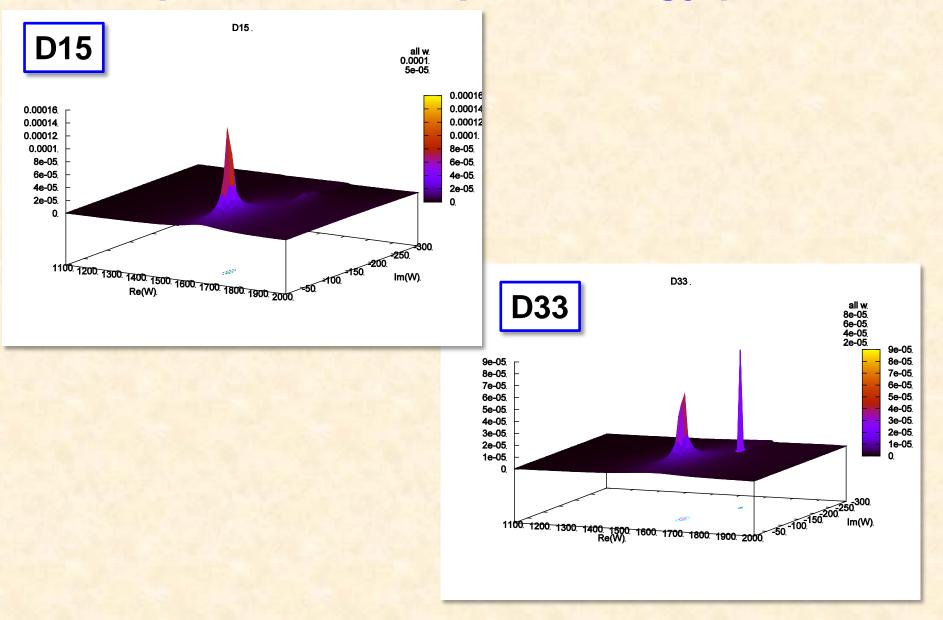
 Expected to be a crucial source of information on YN and YY interactions

Y* spectroscopy via DCC analysis of kaon-induced reactions

Nucleon target



Summary


- Performed a fully combined analysis of pion- and photon-induced πN, ηN, KΛ, KΣ production reactions with the ANL-Osaka Dynamical Coupled-Channels approach.
- Revealed the role of nontrivial multichannel reaction dynamics in understanding the nature of N* resonances.
- The extracted N* parameters (pole masses, residues,...) are compared with other multi-channel analyses:
 - Extracted resonance masses agree well for almost all the 1st excited states in each partial wave, while sizable differences are found for several higher excited states.
 - Compared with pole masses, residues ("coupling constants") are more sensitive to the analysis performed.
- Further applications and extensions of the ANL-Osaka DCC model are in progress.
- N* spectroscopy is an ideal laboratory for studying "resonance", a universal phenomena over a wide range of areas of physics !!
 e.g.) YITP workshop on "Resonances and non-Hermitian systems in quantum mechanics" (Dec., 2012) http://hatano-lab.iis.u-tokyo.ac.jp/hatano/NonHermite/Top.html

back up

Reaction channels relevant to N* spectroscopy

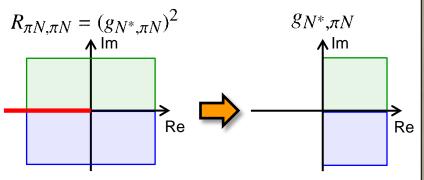
Resonance poles of πN partial wave amplitude in complex energy plane

Conventions for coupling constants

 \checkmark α \rightarrow β reaction amplitude at resonance pole position M_R is expressed as

$$\mathcal{F}_{\beta,\alpha}(W \to M_R) = -\frac{R_{\beta,\alpha}}{W - M_R} + \cdots$$

 The residue is then interpreted as the product of "coupling constants" of N*-β and N*-α:


$$R_{\beta,\alpha} \equiv g_{\beta,N^*} \times g_{\alpha,N^*}.$$

 If one tries to get the coupling constants from the residues, the constants can be determined up to a sign. We fix the sign ambiguity by choosing the phase of the pi N scattering residue as

$$-\pi < \arg[R_{\pi N,\pi N}] < \pi.$$

This corresponds to taking the real part of πNN^* coupling constants always positive: Re(g_N*, πN) > 0.

With this convention, the relative signs of all coupling constants are uniquely fixed.

Phenomenological prescriptions of constructing conserved-current matrix elements

As commonly done in *practical* calculations in nuclear and particle physics, currently we take a phenomenological prescription to construct conserved current matrix elements [T. Sato, T.-S. H. Lee, PRC60 055201 (2001)]:

$$J^{\mu} \to J^{\mu} - \frac{q \cdot J}{n \cdot q} n^{\mu}$$

 J^{μ} : Full e.m. current matrix elements obtained by solving DCC equations q^{μ} : photon momentum n^{μ} : an arbitrary four vector

- ✓ A similar prescription is applied, e.g., in Kamalov and Yang, PRL83, 4494 (1999).
- There are also other prescriptions that enable practical calculations satisfying current conservation or WT identity:
 - Gross and Riska, PRC36, 1928 (1987)
 - Ohta, PRC40, 1335 (1989)
 - Haberzettl, Nakayama, and Krewald, PRC74, 045202 (2006).

Database used for the analysis

✓ π N → π N Partial wave amp. (SAID EIS)

Partial Wave		Partial Wave		
S_{11}	65×2	S_{31}	$65{\times}2$	
P_{11}	65×2	P_{31}	$61{ imes}2$	
P_{13}	61×2	P_{33}	65×2	
D_{13}	61×2	D_{33}	59×2	
D_{15}	61×2	D_{35}	40×2	
F_{15}	48×2	F_{35}	43×2	
F_{17}	32×2	F_{37}	$44{\times}2$	
G_{17}	42×2	G_{37}	32×2	
G_{19}	28×2	G_{39}	32×2	
H_{19}	34×2	H_{39}	31×2	
Sum	994		944	1938

\checkmark πN → ηN, KΛ, KΣ observables

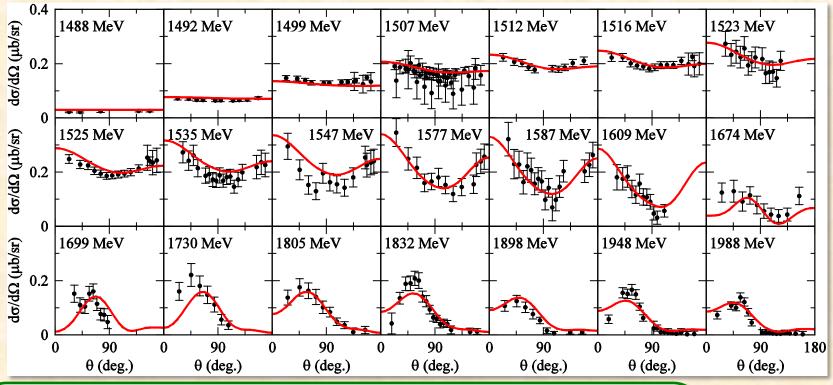
	$d\sigma/d\Omega$	P	eta	Sum
$\pi^- p \to \eta p$	294	_	_	294
$\pi^- p \to K^0 \Lambda$	544	262	43	849
$\pi^- p \to K^0 \Sigma^0$	160	70	_	230
$\pi^+ p \to K^+ \Sigma^+$	552	312	7	871
Sum	1550	644	50	2244

\checkmark γN → πN, ηN, KΛ, KΣ observables

	$d\sigma/d\Omega$	Σ	Т	P	\hat{E}	G	H	$O_{x'}$	$O_{z'}$	C_x	C_z	Sum
$\gamma p \to \pi^0 p$	4381	1128	380	589	140	125	49	7	7	_	_	6806
$\gamma p \to \pi^+ n$	2315	747	678	222	231	86	128	_	_	_	_	4407
$\gamma p \to \eta p$	3221	235	50	_	_	_	_	_	_	_	_	3506
$\gamma p \to K^+ \Lambda$	800	86	66	865	_	_	_	66	66	79	79	2107
$\gamma p ightarrow K^+ \Sigma^0$	758	62	_	169	_	_	_	_	_	40	40	1069
$\gamma p \to K^0 \Sigma^+$	220	15	_	36	_	_	_	_	_	_	_	271
Sum	11695	2273	1174	1881	371	211	177	73	73	119	119	18166

Total 22,348 data points

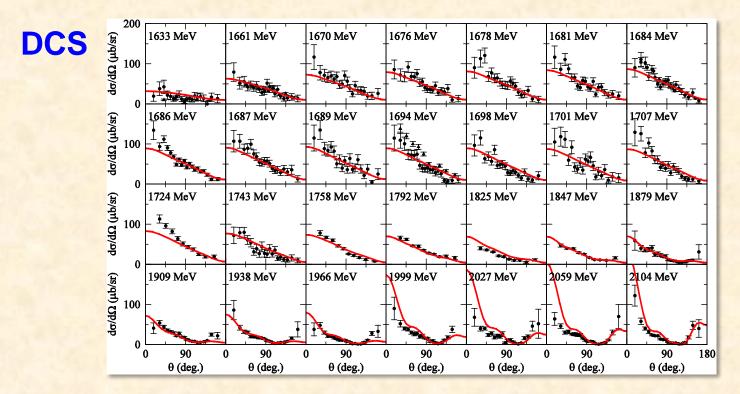
N* resonances from analyses with the old 6ch and current 8ch models

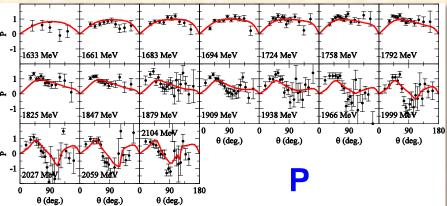

6ch DCC analysis [PRL104(2010)042302]

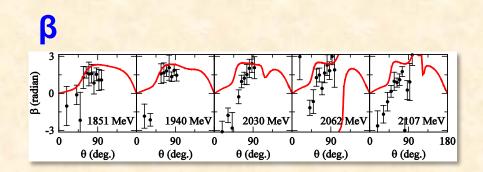
8ch DCC analysis [arXiv:1305.4351]

_					
	M_R	1.5		$J^P(L_{2I2J})$	M_R
	IT K		N-baryons		
<i>S</i> ₁₁	(1540, 191)			$1/2^{-}(S_{11})$	$(1482, 98)^*$
511					(1656, 85)
	(1642, 41)	1.1.1.1.1.1.1.1		$1/2^+(P_{11})$	(1374, 76)
P_{11}	(1357, 76)	and the second			(1746, 177)
				$3/2^+(P_{13})$	(1703, 70)
	(1000 040)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			(1763, 159)
	(1820, 248)	1.5		$3/2^{-}(D_{13})$	(1501, 39)
P ₁₃	••				$(1702, 141)^*$
D_{13}	(1521, 58)				
D_{15}^{11}				$5/2^{-}(D_{15})$	(1650, 75)
		(10) The second		$5/2^+(F_{15})$	(1665, 49)
F_{15}	(1674, 53)		Δ -baryons		
S_{31}	(1563, 95)	1. 1. 1. 1. 1.		$1/2^{-}(S_{31})$	(1592, 68)
P_{31}		11.00			$(1702, 193)^*$
		1000		$1/2^+(P_{31})$	(1854, 184)
P_{33}	(1211, 50)	CONTRACT OF		$3/2^+(P_{33})$	(1211, 51)
	• •	1000			(1734, 176)
D_{33}	(1604, 106)	1. N. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.		$3/2^{-}(D_{33})$	(1592, 122)
F_{35}		CIP CONTRACTOR		5/2 (D33)	(1392, 122) (1707, 170)
1 35				$5/2^{-}(D_{35})$	(1707, 170) (1936, 105)
	(1928, 165)	Contract of the second		$5/2^{+}(D_{35})$ $5/2^{+}(F_{35})$	(1930, 103) (1765, 94)
F_{37}	(1858, 100)				
		1. 1. 1. 1. S.		$7/2^+(F_{37})$	(1872, 103)
_					

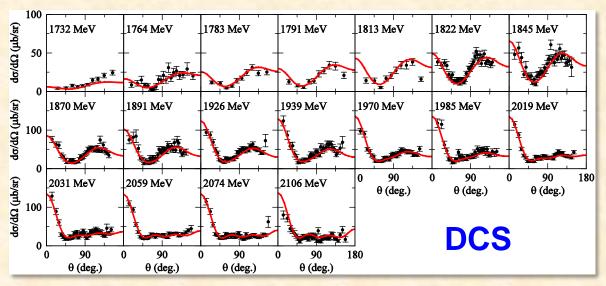
π- $p \rightarrow \eta n$ reaction



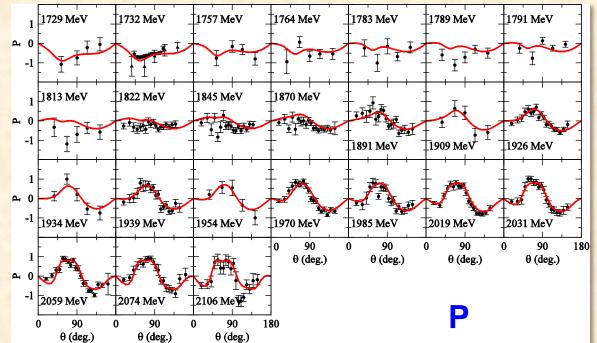

NOTE:


It is known that there is an inconsistency on the normalization of the π -p \rightarrow η n data between different experiments.

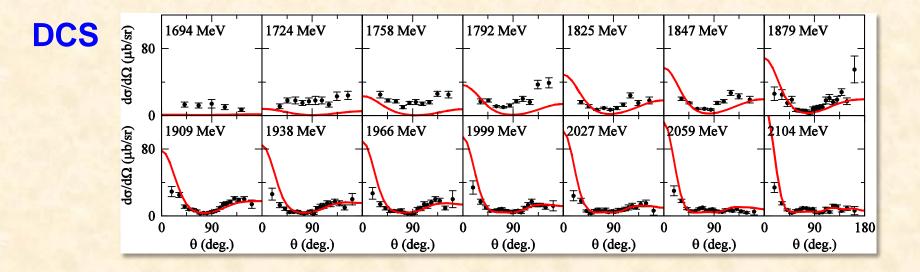
The data used in our analysis are carefully selected according to the discussion by Durand et al. PRC78 025204.

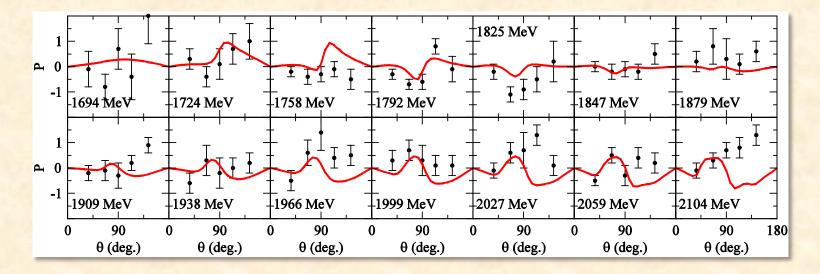

n- $p \rightarrow K^0 \Lambda$ reaction



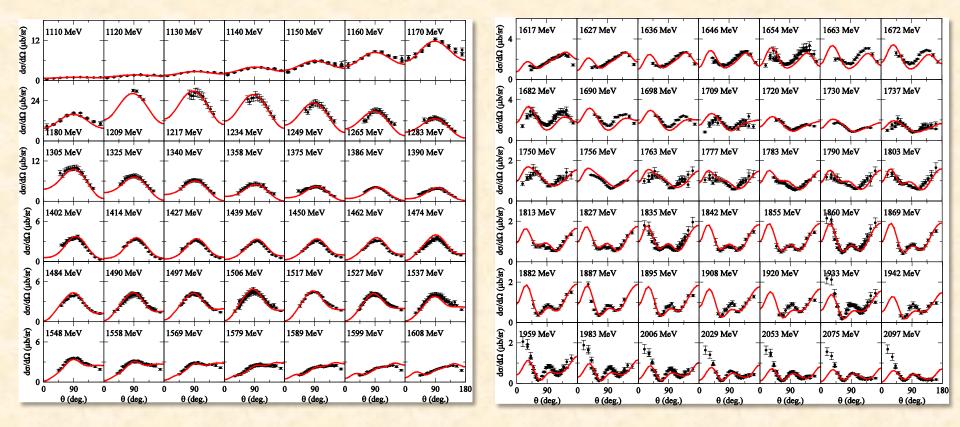


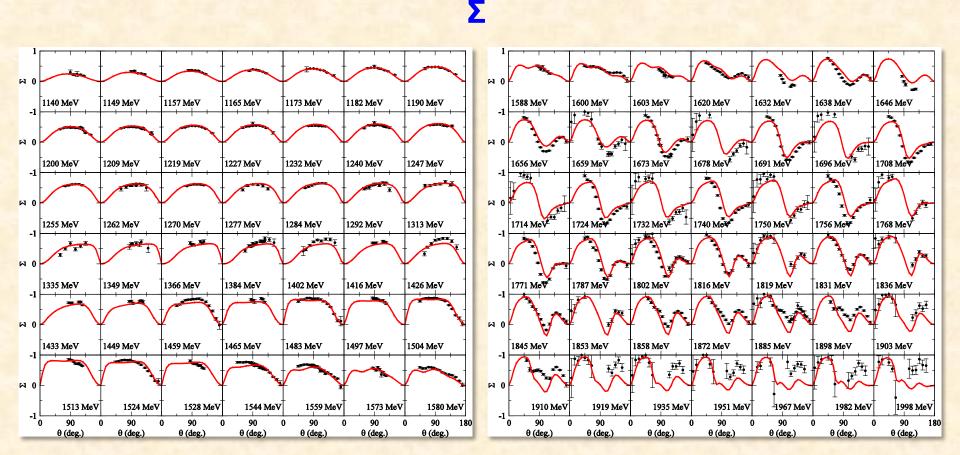
$\pi^+ p \rightarrow K^+ \Sigma^+$ reaction



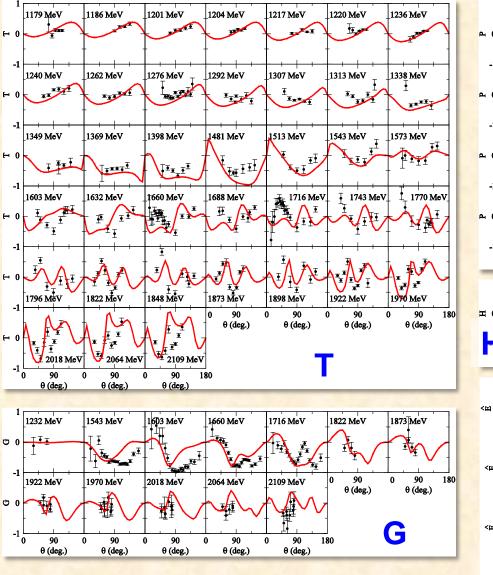

Note: spin-rotation β is modulo 2π

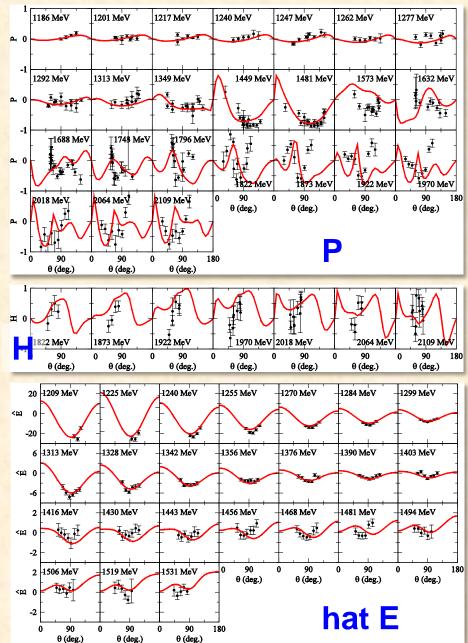
n- $p \rightarrow K^0 \Sigma^0$ reaction



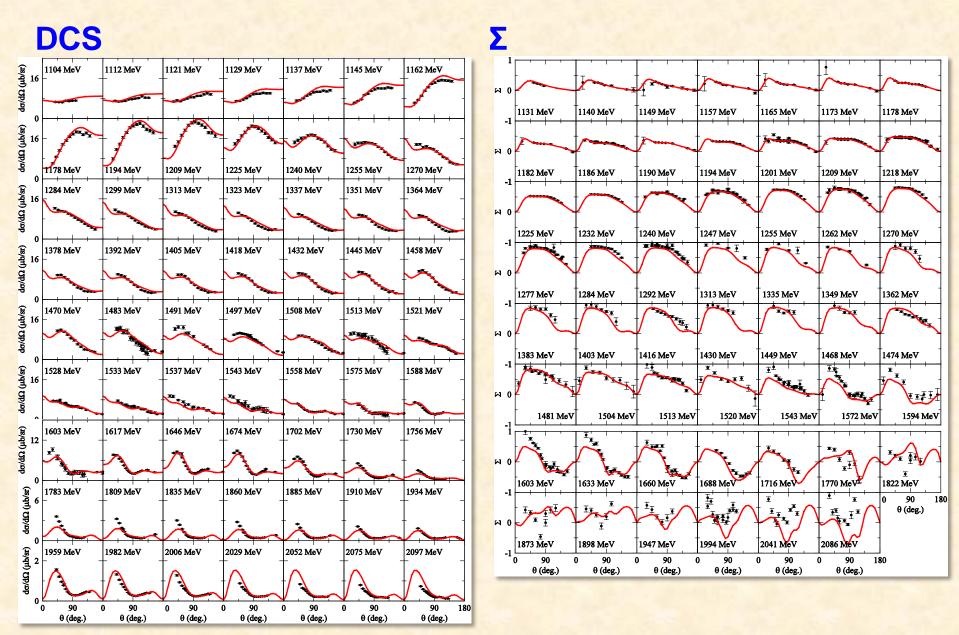


$\gamma p \rightarrow \pi^0 p$ reaction (1/3)

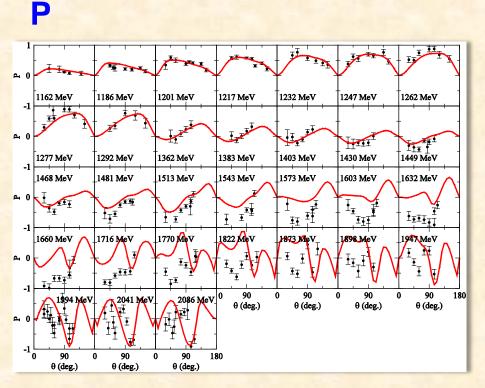

DCS

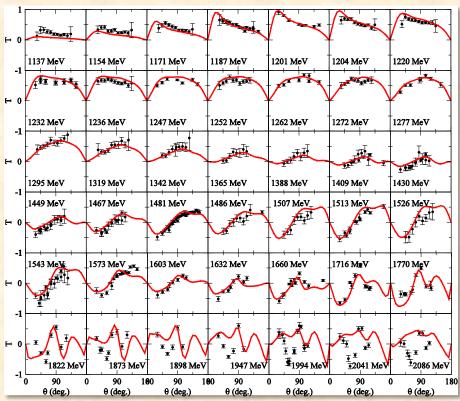


$\gamma p \rightarrow \pi^0 p$ reaction (2/3)

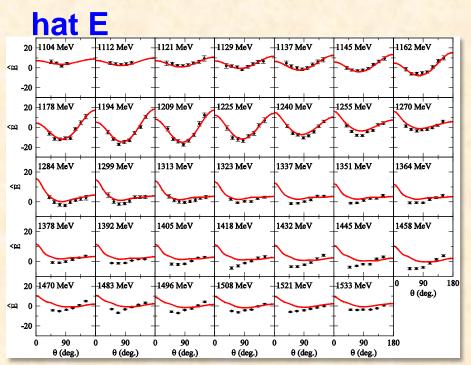


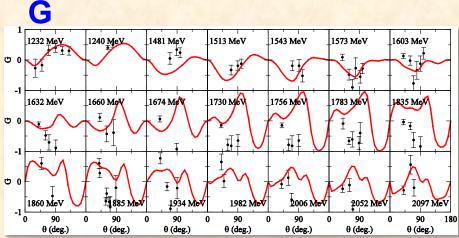
$\gamma p \rightarrow \pi^0 p$ reaction (3/3)

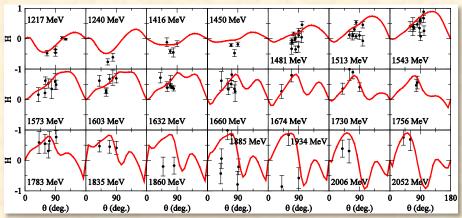




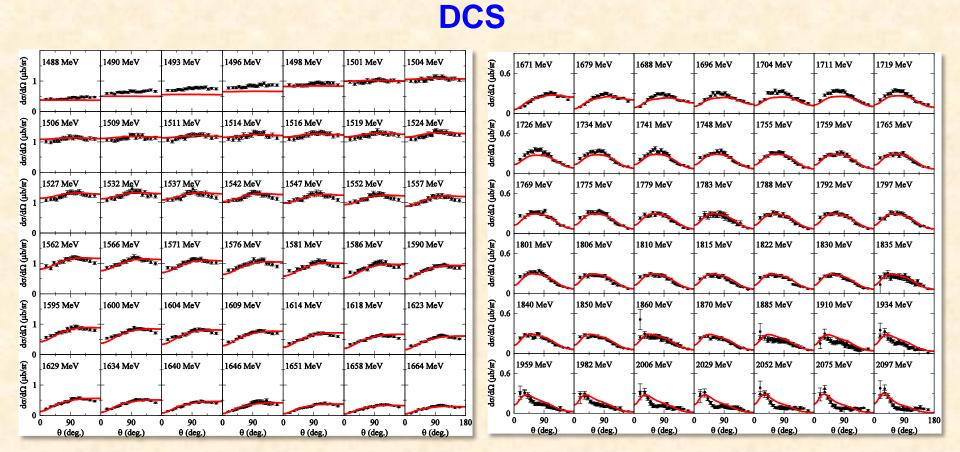
$\gamma p \rightarrow \pi^+ n$ reaction (1/3)



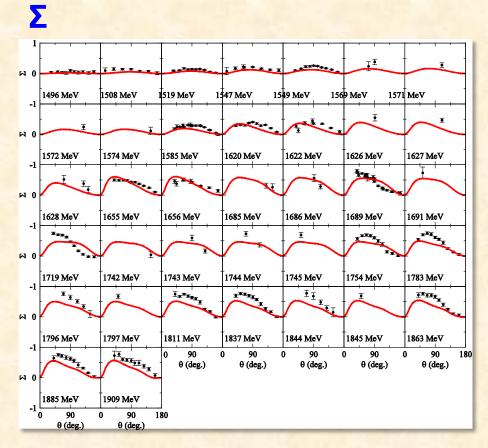

$\gamma p \rightarrow \pi^+ n$ reaction (2/3)

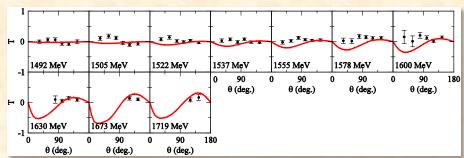


$\gamma p \rightarrow \pi^+ n$ reaction (3/3)

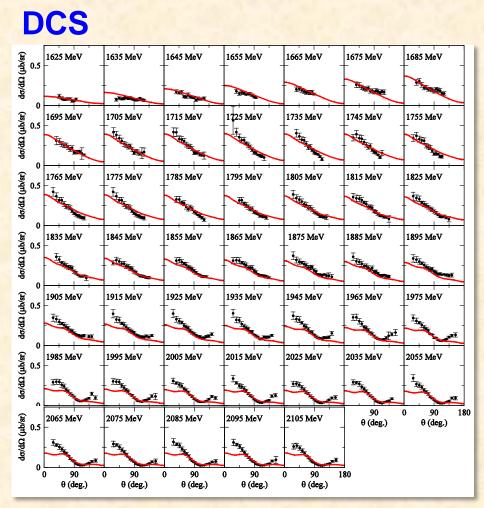


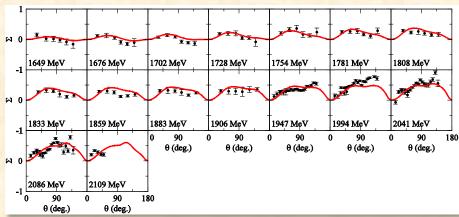
н

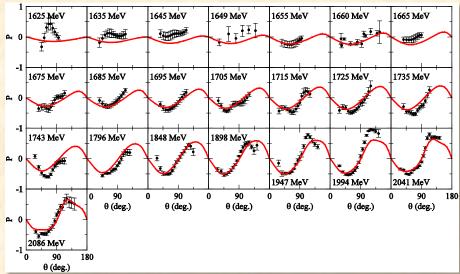



$\gamma p \rightarrow \eta p$ reaction (1/2)

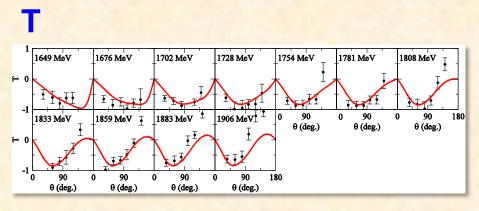
$\gamma p \rightarrow \eta p$ reaction (2/2)

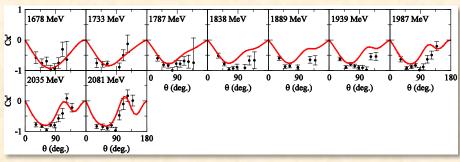

т

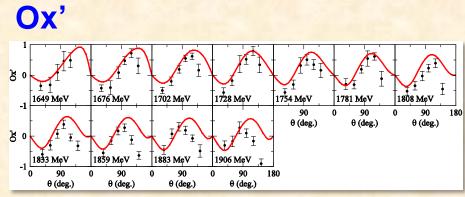


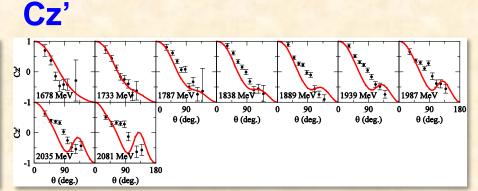

$\gamma p \rightarrow K^+ \Lambda$ reaction (1/2)

Σ

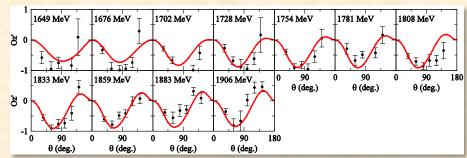


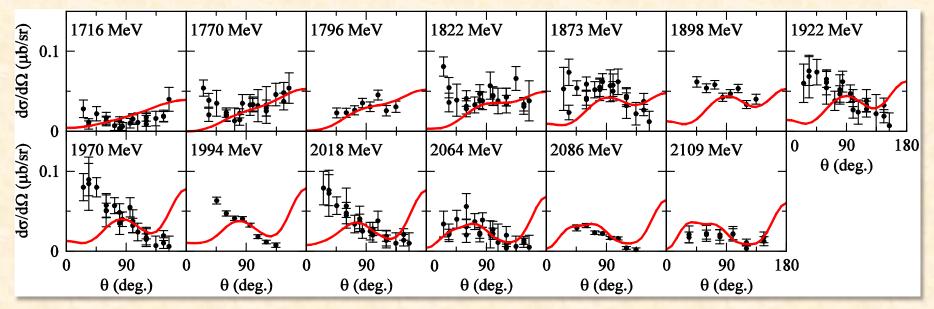

Ρ

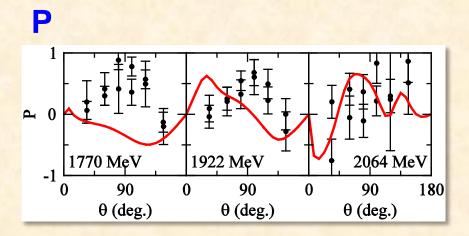


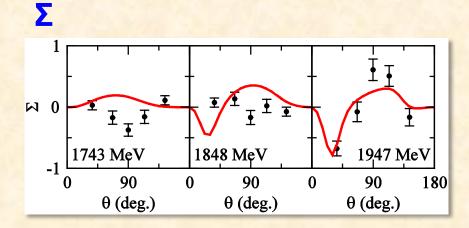

$\gamma p \rightarrow K^+ \Lambda$ reaction (2/2)

Cx'






Oz'



$\gamma p \rightarrow K^0 \Sigma^+$ reaction

DCS

