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proton-neutron arrangement 
clustering of nucleons 

in nuclei 
Nucleus  

clustering 
phenomena 

widespread real elusive 

across the periodic table 

particularly amongst  
the lighter nuclei  

below calcium 

clusters appear as 
decay fragments 

within  
bound states 

underlined in  
weakly bound systems 

extreme in halo nuclei 

4He cluster 
most  tightly  bound 

tends to keep its own identity 



Examples: 

4n nuclei:  8Be, 12C, 16O, 20Ne, 24Mg, … 

4He-decay of heavy nuclei 

molecular like structure composed of 4He fragments nearby the threshold  
energy of the nuclear dissociation into these constituents  

E8Be = 91.84 keV 
G8Be = 5.57    eV       

E12C = 7.654 MeV 
G12C = 8.5     eV 
Q4He  = 7.367 MeV     
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E6He = -973 keV E11Be = -502 keV E11Li = -378 keV 
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exotic combinations of proton and neutron numbers  

( prospects for completely new structural phenomena ) 

the weak binding,  closeness of the particle continuum  

(a large diffuseness of the nuclear surface, extreme  

spatial  dimensions for the outermost nucleons) 
Unique factors  

for exotic nuclei 



                               Ab initio models 

Interactions:  
NN + NNN + … 

Many-Body Methods: 

Green’s Function Monte Carlo 
No-Core Shell Model  
Coupled Cluster 
      …. 

                                  the shell models 

effective interactions  
fitted  to experimental 

data 

Many-Body Methods: 
mean-fields 

(self-consistent)  
+ 

residual interactions 

shell structure evolution when 
nuclei are approaching  driplines 

Large-scale shell model  
calculations for medium  

 and heavy nuclei 

very complicated wave functions   
How do they consistent with  
independent nucleon motion ? 
( essence of the shell model ) 

Understand the nuclear structure 
with realistic nuclear forces  

microscopic mean-field models and beyond  

continuum ( reactions ) ? 

nuclear density functional theory 
quasiparticle random-phase approximation 
quasiparticle phonon model 
  ….. 

theoretical calculations  
 of nuclear properties  
throughout the whole  

nuclear chart 



CLUSTER MODELS 

MICROSCOPIC  cluster models:  exact  treatment of the antisymmetrization 

  

  is the antisymmetrization operator, 

Nucleons are separated into clusters and exchanged between them  
as if  nucleons resonate between each group 

The variational principles  is applied to the many-body hamiltonian. 
Equations of motion for              have non-local terms  

that represent  exchanges of nucleons 

Resonating Group Method (J.A. Wheeler, 1937) 



where  the independent variables are generator coordinates  
(not particle coordinates, all dynamical variables are already integrated out  

in the integral kernels of the Hill-Wheeler equation ) 

Generator Coordinate Method (D.L. Hill and J.A. Wheeler, 1953) 

Auxiliary parameters (generator coordinates                           ) are introduced. 

Slater determinant many-body wave functions  

are generated for parameter set 

Total wave function is an integral over parameters  
with   the use of a weight function  

Variational principle leads to the Hill-Wheeler integral equation 

In practice the radial wave function is expanded on a set of 
displaced gaussian functions, centered at different locations 



SEMI-MICROSCOPIC  cluster models:   
approximate  treatment of the antisymmetrization 

Orthogonality condition model (S. Saito, 1968) 

The forbidden states are the null states  
if the complete antisymmetrization is performed. 

Interaction  is taken place  only in the (physical ) space  
orthogonal to the forbidden states. 

Effect of the complicated kernels in the RGM is well approximated  
by the orthogonality to the forbidden states  

(The exact forbidden states, however, appears only for cases with  
the equal oscillator parameters of shell model cluster) 

The inter-cluster wave function                 is ORTHOGONAL  to 
 the Pauli forbidden states      
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wave function is factorized into a sum of products from two parts 

Cluster models, general formulation 

The antisymmetrization operator          is absent 

A coupling with excited core states  involves additional partial waxes.  
This allows to account for some emergent core degrees of freedom and 

 get a more realistic description of nuclear properties.  
(analogue to increasing the number of shells  

within the framework of shell-model approaches) 

The sum includes core excitations :  

Two-Body : 
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Three-body : 



Total hamiltonian (two-body cluster model)  

The Schrodinger equation  

The wave function                 is  a  solution of  
the coupled Schrodinger equations 

matrix elements describe the core-nucleon binary interactions  

These matrix elements define the dynamics of the system  

Calculations of the bound states and continuum wave functions 



The bound state wave function  

Set of coupled  Schrodinger equations for radial wave functions 

matrix elements 

define the dynamics of the system.  
have to be specified for particular applications 



The continuum wave function at the positive  energy  

radial wave functions in open channels at r → ∞  

elastic and inelastic cross sections for a nucleon scattered on the core nucleus 



best known one-neutron halo  nucleus seen as a 10Be core + loosely bound neutron 

the Pauli principle treatment 

the deep  core-neutron potential (popular approach) 
permits forbidden orbits 

potentials are more universal for treating adjacent systems,  
similar to the ones used for calculations in usual shell models. 

attractive  
features:  

disadvantages 
additional efforts have to be applied to exclude forbidden 
states from dynamics in three-body models 

are less universal 

the shallow core-neutron potential    does not have forbidden orbits  

simply neglected 

the deeply bound states are obtained as the lowest levels 
(forbidden orbits dominate in the structure of these states) 

disadvantages 
Application in three-body models does  
not lead to additional difficulties 

attractive  
features:  



include the ground 0+ and first excited 2+ states 

the 2+ state is considered as a quadrupole (I = 2) vibration 
 built on the deformed axially symmetric ground state  

Description of the 10Be core states 

The  vibration operators are defined in the intrinsic coordinate system  
specified by the core symmetry axis 

The  10Be core-neutron potential:  non-diagonal in core states 

is a surface potential (Bohr - Mottelson) 



The 10Be core-neutron potential:  a diagonal in core states 

; 

The deformed potential                     has the axially symmetric shape  
described by the surface with the quadrupole deformation 

potential can be decomposed over multipoles as 

Alternative description of the 10Be core states 

rotational model : 



11Be 



The 11Be 1/2+ ground state properties: 

- the r.m.s. matter radius 

- the r.m.s. distance of the halo neutron to the core c.m. 

- the r.m.s. charge radius 
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solid lines --->  “shallow” potentials 

dash lines --->  “ deep” potentials ( F.M. Nunes et al., Nucl. Phys. A 596 (1996) 271 ) 







The 11Be 1/2- bound excited state   

- the r.m.s. matter radius 

- the r.m.s. distance of the halo neutron to the core c.m. 

- the r.m.s. charge radius 

(1) F.M. Nunes et al., Nucl. Phys. A 596 (1996) 271 
(2) D.J. Millener et al., Phys. Rev. C28 (1983) 497 

The description of the 1/2− bound excited state has to reproduce not only  
the energy but simultaneously the strength for dipole transition between 

 the bound excited and ground states.  
 

An interesting and seldom example where we can notice the difference 
in applications of the models with deep and shallow potentials 



solid lines --->  “shallow” potentials 
dash lines --->  “ deep” potentials  
                                  ( F.M. Nunes et al.,  
                                    NPA 596 (1996) 271 ) 
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exp. data :  R. Palit et al.,  
Phys. Rev. C68 (2003) 034318 

the 3/2- resonance  
at 2.9 MeV 

the 3/2- resonance  
at 2.1 MeV 

Dipole excitations  
from ground to continuum states 
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Conclusion 

Clustering is a very widespread phenomenon in light nuclei.  The few-body  
cluster models present a natural and most transparent way to describe  
specific features of nuclear structure specified by the cluster degrees of freedom.  
 
In many nuclei the cluster degrees of freedom are most important and define  
the basic properties of the nuclear systems.  Still in many circumstances the  
core can not be considered as inert system  and additional degrees of freedom  
connected to excited core states have to be taken into account.  This leads to  
extension of few-body cluster models and increases the applicability of a  
cluster approach. 

Two-body cluster model of the 11Be nucleus with shallow core-neutron   
potentials describes well the experimental data concerning the bound state  
properties  and the low-lying spectrum of continuum excitations.   


