Baikal@2013.7.16

Neutron Star Equations of State

and Gravitational Waves

1

Astro-Hadron Group in Pusan Nat'l Univ

- Problems related to NS
 - dense matter physics/ NS equation of states
 - formation and evolution of NS
 - GW from NS binaries
- LSC(LIGO Scientific Collaboration) members
 - Dr. Hee-Suk Cho
 - -Y.M. Kim (NIMS)
 - M.G. Kim (1st year in Ph.D., pre-LSC member)
- Non-LSC members (2 students)
 - working on hadron physics (dense matter physics)
 - dense matter physics / NS equation of states

To Gravitational Waves

Contents

- Motivations
- Open problems in NS mass observations
- Possibilities of `NS + high-mass NS/BH` binaries
- A new approach to NS Equation of state in hQCD

6

Neutron Stars

Cosmological Heavy Ion Collisions

Gravitational waves from NS-NS and NS-BH Binaries

Network of Gravitational Wave Interferometers

KGWG

Introduction

Activities

Research

Publications

News

00

Worldwide Mega-Science Projects

People

Gravitational-wave detection is a global project of seeking a new window to the Universe. This will open an era of gravitational wave astronomy.

CBC Wiki (Member Only)

GRBs from NS Binaries

Origin of gamma-ray bursts (GRBs)

T₉₀=milli sec – min

Brightest event in the Universe

1970s : Vela Satellite

1990s: CGRO, Beppo-SAX

2000s: HETE-II, Swift

PSR	P	P_{b}	e	Total Mass	$ au_{ m c}$	$ au_{ m GW}$
	(ms)	(hr)		M_{\odot}	(Myr)	(Myr)
0737-3039A	22.70	2.45	0.088	2.58	210	87
0737 - 3039B	2773	2.45	0.088	2.58	50	87
1534 + 12	37.90	10.10	0.274	2.75	248	2690
1756 - 2251	28.46	7.67	0.181	2.57	444	1690
1913 + 16	59.03	7.75	0.617	2.83	108	310
2127+11C	30.53	8.04	0.681	2.71	969	220
$1141 - 6545^{\dagger}$	393.90	4.74	0.172	2.30	1.4	590
			Glo	bular Clus	ter : no	binary
	White Dwarf companion					

seen NS-NS binaries which will coalesce within Hubble time

Can we see BH-NS binaries as pulsars if they exist ?

 \rightarrow one can see only NS(fresh) : short life time

~104

bigger

chance

GW sources with NS

- NS-NS already seen
- NS-BH no evidence yet
 contribution to GW is still unknown
- Q) what is the boundary between NS & BH ?maximum mass of neutron stars

Contents

- Motivations
- Open problems in NS mass observations
- Possibilities of `NS + high-mass NS/BH` binaries
- A new approach to NS Equation of state in hQCD

1.97 Msun NS discovered in a NS-White Dwarf Binary

http://www.nrao.edu/pr/2010/bigns/

- I.97 Msun NS was observed in a NS-WD binary
- Why all well-measured NS masses in NS-NS binaries are less than 1.5 Msun?
- NS mass may/should depend on the evolution process.

arXiv:0907.3219v1

Accretion process is essential in understanding NS binaries

Contents

- Motivations
- Open problems in NS mass observations
- Possibilities of `NS + high-mass NS/BH` binaries
- A new approach to NS Equation of state in hQCD

$$L_{\rm Edd} = \frac{4\pi cGM}{\kappa} \approx 1.3 \times 10^{38} \frac{M}{M_{\odot}} {\rm erg \ s^{-1}}$$

$$\kappa = \sigma_T N_A$$
Thomson scattering cross section σ_T
Avogadro's number N_A

$$L_{\rm Edd} = \eta \dot{M}_{\rm Edd} c^2$$

$$\dot{M}_{\rm Edd} = \frac{4\pi GM}{\kappa c \eta} \approx \frac{1}{\eta} 0.45 \times 10^{-8} \left(\frac{M}{M_{\odot}}\right) M_{\odot} {\rm yr}^{-1}$$

[Lee, Park, Brown, ApJ 670, 741 (2007)]

Supercritical Accretion onto first-born NS

- Eddington Accretion Rate : photon pressure balances the gravitation attraction
- If this limit holds, neutron star cannot be formed from the beginning (e.g. SN1987A; 10⁸ Eddington Limit).
- Neutrinos can take the pressure out of the system allowing the supercritical accretion when accretion rate is bigger than 10⁴ Eddington limit ! (T > 1 MeV :Thermal neutrinos dominates !)

Q) What is the implications of supercritical accretion ?

One has to understand formation of BH/NS

Fe core mass before collapse (Brown et al. New Aston. 6,457)

24

In close binaries (evolution without H envelope)

low Fe core mass

NS mass = 1.3 - 1.5 Msun

This value is independent of NS equation of state.

Q) What is the fate of primary (first-born) NS in binaries ?

Note: Accurate mass estimates of NS come from binaries

Final fate of first-born NS

Evolution of binary stars

- Life Time = $1/M^{2.5}$
- $\Delta M=4\%$, $\Delta T_{life}=(1 - 1/1.04^{2.5})= 10\%$, $\Delta P=10\%$ (population probability)

No accretion : nearly equal mass NS-NS binary!

Case 2 : 1% < ΔT < 10%

-29

Case 3 : $\Delta T > 10\%$

Supercritical Accretion:

First born NS can accrete up to 0.9 M_{\odot} !

How mass & orbit change during the evolution?

A few efficiencies (not calculable from first principles)

$$\dot{E}_{acc} = \frac{1}{2} \frac{c_d}{d} \frac{G(M_{NS} + M_{giant})}{a} \dot{M}_{NS}$$

$$-\dot{E}_{orb} = \frac{1}{2} \frac{GM_{giant}}{a} \dot{M}_{NS} + \frac{1}{2} \frac{GM_{NS}}{a} \dot{M}_{giant} - \frac{1}{2} \frac{GM_{NS}M_{giant}}{a^2} \dot{a}$$

$$\dot{E}_{acc} = -\dot{E}_{orb}$$

$$\dot{E}_{acc} = -\dot{E}_{orb}$$

$$\alpha_{ce} \frac{dE_{orb}}{M_{giant}} = -\frac{dE_{bind}}{dM_c}$$

$$C_d = 6, \ \alpha_{ce}\lambda = 0.2$$
are consistent with
SXT(Soft X-ray Transient)
Lee,Brown,Wijers,ApJ(2002)
$$E_{bind} = -\frac{1}{\lambda} \frac{GM_{giant}(M_{giant} - M_{giant,core})}{a}$$
Belczynski et al.,ApJ, 572, 407

31

Final mass of first-born NS with supercritical accretion

Contents

- Motivations
- Open problems in NS mass observations
- Possibilities of `NS + high-mass NS/BH` binaries
- A new approach to NS Equation of state in hQCD

Which one is right EOS ?

refer talks by M.G. Cheon (Tue) & H.K. Lee (Thu)

Nature 467, 1081

Why strange quarks in neutron stars ?

- ✓ proton, neutron: <u>u, d quarks</u>
- ✓ By introducing strange quark
 - we have one more degrees of freedom
 - energy of the system can be reduced!
- ✓ In what form ?
 <u>kaon, hyperons</u>

Kaon is the lighest particle with strange quark !

Astrophysical Implications

Two different approaches for kaon condensation

- ✓ Conventional approach :
 - from zero density to higher density
- ✓ Top-down approaches :
 - from high density where chiral symmetry is restored to lower density
 - possibilities in recent hQCD

Problems in conventional approaches

- Problem in K⁻p Scattering amplitude: experiment : - 0.65 + i 0.81 fm (repulsive) chiral symmetry : + (attractive !)
- ✓ Problem of Λ(1405)
 pole position of Λ(1405)
 → only 30 MeV below KN threshold

Perturbation breaks down in conventional approach !

Wanted : New Top-down approaches

Q) Is there a proper way to treat strangeness in dense matter without problem of the irrelevant terms, e.g., $\Lambda(1405)$, from the beginning ?

Start from where the symmetry is fully restored ! - AdS/QCD, etc.

All irrelevant terms are out in the analysis from the beginning !

Goal: Strangeness in hQCD

refer talk by Bumhoon Lee (Fri)

- Bottom-up approach : start from QCD and attempt to guess its 5d holographic dual, AdS/CFT dictionaries
 → hard-wall model, soft-wall model, ...
- Top-down approach : start from string theory, set brane configuration with DBI action, reproduce QCD-like theory

 \rightarrow D3/D7, D4/D6, Sakai-Sugimoto ...

JHEP10 (2011) 111

Related works by S.-J. Sin et al. JHEP 03(2010)074, 04(2008)010, 06(2011)011

• add compact D4 branes \Rightarrow Baryon

Far from realistic : what is the problem ?

hQCD: What is still missing?

- proper attraction is missing in large Nc limit & large t'Hooft coupling limit
- mass of scalar field is bigger than that of vector field
- strangeness in hQD

more details of hQCD itself \rightarrow talk by Bumhoon Lee (Fri)

Prospect

- possibilities of different class of NS binaries
 - \rightarrow typical NS + high-mass NS/BH (> 2 solar mass)
 - \rightarrow could be hidden GW sources
- new approaches to NS EoS in hQCD
 - \rightarrow still far from realistic
 - \rightarrow how to put strangeness

Many Thanks

