Bethe-Salpeter approach with the separable interaction for the deuteron

Serge Bondarenko, V. Burov, E. Rogochaya

Joint Institute for Nuclear Research, Dubna, Russia

The 7th BLTP JINR-APCTP Joint Workshop, Bolshiye Koty, Russia July 14-19, 2013

Bethe-Salpeter approach is a powerful tool to investigate reactions with the deuteron and unbound neutron-proton (np) system.

The off-shell behavior of the electromagnetic nucleon-nucleon form factors also can be studied in the reactions of elastic and inelastic electron-deuteron scattering. But firstly we need to estimate the effects of the final-state interaction. In the report we consider influence of the electromagnetic nucleon-nucleon form factors in elastic scattering and the effects of the final-state interaction are investigated for J = 0, 1 partial-states of the *np*-pair withing the BS approach with separable kernel.

Bethe-Salpeter equation for the amplitude (deuteron)

$$\chi(p;P) = \frac{i}{4\pi^3} S_2(p;P) \int d^4k \, V(p,k;P) \, \chi(k;P)$$

Bethe-Salpeter equation for the nucleon-nucleon T matrix (np state)

$$T(p', p; P) = V(p', p; P) + \frac{i}{4\pi^3} \int d^4k \, V(p', k; P) \, S_2(k; P) \, T(k, p; P)$$

 p^\prime, p - the relative four-momenta P - the total four-momentum

V(p',p;P) - the interaction kernel

$$S_2^{-1}(k;P) = \left(\frac{1}{2}P\cdot\gamma + k\cdot\gamma - m\right)^{(1)} \left(\frac{1}{2}P\cdot\gamma - k\cdot\gamma - m\right)^{(2)}$$
free two-particle Green function

Relativistic two-nucleon basis states $|aM\rangle \equiv |\pi, {}^{2S+1}L^{\rho}_{J}M\rangle$

 $m{S}$ - the total spin

L - the orbital angular momentum

J - the total angular momentum with the projection M ρ and π - the relative-energy and spatial parity $u_m^{\rho=\pm,\,1/2}$ - Dirac spinors $(u^{\rho=+\,1/2}\equiv u,\,u^{\rho=-\,1/2}\equiv v)$ Y_{LmL} - the spherical harmonics $C_{j_1m_1j_2m_2}^{j\,m}$ - Clebsch-Gordan coefficients $U_C=i\gamma^2\gamma^0$ - the charge conjugation matrix

The spin-angular momentum functions (in c.m.s. frame):

 $\mathcal{Y}_{JM:LS\rho}(\mathbf{p})U_{C} = \\ = i^{L} \sum_{m_{L}m_{S}m_{1}m_{2}\rho_{1}\rho_{2}} C^{S_{\rho}\rho}_{\frac{1}{2}\rho_{1}\frac{1}{2}\rho_{2}} C^{JM}_{Lm_{L}Sm_{S}} C^{Sm_{S}}_{\frac{1}{2}m_{1}\frac{1}{2}m_{2}} Y_{Lm_{L}}(\mathbf{p}) \\ \times u^{\rho_{1}}_{m_{1}}{}^{(1)}(\mathbf{p}) u^{\rho_{2}}_{m_{2}}{}^{(2)}{}^{T}(-\mathbf{p})$

Spin-angular parts

$$\mathcal{Y}_{JM:LS+}(\mathbf{p}) = \frac{1}{\sqrt{8\pi}} \frac{1}{4E_{\mathbf{p}}(E_{\mathbf{p}}+m)} (m+p_1)(1+\gamma_0) \mathcal{G}_{aM}(m-p_2)$$

where matrices \mathcal{G}_{aM}

 $p_1=(E_{\pmb{p}}, \pmb{p}),~p_2=(E_{\pmb{p}}, -\pmb{p})$ are on-mass-shell momenta, $E_{\pmb{p}}=\sqrt{\pmb{p}^2+m^2}$

Partial-wave decomposition

Amplitude in the c.m.s. frame

$$\chi^{1M}(k; K_{(0)}) = \sum_{a} \mathcal{Y}_{aM}(\mathbf{k}) \ \phi_{a}(k_{0}, |\mathbf{k}|)$$

 $\phi_a(k_0, |\mathbf{k}|)$ is the amplitude radial parts.

$T\xspace$ matrix and kernel in the c.m.s. frame

$$T_{\alpha\beta,\gamma\delta}(p',p;P_{(0)}) = \sum_{JMab} (\mathcal{Y}_{aM}(-\mathbf{p}')U_C)_{\alpha\beta} \otimes (U_C \mathcal{Y}_{bM}^{\dagger}(\mathbf{p}))_{\delta\gamma} T_{ab}(p'_0,|\mathbf{p}'|;p_0,|\mathbf{p}|;s)$$

$$V_{\alpha\beta,\gamma\delta}(p',p;P_{(0)}) = \sum_{JMab} (\mathcal{Y}_{aM}(-\mathbf{p}')U_C)_{\alpha\beta} \otimes (U_C \mathcal{Y}_{bM}^{\dagger}(\mathbf{p}))_{\delta\gamma} V_{ab}(p'_0,|\mathbf{p}'|;p_0,|\mathbf{p}|;s)$$

 $T_{ab}(p'_0, |\mathbf{p}'|; p_0, |\mathbf{p}|; s)$ and $V_{ab}(p'_0, |\mathbf{p}'|; p_0, |\mathbf{p}|; s)$ are the T matrix and kernel radial parts.

The partial-wave decomposed equation for amplitude

$$\phi_a(p_0, |\mathbf{p}|) = \frac{i}{4\pi^3} \sum_{bc} S_{ab}(p_0, |\mathbf{p}|; s) \int_{-\infty}^{+\infty} dk_0 \int_{0}^{\infty} \mathbf{k}^2 d|\mathbf{k}|$$

 $\times V_{bc}(p_0, |\mathbf{p}|; k_0, |\mathbf{k}|; s) \phi_c(k_0, |\mathbf{k}|)$

The partial-wave decomposed equation for T matrix

$$T_{ab}(p'_0, |\mathbf{p}'|; p_0, |\mathbf{p}|; s) = V_{ab}(p'_0, |\mathbf{p}'|; p_0, |\mathbf{p}|; s) + \frac{i}{4\pi^3} \sum_{cd} \int_{-\infty}^{+\infty} dk_0 \int_{0}^{\infty} \mathbf{k}^2 d|\mathbf{k}|$$

 $\times V_{ac}(p'_{0}, |\mathbf{p}'|; k_{0}, |\mathbf{k}|; s) S_{cd}(k_{0}, |\mathbf{k}|; s) T_{db}(k_{0}, |\mathbf{k}|; p_{0}, |\mathbf{p}|; s)$

Separable ansatz for complex kernel

$$V_{a'a}(p'_0, |\mathbf{p}'|; p_0, |\mathbf{p}|; s) = \sum_{m,n=1}^{N} \left[\underline{\lambda_{mn}^{r[a'a]}(s)} + i\lambda_{mn}^{r[a'a]}(s) \right] \underline{g_m^{[a']}(p'_0, |\mathbf{p}'|)} \underline{g_n^{[a]}(p_0, |\mathbf{p}|)}$$

underlined part \equiv MYN kernels, the sum \equiv MYIN kernels

$$\lambda_{mn}^{i}(s) = \theta(s - s_{th}) \left(1 - \frac{s_{th}}{s}\right) \bar{\lambda}_{mn}^{i}$$

 s_{th} - the inelasticity threshold. Here MY stands for <u>M</u>odified <u>Y</u>amaguchi.

BS equation: solution

BS approach with the separable interaction

Below the only positive energy states are considered. Solution for the BS amplitude

$$\phi_a(p_0, |\mathbf{p}|) = \frac{g_a(p_0, |\mathbf{p}|)}{(\sqrt{s/2} - E_{\mathbf{p}} + i\epsilon)^2 - p_0^2}$$

solution for radial parts of the vertex function

$$g_a(p_0, |\mathbf{p}|) = \sum_{i,j=1}^N \lambda_{ij}(s) g_i^{[a]}(p_0, |\mathbf{p}|) c_j(s)$$

with coefficients

$$c_i(s) - \sum_{k,j=1}^N h_{ik}(s)\lambda_{kj}(s)c_j(s) = 0$$

where functions

$$h_{ij}(s) = -\frac{i}{4\pi^3} \sum_a \int dk_0 \int \mathbf{k}^2 d|\mathbf{k}| \frac{g_i^{[a]}(k_0, |\mathbf{k}|)g_j^{[a]}(k_0, |\mathbf{k}|)}{(\sqrt{s}/2 - E_{\mathbf{k}} + i\epsilon)^2 - k_0^2}$$

here $a = {}^3 S_1^+, {}^3 D_1^+$ -states and $s = M_d^2$

Solution for the T matrix

$$T_{a'a}(p'_0, |\mathbf{p}'|; p_0, |\mathbf{p}|; s) = \sum_{i,j=1}^N \tau_{ij}(s) g_i^{[a']}(p'_0, |\mathbf{p}'|) g_j^{[a]}(p_0, |\mathbf{p}|)$$

where

$$\begin{bmatrix} \tau_{ij}(s) \end{bmatrix}^{-1} = \begin{bmatrix} \lambda_{mn}^{r[a'a]}(s) + i\lambda_{mn}^{r[a'a]}(s) \end{bmatrix}^{-1} + h_{ij}(s),$$
$$h_{ij}(s) = -\frac{i}{4\pi^3} \sum_{a} \int dk_0 \int \mathbf{k}^2 d|\mathbf{k}| \frac{g_i^{[a]}(k_0, |\mathbf{k}|)g_j^{[a]}(k_0, |\mathbf{k}|)}{(\sqrt{s}/2 - E_{\mathbf{k}} + i\epsilon)^2 - k_0^2},$$

 $g_j^{[a]}$ - the model functions, $\lambda_{ij}^{[a'a]}(s)$ - a matrix of model parameters.

1)

Graz II covariant kernel, rank III

$$g_{1}^{(S)}(p_{0}, |\mathbf{p}|) = \frac{1 - \gamma_{1}(p_{0}^{2} - \mathbf{p}^{2})}{(p_{0}^{2} - \mathbf{p}^{2} - \beta_{11}^{2})^{2}},$$

$$g_{2}^{(S)}(p_{0}, \mathbf{p}) = -\frac{(p_{0}^{2} - \mathbf{p}^{2})}{(p_{0}^{2} - \mathbf{p}^{2} - \beta_{12}^{2})^{2}},$$

$$g_{3}^{(D)}(p_{0}, |\mathbf{p}|) = \frac{(p_{0}^{2} - \mathbf{p}^{2})(1 - \gamma_{2}(p_{0}^{2} - \mathbf{p}^{2}))}{(p_{0}^{2} - \mathbf{p}^{2} - \beta_{21}^{2})(p_{0}^{2} - \mathbf{p}^{2} - \beta_{22}^{2})^{2}},$$

$$g_{1}^{(D)}(p_{0}, |\mathbf{p}|) = g_{2}^{(D)}(p_{0}, |\mathbf{p}|) = g_{3}^{(S)}(p_{0}, |\mathbf{p}|) \equiv 0.$$

Table: Deuteron and low-energy scattering properties

	$p_{\rm D}(\%)$	$\epsilon_{ m D}$ (MeV)	$Q_{ m D} \ ({ m Fm}^{-2})$	$\mu_{ m D} \ (e/2m)$	$ ho_{ m D/S}$	r_0 (Fm)	a (Fm)
Covariant Graz II	4	2.225	0.2484	0.8279	0.02408	1.7861	5.4188
Experimental data		2.2246	0.286	0.8574	0.0263	1.759	5.424

Figure: Phase shifts of the ${}^{3}S_{1}$ and ${}^{3}D_{1}$ partial states

Elastic eD scattering cross section

$$\frac{d\sigma}{d\Omega'_{\rm e}} = \left(\frac{d\sigma}{d\Omega'_{\rm e}}\right)_{\rm Mott} \left[A(q^2) + B(q^2)\tan^2\frac{\theta_{\rm e}}{2}\right],$$
$$\left(\frac{d\sigma}{d\Omega'_{\rm e}}\right)_{\rm Mott} = \frac{\alpha^2\cos^2\theta_{\rm e}/2}{4E_{\rm e}^2(1 + 2E_{\rm e}/M_d\sin^4\theta_{\rm e}/2)},$$

where $\theta_{\rm e}$ is the electron scattering angle, M_d is the deuteron mass, E_e is the incident electron energy.

Deuteron structure functions $A(q^2)$ and $B(q^2)$

$$A(q^2) = F_{\rm C}^2(q^2) + \frac{8}{9}\eta^2 F_{\rm Q}^2(q^2) + \frac{2}{3}\eta F_{\rm M}^2(q^2)$$
$$B(q^2) = \frac{4}{3}\eta(1+\eta)F_{\rm M}^2(q^2)$$

where $\eta=-q^2/4M_d^2=Q^2/4M_d^2$

The tensor polarization components of the final deuteron

$$T_{20} \left[A + B \tan^2 \frac{\theta_{\rm e}}{2} \right] = -\frac{1}{\sqrt{2}} \left[\frac{8}{3} \eta F_{\rm C} F_{\rm Q} + \frac{8}{9} \eta^2 F_{\rm Q}^2 + \frac{1}{3} \eta (1 + 2(1+\eta) \tan^2 \frac{\theta_{\rm e}}{2}) F_{\rm M}^2 \right],$$

$$T_{21} \left[A + B \tan^2 \frac{\theta_e}{2} \right] = \frac{2}{\sqrt{3}} \eta (\eta + \eta^2 \sin^2 \frac{\theta_e}{2})^{1/2} F_M F_Q \sec \frac{\theta_e}{2},$$
$$T_{22} \left[A + B \tan^2 \frac{\theta_e}{2} \right] = -\frac{1}{2\sqrt{3}} \eta F_M^2.$$

The electric $F_{
m C}(q^2)$, the quadrupole $F_{
m Q}(q^2)$ and the magnetic $F_{
m M}(q^2)$ form factors

The normalization conditions are

$$F_{\rm C}(0) = 1, \quad F_{\rm Q}(0) = M_d^2 Q_{\rm D}, \quad F_{\rm M}(0) = \mu_{\rm D} \frac{M_d}{m}$$

where m is the nucleon mass, $Q_{\rm D}$ and $\mu_{\rm D}$ are quadrupole and magnetic moments of the deuteron, respectively.

The deuteron current matrix element parametrization (due to P- and T-parity conservation and gauge invariance)

$$\langle D'\mathcal{M}'|J_{\mu}|D\mathcal{M}\rangle = -e\xi^*_{\alpha \ \mathcal{M}'}(P') \ \xi_{\beta \ \mathcal{M}}(P)$$

$$\times \left[(P'+P)_{\mu} \left(g^{\alpha\beta} F_{1}(q^{2}) - \frac{q^{\alpha}q^{\beta}}{2M_{d}^{2}} F_{2}(q^{2}) \right) - (q^{\alpha}g_{\mu}^{\beta} - q^{\beta}g_{\mu}^{\alpha})G_{1}(q^{2}) \right]$$

 $\xi_{\mathcal{M}}(P)$ and $\xi_{\mathcal{M}'}^*(P')$ are the polarization 4-vectors of the initial and final deuteron, respectively.

Form factors $F_{1,2}(q^2)$, $G_1(q^2)$ are related to functions $F_C(q^2)$, $F_Q(q^2)$ and $F_M(q^2)$ by the equations

$$F_{\rm C} = F_1 + \frac{2}{3}\eta \left[F_1 + (1+\eta)F_2 - G_1\right]$$
$$F_{\rm Q} = F_1 + (1+\eta)F_2 - G_1$$
$$F_{\rm M} = G_1$$

Relativistic impulse approximation (RIA) Deuteron current matrix element

$$\langle D'\mathcal{M}'|J^{RIA}_{\mu}|D\mathcal{M}\rangle =$$

$$ie \int \frac{d^4k}{(2\pi)^4} \operatorname{Tr}\left\{ \bar{\chi}^{1\mathcal{M}'}(P',k')\Gamma^{(S)}_{\mu}(q)\chi^{1\mathcal{M}}(P,k)(P\cdot\gamma/2-k\cdot\gamma+m) \right\}$$

 $\chi^{_{1\!\!M\!\!}}(P,k)$ - the BS amplitude of the deuteron, P'=P+q and k'=k+q/2. The vertex of γNN interaction

$$\Gamma_{\mu}^{(S)}(q) = \gamma_{\mu} F_{1}^{(S)}(q^{2}) - \frac{\gamma_{\mu} q \cdot \gamma - q \cdot \gamma \gamma_{\mu}}{4m} F_{2}^{(S)}(q^{2})$$

is chosen to be the form factor on mass shell. The isoscalar form factors of the nucleon

$$F_{1,2}^{(S)}(q^2) = (F_{1,2}^{(p)}(q^2) + F_{1,2}^{(n)}(q^2))/2$$

with normalization condition

$$F_1^{(S)}(0) = 1/2, \quad F_2^{(S)}(0) = (\varkappa_p + \varkappa_n)/2$$

with $\varkappa_p = \mu_p - 1$ and $\varkappa_n = \mu_n$ being anomalous parts of the proton μ_p and neutron μ_n magnetic moments, respectively.

After partial-wave decomposition and trace calculation (in LS)

$$\begin{split} \langle D'\mathcal{M}'|J^{RIA}_{\mu}|D\mathcal{M}\rangle &= \mathcal{I}^{\mathcal{M}'\mathcal{M}}_{1\,\mu}(q^2) \ F^{(\mathrm{S})}_1(q^2) + \mathcal{I}^{\mathcal{M}'\mathcal{M}}_{2\,\mu}(q^2) \ F^{(\mathrm{S})}_2(q^2),\\ \mathcal{I}^{\mathcal{M}'\mathcal{M}}_{1,2\,\mu}(q^2) &= ie \int dk_0 \ |\mathbf{k}|^2 \ d|\mathbf{k}| \ d(\cos\theta) \\ &\times \sum_{a',a} \phi_{a'}(k'_0,|\mathbf{k}'|) \ \phi_a(k_0,|\mathbf{k}|) \ I^{a'a}_{1,2\,\mathcal{M}'\mathcal{M}\,\mu}(k_0,|\mathbf{k}|,\cos\theta,q^2), \end{split}$$

Components of the k' 4-vector

$$k'_{0} = (1+2\eta)k_{0} - 2\sqrt{\eta}\sqrt{1+\eta}k_{z} - M_{d}\eta$$
$$k'_{x} = k_{x}, \quad k'_{y} = k_{y}$$
$$k'_{z} = (1+2\eta)k_{z} - 2\sqrt{\eta}\sqrt{1+\eta}k_{0} + M_{d}\sqrt{\eta}\sqrt{1+\eta}$$

are due to Lorentz boost of the final deuteron to the LS

Nucleon form factors

In calculations the following models for nucleon form factors were investigated:

- dipole fit, $G_{\rm E}^{\rm n}(q^2)=0$
- vector meson dominance model (VMDM), $G_{
 m E}^{
 m n}(q^2)
 eq 0$
- ullet relativistic harmonic oscillator model (RHOM), $G_{
 m E}^{
 m n}(q^2)
 eq 0$

Elastic eD scattering

BS approach with the separable interaction

Charge $F_{\rm C}(q^2)$ and quadrupole $F_{\rm Q}(q^2)$ form factors

Long and short dashes represent calculations with the VMDM and RHOM nucleon form factors, respectively. The solid curve corresponds to the dipole fit.

Elastic eD scattering

BS approach with the separable interaction

Structure functions $A(q^2)$ and $B(q^2)$

Long and short dashes represent calculations with the VMDM and RHOM nucleon form factors, respectively. The solid curve corresponds to the dipole fit.

Elastic eD scattering

Tensor polarization components $T_{20}(q^2)$ and $T_{22}(q^2)$ calculated at $\theta_e = 70^\circ$.

Long and short dashes represent calculations with the VMDM and RHOM nucleon form factors, respectively. The solid curve corresponds to the dipole fit.

Tensor polarization component $T_{21}(q^2)$ calculated at $\theta_e = 70^{\circ}$

Long and short dashes represent calculations with the VMDM and RHOM nucleon form factors, respectively. The solid curve corresponds to the dipole fit.

Motivation for MY(I)*N* kernel

Consider integral

$$\int dk_0 \int \mathbf{k}^2 d|\mathbf{k}| \frac{[g(k_0, |\mathbf{k}|)]^2}{(\sqrt{s}/2 - E_{\mathbf{k}} + i\epsilon)^2 - k_0^2}$$

Simple poles of propagators

$$k_0^{(1,2)} = \pm \sqrt{s}/2 \mp E_{\mathbf{k}} \pm i\epsilon$$

Taking into account pole and Yamaguchi-like type of $g(k_0,|{\bf k}|)=1/(k_0^2-{\bf k}^2-\beta^2)$

$$(2\pi i) \int \mathbf{k}^2 d|\mathbf{k}| \frac{1}{(s/4 - \sqrt{s}E_{\mathbf{k}} + m^2 - \beta^2)^2} \frac{1}{\sqrt{s} - 2E_{\mathbf{k}} + i\epsilon}$$

Motivation for MY(I)N kernel

Consider numerator $f=s/4-\sqrt{s}E_{\mathbf{k}}+m^2-\beta^2$

- If $4(m-\beta)^2 < s < 4(m+\beta)^2$ then always f < 0 and function $1/f^n$ is integrable for any integer n and any E_k .
- For bound state $s = M_d^2 = (2m \epsilon_D)^2$. Since for $\beta_{min} = 0.2$ GeV always $\beta_{min} > \epsilon_D/2$ then function $1/f^n$ is integrable for any integer n and any $E_{\mathbf{k}}$.
- If $4(m-\beta)^2 > s > 4(m+\beta)^2$ then f can be positive and negative and $1/f^n$ is non-integrable for even n and any E_k .

Critical value for $s^c = 4(m + \beta)^2$ corresponds to laboratory kinetic energy of np pair $T^c_{lab} = 4\beta + 2\beta^2/m \simeq 4\beta$. If $\beta_{min} = 0.2$ GeV then $T^{min}_{lab} = 0.8$ GeV.

The solution is to change $g(k_0, |\mathbf{k}|)$

$$g_{\rm Y}(k_0, |\mathbf{k}|) = 1/(k_0^2 - \mathbf{k}^2 - \beta^2) \to g_{\rm MY}(k_0, |\mathbf{k}|) = 1/((k_0^2 - \mathbf{k}^2 - \beta^2)^2 + \alpha^4)$$

here Y stands for Yamaguchi-like and MY - for Modified Yamaguchi

Analysis

 $V(p,p') \to T_{off-mass-shell}(p,p') \to T_{on-mass-shell}(\bar{p},\bar{p}) \to (\delta,\rho,a_0,E_d...)$

 δ - the phase shifts, a_0, r_0 - the low-energy parameters (the scattering length, the effective range), E_d - the deuteron binding energy.

Procedure (J = 0, 1)

calculate the kernel parameters – $\lambda_{ij}(s)$ -matrix and parameter of the g-functions – to minimize the function χ^2 :

$$\begin{split} \chi^2 &= & \sum_{i=1}^n (\delta^{\exp}(s_i) - \delta(s_i))^2 / (\Delta \delta^{\exp}(s_i))^2 & - \text{ for all partial-wave states} \\ & \sum_{i=1}^n (\rho^{\exp}(s_i) - \rho(s_i))^2 / (\Delta \rho^{\exp}(s_i))^2 & - \text{ for all partial-wave states} \\ & + (a_0^{\exp} - a_0)^2 / (\Delta a_0^{\exp})^2 & - \text{ for the } {}^1S_0^+ \text{ and } {}^3S_1^+ \text{ partial-wave states} \\ & + (E_d^{\exp} - E_d)^2 / (\Delta E_d^{\exp})^2 & - \text{ for the } {}^3S_1^+ - {}^3D_1^+ \text{ partial-wave states} \\ & \{+...\} \end{split}$$

Modified Yamaguchi functions

$$g_i^{[a]}(p_0, |\mathbf{p}|) = \frac{(p_{ci} - p_0^2 + \mathbf{p}^2)^{n_i} (p_0^2 - \mathbf{p}^2)^{m_i}}{((p_0^2 - \mathbf{p}^2 - \beta_{1i}^2)^2 + \alpha_{1i}^4)^{k_i} ((p_0^2 - \mathbf{p}^2 - \beta_{1i}^2)^2 + \alpha_{1i}^4)^{l_i}}$$

All parameters - n_i, m_i, k_i, l_i (integer), $p_{ci}, \beta_{1i}, \beta_{2i}, \alpha_{1i}, \alpha_{2i}$ (real) - depend on channel [a].

Phase shifts for ${}^1P_1^+$, ${}^3P_0^+$, ${}^3P_1^+$ and ${}^1S_0^+$ partial-wave states

Phase shifts and inelasticity parameter for triplet ${}^{3}S_{1}$ - ${}^{3}D_{1}$ state

Phase shifts and inelasticity parameter for triplet ${}^3S_1 {}^3D_1$ state

Table: Deuteron and low-energy scattering properties

	a_{0t}	r_{0t}	p_D	E_d	$ ho_{D/S}$	μ_d
	(fm)	(fm)	(%)	(MeV)		(e/2m)
MY6	5.42	1.800	4.92	2.2246	0.0255	0.8500
Graz II	5.42	1.779	5	2.2254	0.0269	0.8512
Paris	5.43	1.770	5.77	2.2249	0.0261	0.8469
CD-Bonn	5.4196	1.751	4.85	2.2246	0.0256	0.8522
Exp.	5.424(4)	1.759(5)	4-7	2.224644(46)	0.0256(4)	0.8574

np **pair wave function (amplitude)** BS amplitude of the *np* pair

$$\begin{split} \psi_{SM_S}(p,p^*;P) &= \psi_{SM_S}^{(0)}(p,p^*;P) + \\ &\frac{i}{4\pi^3} S_2(p;P) \int d^4k \, V(p,k;P) \psi_{SM_S}(k,p^*;P) \end{split}$$

Free term (plane-wave approximation)

$$\psi_{SM_S}(p, p^*; P) = \psi_{SM_S}^{(0)}(p, p^*; P) = (2\pi)^4 \chi_{SM_S}(p; P) \delta(p - p^*)$$

Interacting term

$$\psi_{SM_S}^{(t)}(p, p^*; P) = 4\pi i \, S_2(p; P) T(p, p^*; P) \chi_{SM_S}(p^*; P)$$

The partial-wave decomposition of the np-pair BS amplitude

$$\psi_{SM_{S}}^{(t)}(p, p^{*}; P) = 4\pi i \times$$

$$\sum_{LmJMa} C_{LmSM_{S}}^{JM} Y_{Lm}^{*}(\hat{p}^{*}) \mathcal{Y}_{aM}(p) \phi_{a,J:LS+}(p_{0}, |p|; s),$$
(2)

where $p^* = (0, p^*)$ with $|p^*| = \sqrt{s/4 - m^2}$ is the relative momentum of on-mass-shell nucleons in CM, \hat{p}^* denotes the azimuthal angle θ_{p^*} between the p^* and q vectors and zenithal angle ϕ . Since only positive-energy partial-wave states are considered here the radial part is:

$$\phi_{a,J:LS+}(p_0, |\mathbf{p}|; s) = \frac{T_{a,J:LS+}(p_0, |\mathbf{p}|; 0, |\mathbf{p}^*|; s)}{(\sqrt{s}/2 - E_{\mathbf{p}} + i\epsilon)^2 - p_0^2}.$$
(3)

Unpolarized exclusive cross-section

The 5-fold differential cross section in one-photon approximation (in laboratory system - LS)

$$-\frac{d^3\sigma}{dE'_e d\Omega'_e d\Omega_p} = \frac{\sigma_{\rm Mott}}{8M_d (2\pi)^3} \frac{\boldsymbol{p}_p^2 \sqrt{s}}{\sqrt{1+\eta} |\boldsymbol{p}_p| - E_p \sqrt{\eta} \cos \theta_p}$$

 $\times \left[l_{00}^{0} W_{00} + l_{++}^{0} (W_{++} + W_{--}) + 2l_{+-}^{0} \cos 2\phi \operatorname{Re}W_{+-} - 2l_{+-}^{0} \sin 2\phi \operatorname{Im}W_{+-} \right. \\ \left. - 2l_{0+}^{0} \cos \phi \operatorname{Re}(W_{0+} - W_{0-}) - 2l_{0+}^{0} \sin \phi \operatorname{Im}(W_{0+} + W_{0-}) \right]$

$$\begin{split} &\sigma_{\mathrm{Mott}} = (\alpha \cos \frac{\theta}{2}/2E_e \sin^2 \frac{\theta}{2})^2 \text{ - Mott cross section} \\ &\alpha = e^2/(4\pi) \text{ - fine structure constant} \\ &M_d \text{ - mass of the deuteron, } m \text{ - mass of the nucleon} \\ &q = p_e - p'_e = (\omega, q) \text{ - momentum transfer} \\ &p_e = (E_e, l) \text{ and } p'_e = (E'_e, l') \text{ - initial and final electron momenta} \\ &\Omega'_e \text{ - outgoing electron solid angle} \\ &p_p \text{ - momentum of outgoing proton} \\ &\Omega_p = (\theta_p, \phi) \text{ - outgoing proton solid angle} \\ &\eta = q^2/s \text{ - Lorentz boost factor} \end{split}$$

Density matrices

The virtual photon density matrix

$$\begin{split} l_{00}^{0} &= \frac{Q^{2}}{q^{2}}, \quad l_{0+}^{0} &= \frac{Q}{|q|\sqrt{2}}\sqrt{\frac{Q^{2}}{q^{2}} + \tan^{2}\frac{\theta}{2}}, \\ l_{++}^{0} &= \tan^{2}\frac{\theta}{2} + \frac{Q^{2}}{2q^{2}}, \quad l_{+-}^{0} &= -\frac{Q^{2}}{2q^{2}} \end{split}$$

here $Q^2 = -q^2$ The hadron density matrix

$$W_{\lambda\lambda'} = W_{\mu\nu}\varepsilon^{\mu}_{\lambda}\varepsilon^{\nu}_{\lambda'}$$

 λ , λ' - photon helicity components Cartesian components

$$W_{\mu\nu} = \frac{1}{3} \sum_{s_d s_n s_p} |\langle np : SM_S | j_\mu | d : 1M > |^2$$

 ε - photon polarization vectors, S - spin of the np pair, M_S - projection, s_d , s_n and s_p deuteron, neutron and proton momentum projections

EM current matrix element $< np : SM_S|j_{\mu}|d : 1M >$ Matrix element within the relativistic impulse approximation (in LS)

$$< np: SM_S | j_{\mu} | d: 1M > = i \sum_{n=1,2} \int \frac{d^4 p^{\mathsf{cM}}}{(2\pi)^4} \times d^4 p^{\mathsf{cM}}$$

$$\operatorname{Sp}\left\{\Lambda(\mathcal{L}^{-1})\bar{\psi}_{SM_{S}}(p^{\mathsf{cM}}, p^{*\mathsf{cM}}; P^{\mathsf{cM}})\Lambda(\mathcal{L})\Gamma_{\mu}^{(n)}(q) \times S^{(n)}\left(\frac{K_{(0)}}{2} - (-1)^{n}p - \frac{q}{2}\right)\Gamma^{M}\left(p + (-1)^{n}\frac{q}{2}; K_{(0)}\right)\right\}$$

 P^{CM} - total, $p^{*\,\mathsf{CM}}$ - relative momenta of the outgoing nucleons p^{CM} - relative momenta in the center-of-mass system (CM) p - relative np pair momentum in LS (p, q) $K_{(0)} = (M_d, \mathbf{0})$ - deuteron total momentum in LS $S^{(n)}$ - propagator of the *n*th nucleon \mathcal{L} - Lorenz-boost transformation along the q direction

 Λ - boost operator from CM to LS:

$$\Lambda(\mathcal{L}) = \left(\frac{1+\sqrt{1+\eta}}{2}\right)^{\frac{1}{2}} \left(1 + \frac{\sqrt{\eta}\gamma_0\gamma_3}{1+\sqrt{1+\eta}}\right),$$

 $\Gamma^{(n)}_{\mu}$ - photon-nucleon interaction vertex (on-mass-shell):

$$\Gamma_{\mu}(q) = \gamma_{\mu} F_1(q^2) - \frac{1}{4m} \left(\gamma_{\mu} \not q - \not q \gamma_{\mu} \right) F_2(q^2), \tag{4}$$

 ψ_{SMS} - np pair wave function Γ^M - deuteron vertex function are solutions of the Bethe-Salpeter equation with separable kernel

Matrix element

Plane-wave approximation

$$< np: SM_S|j_{\mu}|d: 1M>^{(0)} = i\sum_{n=1,2} \{\Lambda(\mathcal{L}^{-1})\bar{\chi}_{SM_S}(p^{*^{\mathsf{CM}}}; P^{\mathsf{CM}})\Lambda(\mathcal{L})\Gamma_{\mu}^{(n)}(q)$$

$$\times S^{(n)}\left(\frac{K_{(0)}}{2} - (-1)^n p^* - \frac{q}{2}\right) \Gamma^M(p^* + (-1)^n \frac{q}{2}; K_{(0)}) \}$$

 $\Lambda(\mathcal{L})$ - Lorentz-boost matrix $\Gamma^{(n)}_{\mu}(q) = \gamma_{\mu}F_1(q) + (\gamma_{\mu}\hat{q} - \hat{q}\gamma_{\mu})F_2(q)$ - photon-NN vertex $F_{1,2}(q)$ - electromagnetic nucleon form-factors

Matrix element

Final-state interaction

$$< np: SM_{S}|j_{\mu}|d: 1M>^{(t)} = \frac{i}{4\pi^{3}} \sum_{n=1,2} \sum_{LmJM_{J}L'lm'} C_{LmJM_{J}}^{JM_{J}} Y_{Lm}(\hat{p}^{*})$$

$$\int_{-\infty}^{\infty} dp_{0}^{\mathsf{CM}} \int_{0}^{\infty} (p^{\mathsf{CM}})^{2} d|p^{\mathsf{CM}}| \int_{-1}^{1} d\cos\theta_{p}^{\mathsf{CM}} \int_{0}^{2\pi} d\phi$$

$$\operatorname{Sp}\left\{\Lambda(\mathcal{L}^{-1})\bar{\mathcal{Y}}_{JL'SM_{J}}(p^{\mathsf{CM}})\Lambda(\mathcal{L})\Gamma_{\mu}^{(n)}(q)S^{(n)}\left(\frac{K_{(0)}}{2} - (-1)^{n}p - \frac{q}{2}\right)\right.$$

$$\mathcal{Y}_{JlSm'}\left(p + (-1)^{n}\frac{q}{2}\right)\right\}$$

$$\frac{T_{L'L}^{*}(p_{0}^{\mathsf{CM}}, |p^{\mathsf{CM}}|; 0, |p^{*}|; s)}{(\sqrt{s}/2 - E_{p} + i\epsilon)^{2} - p_{0}^{2}}g_{l}\left(p_{0} + (-1)^{n}\frac{\omega}{2}, \left|p + (-1)^{n}\frac{q}{2}\right|\right)$$

Calculations

- $\bullet\,$ calculate trace in MAPLE, perform analytic integration over ϕ and convert expressions to FORTRAN
- analyze the poles in complex p_0 plane (poles from propagators, radial parts of deuteron vertex function and np pair amplitude can cross the Wick rotation contour and give additional contribution)
- perform (3,2,1)-fold numerical integrations in FORTRAN

All calculations are performed with MYN kernel without taking into account the inelasticities.

Sacley data

S_I, S_{II}- M. Bernheim et al., Nucl. Phys. **A365**, 349 (1981). S_{III}- S. Turck-Chieze et al., Phys. Lett. **B142**, 145 (1984).

S.G. Bondarenko, V.V. Burov, E.P. Rogochaya. "Final-state interaction effects in electrodisintegration of the deuteron within the Bethe-Salpeter approach". JETP Lett. 94 (2012) 3.

BS approach with the separable interaction

		S_I	S_{II}	S _{III}
E_e , GeV		0.500	0.500	0.560
E_e^\prime , GeV		0.395	0.352	0.360
θ, °		59	44.4	25
p_n , GeV/ c	min	0.005	0.165	0.294
	max	0.350	0.350	0.550
$ heta_n$, °	min	101.81	172.07	153.01
	max	37.78	70.23	20.81
$ heta_{qe}$, °	min	48.79	44.74	33.06
p_p , GeV/ c	min	0.451	0.514	0.557
	max	0.276	0.403	0.306
$ heta_p$, °	min	0.622	2.54	13.86
	max	51.03	54.90	140.28
$ heta_{pe}$, °	min	49.41	47.28	46.92
	max	99.81	99.64	173.35
\sqrt{s} , GeV		1.929	1.993	2.057
$\sqrt{s}-2m$, GeV		0.051	0.115	0.176
Q^2 , $(\text{GeV}/c)^2$		0.192	0.101	0.038
ω , GeV		0.105	0.148	0.200
$ m{q} $, GeV/ c		0.450	0.350	0.279

Cross section depending on recoil neutron momentum $|p_n|$ calculated under kinematic conditions set I, II of the Sacley experiment (S_I,S_{II}). MY6 (PWA) (red solid line) - relativistic calculation in the plane-wave approximation with the MY6 potential; MY6 (FSI) (blue dashed line) - relativistic calculation including FSI effects; NR (PWAc) (violet dotted line) - nonrelativistic calculation (Shebeko *et al.*)

The same as in previous figures but under kinematic conditions set III of the Scale experiment (S_{III}). Two additional results are presented for comparison: MY6 (PWAc) (pink dashed-dotted-dotted line) - relativistic PWA calculation; MY6 (FSIc) (orange dashed-dotted line) - relativistic calculation with FSI effects; both obtained under current conservation condition $\omega J_0 = q_z J_z$

Bonn data

B_I, B_{II}- H. Breuker *et al.*, Nucl. Phys. **A455**, 641 (1986). B_{III}, B_{IV}, B_V- B. Boden *et al.*, Nucl. Phys. **A549**, 471 (1992).

S.G. Bondarenko, V.V. Burov, E.P. Rogochaya. "Inelasticity of the *NN*-kernel for the final-state interaction in the deuteron breakup". PoS (Baldin ISHEPP XXI), 2013.

BS approach with the separable interaction

		B _I	B _{II}	B_{III}	B_{IV}	B_V
E, GeV		1.464	1.569	1.2	1.2	1.2
E', GeV	min	1.175	1.118	0.895	0.895	0.895
	max			0.800	0.800	0.800
θ, °		21	21	20.15	20.15	20.15
p_n , GeV/ c	min	0.314	0.500	0.126	0.197	0.197
	max	0.660	0.773	0.564	0.423	0.488
p_p , GeV/ c	min	0.466	0.681	0.525	0.620	0.622
	max	0.664	0.791	0.834	0.929	0.889
\sqrt{s} , GeV	min	1.9675	2.1375	1.98	2.04	2.04
	max	2.2125	2.3325	2.28	2.28	2.28
$\sqrt{s}-2m$, GeV	min	0.090	0.260	0.101	0.161	0.161
	max	0.335	0.455	0.401	0.401	0.401
Q^2 , GeV ² / c^2	min	0.257	0.255	0.154	0.145	0.145
	max	0.206	0.209	0.106	0.106	0.106
ω , GeV	min	0.162	0.348	0.148	0.210	0.210
	max	0.422	0.568	0.476	0.476	0.476
q_z , GeV/ c	min	0.532	0.613	0.420	0.435	0.435
	max	0.620	0.729	0.577	0.577	0.577

Cross section depending on \sqrt{s} - invariant mass of the np-pair - calculated under kinematic conditions set I, II of the Bonn experiment (B_I,B_{II}). Solid red line - plane-way calculations, dotted black curve - final-state interaction calculations.

Cross section depending on \sqrt{s} - invariant mass of the *np*-pair - calculated under kinematic conditions set III of the Bonn experiment (B_{III}). Solid red line - plane-way calculations, dotted black curve - final-state interaction calculations.

The same as in previous figure but under kinematic conditions set IV ans V of the Bonn experiment (B_{IV}, B_V) . Solid red line - plane-way calculations, dotted black curve - final-state interaction calculations.

 $\delta=\frac{\rm FSI without inelasticities}{\rm FSI within elasticities}$ - 1, in % for all Bonn experimental kinematic conditions

Conclusion

- The influence of the electromagnetic nucleon-nucleon form factors in the reaction of the elastic electron-deuteron scattering is investigated in the BS formalism.
- The multirank complex separable kernels of the neutron-proton interaction for states with the total angular momentum J=0,1 are used to calculate final-state interaction effects for the deuteron electrodisintegration.
- The effects of the FSI are small at low momentum-transfer squared and energy of *np*-pair but become sizable at higher values of them (dozens of per cent).
- The effects of the inelasticities are relatively small (not exceed 1.5 %) in the region of the laboratory kinetic energy of the *np*-pair from 0.2 till 1.1 GeV for unpolarized cross-section. But their contribution to the polarization characteristics should be investigated.