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Trying to understand what lies beyond our local world

In Armenia, attempts to understand the structure of the universe
beyond our immediate local world date back to the Bronze Age.

2 / 27



Braneworld localized gravity

The idea of formulating the cosmology of our universe on a brane
embedded in a higher-dimensional spacetime dates was initially
considered, among others, by Rubakov and Shaposhnikov.
Phys. Lett. B125 (1983), 136
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An approach to gravity localization: Salam-Sezgin theory
and its embedding

Abdus Salam and Ergin Sezgin constructed in 1984 a version of 6D
minimal (chiral, i.e. (1,0)) supergravity coupled to a 6D 2-form
tensor multiplet and a 6D super-Maxwell multiplet which gauges
the U(1) R-symmetry of the theory. Phys.Lett. B147 (1984) 47 This
Einstein-tensor-Maxwell system has the bosonic Lagrangian

LSS = 1
2R −

1
4g2 e

σFµνF
µν − 1

6e
−2σGµνρG

µνρ − 1
2∂µσ∂

µσ − g2e−σ

Gµνρ = 3∂[µBνρ] + 3F[µνAρ]

Note the positive potential term for the scalar field σ. This is a key
feature of all R-symmetry gauged models generalizing the
Salam-Sezgin model, leading to models with noncompact
symmetries. For example, upon coupling to yet more vector
multiplets, the sigma-model target space can have a structure
SO(p, q)/(SO(p)× SO(q)).
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The Salam-Sezgin theory does not admit a maximally symmetric
6D solution, but it does admit a (Minkowski)4 × S2 solution with
the flux for a U(1) monopole turned on in the S2 directions

ds2 = ηµνdx
µdxν + a2(dθ2 + sin2 θdφ2)

Amdy
m = (n/2g)(cos θ ∓ 1)dφ
σ = σ0 = const , Bµν = 0

g2 =
eσ0

2a2
, n = ±1
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H(2,2) embedding of the Salam-Sezgin theory
A way to obtain the Salam-Sezgin theory from M theory was given
by Cvetič, Gibbons & Pope. Nucl. Phys. B677 (2004) 164 This employed a
reduction from 10D type IIA supergravity on the space H(2,2), or,
equivalently, from 11D supergravity on S1 ×H(2,2). The H(2,2)

space is a cohomogeneity-one 3D hyperbolic space which can be
obtained by embedding into R4 via the condition
µ2

1 + µ2
2 − µ2

3 − µ2
4 = 1. This embedding condition is SO(2, 2)

invariant, but the embedding R4 space has SO(4) symmetry, so the
linearly realized isometries of this space are just
SO(2, 2) ∩ SO(4) = SO(2)× SO(2). The cohomogeneity-one H(2,2)

metric can be written ds2
3 = cosh 2ρdρ2 + cosh2ρdα2 + sinh2ρdβ2.

Since H(2,2) admits a natural SO(2, 2) group action, the resulting
7D supergravity theory has maximal (32 supercharge)
supersymmetry and a gauged SO(2, 2) symmetry, linearly realized
on SO(2)× SO(2). Note how this fits neatly into the general
scheme of extended Salam-Sezgin gauged models.
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The Kaluza-Klein spectrum

Reduction on the non-compact H(2,2) space from ten to seven
dimensions, despite its mathematical consistency, does not provide
a full physical basis for compactification to 4D. The chief problem
is that the massive Kaluza-Klein modes form a continuum instead
of a discrete set with mass gaps.

Moreover, the wavefunction of “reduced” 4D states when viewed
from 10D or 11D includes a non-normalizable factor owing to the
infinite H(2,2) directions. Accordingly, the higher-dimensional
supergravity theory does not naturally localize gravity in the
lower-dimensional subspace when treated by ordinary Kaluza-Klein
methods.
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Expansion about the Salam-Sezgin background
The D = 10 lift of the Salam-Sezgin “vacuum” solution yields the
metric

ds2
10 = (cosh 2ρ)1/4

[
e−

1
4 φ̄ ds̄2

6 + e
1
4 φ̄ dy2 + 1

2 ḡ
−2 e

1
4 φ̄
(
dρ2

+ 1
4 [dψ + sech2ρ(dχ− 2ḡ Ā)]2 + 1

4 (tanh 2ρ)2 (dχ− 2ḡ Ā)2
)]

Ā(1) = − 1

2ḡ
cos θ dϕ

in which the ds̄2
6 metric has Minkowski4 × S2 structure

ds̄2
6 = dxµdxνηµν +

1

8ḡ2
(dθ2 + sin2 θdϕ2)

The inclusion of gravitational fluctuations about this background is
then accomplished by replacing

ηµν −→ ηµν + hµν(x , z)

where zp are the coordinates transverse to the 4D coordinates xµ.
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Bound states and mass gaps Crampton, Pope & K.S.S.

An approach to obtaining the localization of gravity on the 4D
subspace is then to look for a normalizable transverse-space
wavefunction ξ(z) for hµν(x , z) = hµν(x)ξ(z) with a mass gap
before the onset of the continuous massive Kaluza-Klein spectrum.
This could be viewed as analogous to an effective field theory for
electrons confined to a metal by a nonzero work function.

General study of the fluctuation spectra about brane solutions
shows that the mass spectrum of the spin-two fluctuations about a
brane background is given by the spectrum of the scalar Laplacian
in the transverse embedding space of the brane (with g =

√
2ḡ

now)Csáki, Erlich, Hollowood & Shirman, Nucl.Phys. B581 (2000) 309; Bachas & Estes, JHEP 1106 (2011) 005

(10)F =
1√

− det g(10)

∂M

(√
− det g(10)g

MN
(10)∂NF

)
= H

1
4

SS( (4) + g24θ,φ,y ,ψ,χ + g24KK)

HSS = (cosh 2ρ)−1 warp factor; 4KK =
∂2

∂ρ2
+

2

tanh(2ρ)

∂

∂ρ
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The zp directions θ, φ, y , ψ & χ are all compact, and one can
employ ordinary Kaluza-Klein methods for reduction on them,
truncating to the invariant sector for these coordinates, but still
allowing dependence on the noncompact coordinate ρ.

To handle the noncompact direction ρ, one needs to expand all
fields in eigenmodes of 4KK:

φ(xµ, ρ) =
∑
i

φλi (x
µ)ξλi (ρ) +

∫ ∞
Λ

dλφλ(xµ)ξλ(ρ)

where the φλi are discrete eigenmodes and the φλ are the
continuous Kaluza-Klein eigenmodes. Their eigenvalues give the
Kaluza-Klein masses in 4D from the wave equation (10)φλ = 0
using 4θ,φ,y ,ψ,χφλ = 0

4KKξλ = −λξλ
(4)φλ = (g2λ)φλ
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The Schrödinger equation for H(2,2) eigenfunctions

One can rewrite the 4KK eigenvalue problem as a Schrödinger
equation by making the substitution

Ψλ =
√

sinh(2ρ)ξλ

after which the eigenfunction equation takes the Schrödinger
equation form

−d2Ψλ

dρ2
+ V (ρ)Ψλ = λΨλ

where the potential is

V (ρ) = 2− 1

tanh2(2ρ)
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The SS Schrödinger equation potential V (ρ) asymptotes to the
value 1 for large ρ. In this limit, the Schrödinger equation becomes

d2Ψλ

dρ2
+ (λ− 1)Ψλ = 0

giving scattering-state solutions for λ > 1:

Ψλ(ρ) ∼
(
Aλe

i
√
λ−1ρ + Bλe

−i
√
λ−1ρ

)
for large ρ

while for λ < 1, one can have L2 normalizable bound states.
Recalling the ρ dependence of the measure√
−g(10) ∼ (cosh(2ρ))

1
4 sinh(2ρ), one finds for large ρ∫ ∞

ρ1�1
|Ψλ(ρ)|2dρ <∞⇒ Ψλ ∼ Bλe

−
√

1−λρ for λ < 1

So for λ < 1 we can have candidate bound states, with a mass gap
up to the edge of the scattering states’ continuum spectrum.
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The zero-mode bound state

The 1-D quantum mechanical system with a V (ρ) = 2− coth2(2ρ)
potential belongs to a special class of Pöschl-Teller integrable
systems. Neither normalizability nor self-adjointness are by
themselves sufficient to completely determine the transverse
wavefunction for the reduced effective theory. A key feature of
such systems, however is 1-D supersymmetry and requiring that
this be unbroken by the transverse wavefunction Ψλ selects the
value λ = 0.
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Happily, for λ = 0 the Schrödinger equation can be solved exactly.
The normalized result is

Ψ0(ρ) =
√

sinh(2ρ)ξ0(ρ) =
2
√

3

π

√
sinh(2ρ) log(tanh ρ)

0 1 2 3 4
-1.0

-0.5

0.0

0.5

1.0

H(2,2) Schrödinger equation potential (orange) and zero-mode ξ0 (purple)
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The asymptotic structure of the Salam-Sezgin background as
ρ→ 0 limits to the horizon structure of a NS-5 brane. This also
allows for the inclusion of an additional NS-5 brane source as
ρ→ 0. After such an inclusion, the zero-mode transverse
wavefunction ξ0 remains unchanged. Moreover, inclusion of such
an additional NS-5 brane does not alter the 8 unbroken space-time
supersymmetries possessed by the Salam-Sezgin background. The
NS-5 modified 10-D supergravity solution can still be given
explicitly.

NS5-brane
wrapped on H (2,2)

H(2,2) space with an NS-5 brane source wrapped around its ‘waist’
and smeared on a transverse S2
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Braneworld effective gravity
The effective action for 4D gravity reduced on the background SS
solution is obtained by letting the higher dimensional metric take
the form dŝ2 = e2A(z)(ηµν + hµν(x)ξ0(ρ))dxµdxν + ĝab(z)dzadzb,
where the warp factor A(z) and the transverse metric ĝab(z) are
given by the SS background.

Starting from the 10D Einstein gravitational action

I10 =
1

16πG10

∫
d10x

√
ĝ R̂(ĝ)

and making the reduction to 4D, one obtains, at quadratic order in
hµν , the linearized 4D Einstein (i.e. massless Fierz-Pauli) action
with a prefactor υ−2

0

Ilin 4 =
1
υ2

0

∫
d4x

(
−1

2∂σhµν∂
σhµν + 1

2∂µh
σ
σ∂

µhτ τ + ∂νhµν∂
σhµσ + hσσ∂

µ∂νhµν
)
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The normalizing factor υ0 =
(

16πG10g5

π2`y I2

) 1
2

involves the first of a

series of integrals involving products of the transverse wavefunction
ξ0. For υ0 one needs

I2 =

∫ ∞
0

dρ sinh 2ρ ξ2
0 =

π2

12

The ability to evaluate explicitly such integrals of products of
transverse wave functions is directly related to the
integrable-model Pöschl-Teller structure of the transverse
wavefunction Schrödinger equation with V (ρ) = 2− coth2(2ρ).
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In order to obtain the effective 4D Newton’s constant, one needs
to rescale hµν = υ0h̃µν in order to obtain a canonically-normalised
kinetic term for h̃µν . Then the leading effective 4D coupling
κ4 =

√
32πG4 for gravitational self-interactions is obtained from

the coefficient in front of the trilinear terms in h̃µν in the 4D
effective action.

These involve the integral

I3 =

∫ ∞
0

dρ sinh 2ρ ξ3
0 = −3ζ(3)

4
;

accordingly, the 4D Newton constant is given by

G4 =
486 ζ(3)2G10g

5

π8`y

with corresponding 4D κ4 expansion coupling

κ4 = 72
√

3ζ(3)

(
G10g

5

π7`y

) 1
2

.
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The Pöschl-Teller integrable structure of the transverse
Schrödinger problem enables higher order terms in the effective
action to be evaluated explicitly as well. For the ξn0 integrals
needed in evaluating the effective theory interactions, one finds

In ≡
∫ ∞

0
dρ sinh 2ρ ξn0 (ρ) = (−1)n n! 2−n ζ(n)

Moreover, integrating out the continuum of massive modes also
requires performing integrals like∫ ∞

0
dρ sinh 2ρ ξn0 (ρ)ξλ(ρ)

which can also be evaluated and the results given in terms of
Legendre functions. Integrating out the ξλ contributions then
produces a series of corrections to the leading-order effective
theory.
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Life in an inconsistent truncation

The “inconsistency” of the mass-gapped reduction to D = 4 is
revealed in the types of corrections to the lower-dimensional
effective theory that can arise from integrating out the transverse
coordinate dependence.

There are some similarities here to compactification on Calabi-Yau
spaces. M.J. Duff, S. Ferrara, C.N. Pope & K.S.S., Nucl.Phys. B333 (1990) 783 However, in
such CY compactifications, if one focuses on parts of the leading
order effective theory without scalar potentials, the result of
integrating out the massive KK modes is purely to generate
higher-derivative corrections to the leading-order effective theory.
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In the present case, however, one has to be alert to corrections in
the leading-order two-derivative part of the effective theory. One
can see this thanks to the special integrability features of the
Pöschl-Teller transverse wavefunctions, which allow for transverse
integrals actually to be done explicitly.

Note, for example that quartic terms in hµν(x) involve the integral
I4 = 4! 2−4 ζ(4). This, however, does not yet yield the expected
quartic term with a coefficient (κ4)2: I4 involves ζ(4), while (κ4)2

involves (ζ(3))2.

This poses a key question: Is general covariance somehow
spontaneously broken in such systems?
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A Toy model with similar features

The puzzling features of the way in which higher-dimensional
diffeomorphism invariance projects into the lower dimensional
braneworld can be replicated in a simpler 5-dimensional
Kaluza-Klein model with unusual boundary conditions.

Consider reduction from D = 5 to D = 4 on a manifold
M5 = R1,3 × I where I =

{
ρ ∈ R

∣∣ 0 < ρ < 1
}

. Here, one simply
expands around flat D = 5 spacetime gMN (x , ρ) = ηMN in a
fashion similar to the main construction above:
gMN = ηMN + HMN(x , ρ).

One anticipates expansion in transverse eigenmodes
H(x , ρ) =

∑
i h

i (x) ξi (ρ) where now the relevant transvere

Schrödinger problem is simply ∆ ξi (ρ) = d2

dρ2 ξi (ρ) = −λi ξi (ρ).
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Instead of the usual KK periodic boundary conditions in the 5th

dimension, however, one now requires the boundary, normalization
and orthogonality conditions

ξi (0) = 0 ,

∫
I

(ξi )
2 dρ = 1 ,

∫
I
ξiξjdρ|i 6=j = 0 .

Instead of the usual constant zero-mode, one now has
ξ0(ρ) =

√
3ρ; moreover, the orthogonality condition can be recast

using
∫
I ξ0ξidρ = 1

λi
(ξ0ξ

′
i − ξ′0ξi )

∣∣∣∣
∂I

so requiring∫
I ξ0ξjdρ|j 6=0 = 0 yields the eigenvalue condition tan (

√
λi ) =

√
λi .
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The admissible eigenfunctions of the transverse wavefunction
problem are consequently ξ0 =

√
3ρ , ξi (ρ) = ni sin

(√
λiρ
)

with the constants

ni =
( 4

√
λi

2
√
λi − sin(2

√
λi )

) 1
2
,
√
λi = tan(

√
λi ) , λi > 0 .

Note that the boundary condition at ρ = 1 can be recast as
dξi/dρ− ξi = 0, which is known as a Robin boundary condition.
Accordingly this modified KK system uses a kind of mixed
Dirichlet-Robin set of boundary conditions at the two ends.

Analysis of the effective theory expansion of this Toy Model shows
that it shares with the H(2,2) braneworld the same difficulties with
expansion coefficients in the realization of diffeomorphism
invariance, starting at the quadrilinear order in hµν(x).
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The would-be Kaluza-Klein vector

A peculiar feature of both the H(2,2) braneworld and the Toy
Model is the behavior of Kµ = hµρ. In a standard Kaluza-Klein
reduction on a space where this braneworld vector corresponds to a
Killing vector, this field simply becomes a massless vector on the
lower-dimensional braneworld spacetime.

In both of the present cases, however, there is no Killing vector
symmetry in the ρ direction. Moreover, the non-trivial dependence
of ξ0 on the radial transverse coordinate ρ gives rise to a
Stückelberg transformation of Kµ at lowest order in the
diffeomorphism parameter ζµ, i.e. δKµ = ζµ + . . ..

25 / 27



Starting from the D = 10 diffeomorphism symmetry of the type
IIA supergravity theory, there inevitably is an imprint of this
symmetry in the lower-dimensional braneworld.

Analysis of the effective theory expansion shows that, once the
higher-order massive spin-two modes are integrated out, the
would-be Kaluza-Klein vector doesn’t appear in the expansion
before the quadrilinear level in zero-mode fields. So the structure
of the effective theory at bilinear and trilinear level is exactly what
one expects for a massless effective theory of braneworld gravity.
What happens from then on is not yet clear. There would seem to
be two possibilities:

I The Kµ field does appear in higher order and causes a
spontaneous breakdown of diffeomorphism invariance at the
quadrilinear level in interactions and higher.

I There may be some field redefinition which absorbs the Kµ
field and allows for a diffeomorphism invariant braneworld
effective gravity after all.
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Conclusions

• Braneworld gravity on a subsurface of the Salam-Sezgin
hyperbolic vacuum spacetime can successfully be localized
within an infinite transverse space. This is in contrast to the
situation with asymptotically maximally symmetric spacetimes
where localization has failed.

• There is a mass gap between the zero mode and the edge of
the continuous massive spectrum: gravity is localized on the
6D brane worldvolume. Further standard Kaluza-Klein
compactification to 4D then gives a localized 4D braneworld
gravity.

• Such reductions involve inconsistent Kaluza-Klein truncations,
and the consequences of this, after integrating out the massive
fields, display subtleties in the realization of diffeomorphism
invariance (and evidently, of local supersymmetry as well).

27 / 27


	Introduction
	Salam-Sezgin theory and H(2,2) embedding
	Kaluza-Klein Spectrum
	Conclusions

