M. Kontsevich's graph complexes and universal structures on graded symplectic manifolds

Supersymmetries and Quantum Symmetries - SQS'19

Kevin Morand Sogang University – Seoul

Formality

In his seminal 97' preprint, "Deformation quantization of Poisson manifolds I",
M. Kontsevich constructs an explicit Lie∞quasi-isomorphism

$$\mathcal{U}: \mathcal{T}_{\mathrm{poly}}(\mathbb{R}^m) \xrightarrow{\sim} \mathcal{D}_{\mathrm{poly}}(\mathbb{R}^m)$$
 Formality map

between

- $\mathcal{T}_{\mathrm{poly}}$ the Schouten graded Lie algebra of polyvector fields on the affine space \mathbb{R}^m
- \mathcal{D}_{poly} the Hochschild differential graded Lie algebra of multidifferential operators on \mathbb{R}^m .

Quantization

An important corollary of the formality theorem is that it provides an explicit bijective map:

$$\hat{\mathcal{U}}:\mathsf{FPoiss}\overset{\sim}{\longrightarrow}\mathsf{Star}$$
 Quantization map

- FPoiss of (equivalence classes of) formal Poisson structures on \mathbb{R}^m
- Star of (equivalence classes of) star products on R^m.

Formality

In his seminal 97' preprint, "Deformation quantization of Poisson manifolds I",
 M. Kontsevich constructs an explicit Lie∞quasi-isomorphism

$$\mathcal{U}: \mathcal{T}_{\mathrm{poly}}(\mathbb{R}^m) \xrightarrow{\sim} \mathcal{D}_{\mathrm{poly}}(\mathbb{R}^m)$$
 Formality map

between

- $\mathcal{T}_{\mathrm{poly}}$ the Schouten graded Lie algebra of polyvector fields on the affine space \mathbb{R}^m
- \mathcal{D}_{poly} the Hochschild differential graded Lie algebra of multidifferential operators on \mathbb{R}^m .

Quantization

An important corollary of the formality theorem is that it provides an explicit bijective map:

$$\hat{\mathcal{U}}:\mathsf{FPoiss}\overset{\sim}{\longrightarrow}\mathsf{Star}$$
 Quantization map

- FPoiss of (equivalence classes of) formal Poisson structures on \mathbb{R}^m
- Star of (equivalence classes of) star products on R^m.

Formality

In his seminal 97' preprint, "Deformation quantization of Poisson manifolds I",
 M. Kontsevich constructs an explicit Lie∞quasi-isomorphism

$$\mathcal{U}: \mathcal{T}_{\mathrm{poly}}(\mathbb{R}^m) \xrightarrow{\sim} \mathcal{D}_{\mathrm{poly}}(\mathbb{R}^m)$$
 Formality map

between

- + $\mathcal{T}_{\mathrm{poly}}$ the Schouten graded Lie algebra of polyvector fields on the affine space \mathbb{R}^m
- \mathcal{D}_{poly} the Hochschild differential graded Lie algebra of multidifferential operators on \mathbb{R}^m .

Quantization

An important corollary of the formality theorem is that it provides an explicit bijective map:

$$\hat{\mathcal{U}}:\mathsf{FPoiss}\overset{\sim}{\longrightarrow}\mathsf{Star}$$
 Quantization map

- FPoiss of (equivalence classes of) formal Poisson structures on \mathbb{R}^m
- Star of (equivalence classes of) star products on \mathbb{R}^m .

Formality

In his seminal 97' preprint, "Deformation quantization of Poisson manifolds I",
 M. Kontsevich constructs an explicit Lie∞quasi-isomorphism

$$\mathcal{U}: \mathcal{T}_{\mathrm{poly}}(\mathbb{R}^m) \xrightarrow{\sim} \mathcal{D}_{\mathrm{poly}}(\mathbb{R}^m)$$
 Formality map

between

- + $\mathcal{T}_{\mathrm{poly}}$ the Schouten graded Lie algebra of polyvector fields on the affine space \mathbb{R}^m
- \mathcal{D}_{poly} the Hochschild differential graded Lie algebra of multidifferential operators on \mathbb{R}^m .

Quantization

An important corollary of the formality theorem is that it provides an explicit bijective map:

$$\hat{\mathcal{U}}:\mathsf{FPoiss}\overset{\sim}{\longrightarrow}\mathsf{Star}$$
 Quantization map

- FPoiss of (equivalence classes of) formal Poisson structures on \mathbb{R}^m
- Star of (equivalence classes of) star products on \mathbb{R}^m .

Formality

In his seminal 97' preprint, "Deformation quantization of Poisson manifolds I",
 M. Kontsevich constructs an explicit Lie∞quasi-isomorphism

$$\mathcal{U}: \mathcal{T}_{\mathrm{poly}}(\mathbb{R}^m) \xrightarrow{\sim} \mathcal{D}_{\mathrm{poly}}(\mathbb{R}^m) \qquad \text{Formality map}$$

between

- + $\mathcal{T}_{\mathrm{poly}}$ the Schouten graded Lie algebra of polyvector fields on the affine space \mathbb{R}^m
- \mathcal{D}_{poly} the Hochschild differential graded Lie algebra of multidifferential operators on \mathbb{R}^m .

Quantization

An important corollary of the formality theorem is that it provides an explicit bijective map:

$$\hat{\mathcal{U}}:\mathsf{FPoiss}\overset{\sim}{\longrightarrow}\mathsf{Star}$$
 Quantization map

- FPoiss of (equivalence classes of) formal Poisson structures on \mathbb{R}^m
- Star of (equivalence classes of) star products on \mathbb{R}^m .

Formality

In his seminal 97' preprint, "Deformation quantization of Poisson manifolds I",
 M. Kontsevich constructs an explicit Lie∞quasi-isomorphism

$$\mathcal{U}: \mathcal{T}_{\mathrm{poly}}(\mathbb{R}^m) \xrightarrow{\sim} \mathcal{D}_{\mathrm{poly}}(\mathbb{R}^m) \qquad \text{Formality map}$$

between

- + $\mathcal{T}_{\mathrm{poly}}$ the Schouten graded Lie algebra of polyvector fields on the affine space \mathbb{R}^m
- \mathcal{D}_{poly} the Hochschild differential graded Lie algebra of multidifferential operators on \mathbb{R}^m .

Quantization

An important corollary of the formality theorem is that it provides an explicit bijective map:

$$\hat{\mathcal{U}}:\mathsf{FPoiss}\overset{\sim}{\longrightarrow}\mathsf{Star}$$
 Quantization map

- FPoiss of (equivalence classes of) formal Poisson structures on \mathbb{R}^m
- Star of (equivalence classes of) star products on \mathbb{R}^m .

Formality

In his seminal 97' preprint, "Deformation quantization of Poisson manifolds I",
 M. Kontsevich constructs an explicit Lie∞quasi-isomorphism

$$\mathcal{U}: \mathcal{T}_{\mathrm{poly}}(\mathbb{R}^m) \xrightarrow{\sim} \mathcal{D}_{\mathrm{poly}}(\mathbb{R}^m) \qquad \text{Formality map}$$

between

- + $\mathcal{T}_{\mathrm{poly}}$ the Schouten graded Lie algebra of polyvector fields on the affine space \mathbb{R}^m
- \mathcal{D}_{poly} the Hochschild differential graded Lie algebra of multidifferential operators on \mathbb{R}^m .

Quantization

An important corollary of the formality theorem is that it provides an explicit bijective map:

$$\hat{\mathcal{U}}: \mathsf{FPoiss} \xrightarrow{\sim} \mathsf{Star}$$
 Quantization map

- FPoiss of (equivalence classes of) formal Poisson structures on \mathbb{R}^m
- Star of (equivalence classes of) star products on \mathbb{R}^m .

Formality

In his seminal 97' preprint, "Deformation quantization of Poisson manifolds I",
 M. Kontsevich constructs an explicit Lie∞quasi-isomorphism

$$\mathcal{U}: \mathcal{T}_{\mathrm{poly}}(\mathbb{R}^m) \xrightarrow{\sim} \mathcal{D}_{\mathrm{poly}}(\mathbb{R}^m) \qquad \text{Formality map}$$

between

- + $\mathcal{T}_{\mathrm{poly}}$ the Schouten graded Lie algebra of polyvector fields on the affine space \mathbb{R}^m
- \mathcal{D}_{poly} the Hochschild differential graded Lie algebra of multidifferential operators on \mathbb{R}^m .

Quantization

An important corollary of the formality theorem is that it provides an explicit bijective map:

$$\hat{\mathcal{U}}: \mathsf{FPoiss} \xrightarrow{\sim} \mathsf{Star}$$
 Quantization map

- FPoiss of (equivalence classes of) formal Poisson structures on \mathbb{R}^m
- Star of (equivalence classes of) star products on \mathbb{R}^m .

Formality

In his seminal 97' preprint, "Deformation quantization of Poisson manifolds I",
 M. Kontsevich constructs an explicit Lie∞quasi-isomorphism

$$\mathcal{U}: \mathcal{T}_{\mathrm{poly}}(\mathbb{R}^m) \xrightarrow{\sim} \mathcal{D}_{\mathrm{poly}}(\mathbb{R}^m) \qquad \text{Formality map}$$

between

- + $\mathcal{T}_{\mathrm{poly}}$ the Schouten graded Lie algebra of polyvector fields on the affine space \mathbb{R}^m
- \mathcal{D}_{poly} the Hochschild differential graded Lie algebra of multidifferential operators on \mathbb{R}^m .

Quantization

An important corollary of the formality theorem is that it provides an explicit bijective map:

$$\hat{\mathcal{U}}: \mathsf{FPoiss} \xrightarrow{\sim} \mathsf{Star}$$
 Quantization map

- FPoiss of (equivalence classes of) formal Poisson structures on \mathbb{R}^m
- Star of (equivalence classes of) star products on \mathbb{R}^m .

Formality

In his seminal 97' preprint, "Deformation quantization of Poisson manifolds I",
 M. Kontsevich constructs an explicit Lie∞quasi-isomorphism

$$\mathcal{U}: \mathcal{T}_{\mathrm{poly}}(\mathbb{R}^m) \xrightarrow{\sim} \mathcal{D}_{\mathrm{poly}}(\mathbb{R}^m) \qquad \text{Formality map}$$

between

- + $\mathcal{T}_{\mathrm{poly}}$ the Schouten graded Lie algebra of polyvector fields on the affine space \mathbb{R}^m
- \mathcal{D}_{poly} the Hochschild differential graded Lie algebra of multidifferential operators on \mathbb{R}^m .

Quantization

An important corollary of the formality theorem is that it provides an explicit bijective map:

$$\hat{\mathcal{U}}: \mathsf{FPoiss} \xrightarrow{\sim} \mathsf{Star}$$
 Quantization map

- FPoiss of (equivalence classes of) formal Poisson structures on \mathbb{R}^m
- Star of (equivalence classes of) star products on \mathbb{R}^m .

- The formality theorem settles positively (and constructively) the "Formality conjecture" formulated by Kontsevich around 93'-94', cf. also Voronov 97'.
- It provides a complete solution to the quantization problem formulated in Berezin 75', Bayen, Flato, Fronsdal, Lichnerowicz, Sternheimer 78'.
- The Taylor coefficients of the formality morphism $\ensuremath{\mathcal{U}}$ are:
 - **universal** *i.e.* are written in terms of graphs and independently of the dimension.
 - transcendental *i.e.* involve (hard) integrals over configuration spaces of points (or more generally, Drinfel'd associators).
- It would be desirable to address questions in formality via methods which evade transcendental formulas while retaining universality.
- In the formulation of his "Formality conjecture", M. Kontsevich precisely introduced such universal algebraic methods.

- The formality theorem settles positively (and constructively) the "Formality conjecture" formulated by Kontsevich around 93'-94', cf. also Voronov 97'.
- It provides a complete solution to the quantization problem formulated in Berezin 75', Bayen, Flato, Fronsdal, Lichnerowicz, Sternheimer 78'.
- The Taylor coefficients of the formality morphism $\ensuremath{\mathcal{U}}$ are:
 - **universal** *i.e.* are written in terms of graphs and independently of the dimension.
 - transcendental *i.e.* involve (hard) integrals over configuration spaces of points (or more generally, Drinfel'd associators).
- It would be desirable to address questions in formality via methods which evade transcendental formulas while retaining universality.
- In the formulation of his "Formality conjecture", M. Kontsevich precisely introduced such universal algebraic methods.

- The formality theorem settles positively (and constructively) the "Formality conjecture" formulated by Kontsevich around 93'-94', cf. also Voronov 97'.
- It provides a complete solution to the quantization problem formulated in Berezin 75', Bayen, Flato, Fronsdal, Lichnerowicz, Sternheimer 78'.
- The Taylor coefficients of the formality morphism ${\cal U}$ are:
 - **universal** *i.e.* are written in terms of graphs and independently of the dimension.
 - transcendental *i.e.* involve (hard) integrals over configuration spaces of points (or more generally, Drinfel'd associators).
- It would be desirable to address questions in formality via methods which evade transcendental formulas while retaining universality.
- In the formulation of his "Formality conjecture", M. Kontsevich precisely introduced such universal algebraic methods.

- The formality theorem settles positively (and constructively) the "Formality conjecture" formulated by Kontsevich around 93'-94', cf. also Voronov 97'.
- It provides a complete solution to the quantization problem formulated in Berezin 75', Bayen, Flato, Fronsdal, Lichnerowicz, Sternheimer 78'.
- $\,\cdot\,$ The Taylor coefficients of the formality morphism ${\cal U}$ are:
 - **universal** *i.e.* are written in terms of graphs and independently of the dimension.
 - transcendental i.e. involve (hard) integrals over configuration spaces of points (or more generally, Drinfel'd associators).
- It would be desirable to address questions in formality via methods which evade transcendental formulas while retaining universality.
- In the formulation of his "Formality conjecture", M. Kontsevich precisely introduced such universal algebraic methods.

- The formality theorem settles positively (and constructively) the "Formality conjecture" formulated by Kontsevich around 93'-94', cf. also Voronov 97'.
- It provides a complete solution to the quantization problem formulated in Berezin 75', Bayen, Flato, Fronsdal, Lichnerowicz, Sternheimer 78'.
- $\,\cdot\,$ The Taylor coefficients of the formality morphism ${\cal U}$ are:
 - universal i.e. are written in terms of graphs and independently of the dimension.
 - transcendental *i.e.* involve (hard) integrals over configuration spaces of points (or more generally, Drinfel'd associators).
- It would be desirable to address questions in formality via methods which evade transcendental formulas while retaining universality.
- In the formulation of his "Formality conjecture", M. Kontsevich precisely introduced such universal algebraic methods.

- The formality theorem settles positively (and constructively) the "Formality conjecture" formulated by Kontsevich around 93'-94', cf. also Voronov 97'.
- It provides a complete solution to the quantization problem formulated in Berezin 75', Bayen, Flato, Fronsdal, Lichnerowicz, Sternheimer 78'.
- The Taylor coefficients of the formality morphism $\ensuremath{\mathcal{U}}$ are:
 - **universal** *i.e.* are written in terms of graphs and independently of the dimension.
 - transcendental *i.e.* involve (hard) integrals over configuration spaces of points (or more generally, Drinfel'd associators).
- It would be desirable to address questions in formality via methods which evade transcendental formulas while retaining universality.
- In the formulation of his "Formality conjecture", M. Kontsevich precisely introduced such universal algebraic methods.

- The formality theorem settles positively (and constructively) the "Formality conjecture" formulated by Kontsevich around 93'-94', cf. also Voronov 97'.
- It provides a complete solution to the quantization problem formulated in Berezin 75', Bayen, Flato, Fronsdal, Lichnerowicz, Sternheimer 78'.
- The Taylor coefficients of the formality morphism ${\cal U}$ are:
 - **universal** *i.e.* are written in terms of graphs and independently of the dimension.
 - transcendental *i.e.* involve (hard) integrals over configuration spaces of points (or more generally, Drinfel'd associators).
- It would be desirable to address questions in formality via methods which evade transcendental formulas while retaining universality.
- In the formulation of his "Formality conjecture", M. Kontsevich precisely introduced such universal algebraic methods.

- The formality theorem settles positively (and constructively) the "Formality conjecture" formulated by Kontsevich around 93'-94', cf. also Voronov 97'.
- It provides a complete solution to the quantization problem formulated in Berezin 75', Bayen, Flato, Fronsdal, Lichnerowicz, Sternheimer 78'.
- The Taylor coefficients of the formality morphism $\ensuremath{\mathcal{U}}$ are:
 - **universal** *i.e.* are written in terms of graphs and independently of the dimension.
 - transcendental *i.e.* involve (hard) integrals over configuration spaces of points (or more generally, Drinfel'd associators).
- It would be desirable to address questions in formality via methods which evade transcendental formulas while retaining universality.
- In the formulation of his "Formality conjecture", M. Kontsevich precisely introduced such universal algebraic methods.

Universal model for deformation theory

- On general grounds, any dg Lie algebra \mathfrak{g} is quasi-isomorphic (as a Lie $_{\infty}$ -algebra) to its cohomology $H(\mathfrak{g})$ endowed with a certain Lie $_{\infty}$ -structure obtained from the dg Lie algebra structure on \mathfrak{g} via the **homotopy transfer theorem**.
- This allows in particular to address formality questions by studying the space of $\operatorname{Lie}_{\infty}$ -structures deforming the graded Lie structure on $H(\mathfrak{g})$. The relevant deformation theory is therefore controlled by the **Chevalley–Eilenberg** dg Lie algebra $\operatorname{CE}((H(\mathfrak{g})))$.
- M. Kontsevich introduced a **universal version** of the Chevalley–Eilenberg complex associated to the Schouten algebra of polyvector fields $CE(\mathcal{T}_{poly})$ in the guise of a dg Lie algebra of **graphs**, denoted fGC₂, together with an injective morphism:

 $\mathsf{fGC}_2 \hookrightarrow \mathsf{CE}(\mathcal{T}_{\mathrm{poly}})$

- **Existence**: Obstructions to universal formality live in $H^1(fGC_2)$.
- Classification: The space of universal formality morphisms is classified by H⁰(fGC₂).

Universal model for deformation theory

- On general grounds, any dg Lie algebra \mathfrak{g} is quasi-isomorphic (as a Lie_{∞}-algebra) to its cohomology $H(\mathfrak{g})$ endowed with a certain Lie_{∞}-structure obtained from the dg Lie algebra structure on \mathfrak{g} via the **homotopy transfer theorem**.
- This allows in particular to address formality questions by studying the space of $\operatorname{Lie}_{\infty}$ -structures deforming the graded Lie structure on $H(\mathfrak{g})$. The relevant deformation theory is therefore controlled by the **Chevalley–Eilenberg** dg Lie algebra $\operatorname{CE}((H(\mathfrak{g})))$.
- M. Kontsevich introduced a **universal version** of the Chevalley–Eilenberg complex associated to the Schouten algebra of polyvector fields $CE(\mathcal{T}_{poly})$ in the guise of a dg Lie algebra of **graphs**, denoted fGC₂, together with an injective morphism:

 $\mathsf{fGC}_2 \hookrightarrow \mathsf{CE}(\mathcal{T}_{\mathrm{poly}})$

- **Existence**: Obstructions to universal formality live in $H^1(fGC_2)$.
- Classification: The space of universal formality morphisms is classified by H⁰(fGC₂).

Universal model for deformation theory

- On general grounds, any dg Lie algebra \mathfrak{g} is quasi-isomorphic (as a Lie $_{\infty}$ -algebra) to its cohomology $H(\mathfrak{g})$ endowed with a certain Lie $_{\infty}$ -structure obtained from the dg Lie algebra structure on \mathfrak{g} via the **homotopy transfer theorem**.
- This allows in particular to address formality questions by studying the space of Lie∞-structures deforming the graded Lie structure on H(g). The relevant deformation theory is therefore controlled by the Chevalley–Eilenberg dg Lie algebra CE((H(g)).
- M. Kontsevich introduced a universal version of the Chevalley–Eilenberg complex associated to the Schouten algebra of polyvector fields CE(T_{poly}) in the guise of a dg Lie algebra of graphs, denoted fGC₂, together with an injective morphism:

 $\mathsf{fGC}_2 \hookrightarrow \mathsf{CE}(\mathcal{T}_{\mathrm{poly}})$

- **Existence**: Obstructions to universal formality live in $H^1(fGC_2)$.
- Classification: The space of universal formality morphisms is classified by H⁰(fGC₂).

Universal model for deformation theory

- On general grounds, any dg Lie algebra \mathfrak{g} is quasi-isomorphic (as a Lie_{∞}-algebra) to its cohomology $H(\mathfrak{g})$ endowed with a certain Lie_{∞}-structure obtained from the dg Lie algebra structure on \mathfrak{g} via the **homotopy transfer theorem**.
- This allows in particular to address formality questions by studying the space of Lie∞-structures deforming the graded Lie structure on H(g). The relevant deformation theory is therefore controlled by the Chevalley–Eilenberg dg Lie algebra CE((H(g)).
- M. Kontsevich introduced a **universal version** of the Chevalley–Eilenberg complex associated to the Schouten algebra of polyvector fields $CE(\mathcal{T}_{poly})$ in the guise of a dg Lie algebra of **graphs**, denoted fGC₂, together with an injective morphism:

$$\mathsf{fGC}_2 \hookrightarrow \mathsf{CE}(\mathcal{T}_{\operatorname{poly}})$$

- **Existence**: Obstructions to universal formality live in $H^1(fGC_2)$.
- Classification: The space of universal formality morphisms is classified by H⁰(fGC₂).

Universal model for deformation theory

- On general grounds, any dg Lie algebra \mathfrak{g} is quasi-isomorphic (as a Lie_{∞}-algebra) to its cohomology $H(\mathfrak{g})$ endowed with a certain Lie_{∞}-structure obtained from the dg Lie algebra structure on \mathfrak{g} via the **homotopy transfer theorem**.
- This allows in particular to address formality questions by studying the space of $\operatorname{Lie}_{\infty}$ -structures deforming the graded Lie structure on $H(\mathfrak{g})$. The relevant deformation theory is therefore controlled by the **Chevalley–Eilenberg** dg Lie algebra $\operatorname{CE}((H(\mathfrak{g})))$.
- M. Kontsevich introduced a **universal version** of the Chevalley–Eilenberg complex associated to the Schouten algebra of polyvector fields $CE(\mathcal{T}_{poly})$ in the guise of a dg Lie algebra of **graphs**, denoted fGC₂, together with an injective morphism:

$$\mathsf{fGC}_2 \hookrightarrow \mathsf{CE}(\mathcal{T}_{\operatorname{poly}})$$

- **Existence**: Obstructions to universal formality live in $H^1(fGC_2)$.
- Classification: The space of universal formality morphisms is classified by H⁰(fGC₂).

Universal model for deformation theory

- On general grounds, any dg Lie algebra \mathfrak{g} is quasi-isomorphic (as a Lie_{∞}-algebra) to its cohomology $H(\mathfrak{g})$ endowed with a certain Lie_{∞}-structure obtained from the dg Lie algebra structure on \mathfrak{g} via the **homotopy transfer theorem**.
- This allows in particular to address formality questions by studying the space of $\operatorname{Lie}_{\infty}$ -structures deforming the graded Lie structure on $H(\mathfrak{g})$. The relevant deformation theory is therefore controlled by the **Chevalley–Eilenberg** dg Lie algebra $\operatorname{CE}((H(\mathfrak{g})))$.
- M. Kontsevich introduced a **universal version** of the Chevalley–Eilenberg complex associated to the Schouten algebra of polyvector fields $CE(\mathcal{T}_{poly})$ in the guise of a dg Lie algebra of **graphs**, denoted fGC₂, together with an injective morphism:

$$\mathsf{fGC}_2 \hookrightarrow \mathsf{CE}(\mathcal{T}_{\operatorname{poly}})$$

- **Existence**: Obstructions to universal formality live in $H^1(fGC_2)$.
- **Classification**: The space of universal formality morphisms is classified by $H^0(fGC_2)$.

- The morphism $\mathsf{fGC}_2 \hookrightarrow \mathsf{CE}(\mathcal{T}_{\mathrm{poly}})$ is given by explicit local formulas making implicit use of the supergeometric interpretation of the Schouten algebra as the algebra of functions on a graded symplectic manifold (or NP-manifold) of degree 1, *i.e.* $\mathcal{T}_{\mathrm{poly}} \simeq \mathscr{C}^{\infty}(T^*[1]\mathscr{M})$.
- In this context, Poisson manifolds are interpreted as differential graded symplectic manifolds (or NPQ-manifolds) of degree 1.
- More generally, NPQ-manifolds of positive degree n naturally form the target space of AKSZ-type σ -models over a source of dimension d = n + 1:
 - d=2: Poisson σ -model Ikeda 93', Schaller-Strobl 94'
 - d = 3: Courant σ -model Ikeda 02', Roytenberg 02'
- Kontsevich's quantization formula can be interpreted as the Feynman diagram expansion associated to the quantization of the Poisson σ-model Cattaneo, Felder 99'.
- What about higher d?

- The morphism $\mathsf{fGC}_2 \hookrightarrow \mathsf{CE}(\mathcal{T}_{\mathrm{poly}})$ is given by explicit local formulas making implicit use of the supergeometric interpretation of the Schouten algebra as the algebra of functions on a graded symplectic manifold (or NP-manifold) of degree 1, *i.e.* $\mathcal{T}_{\mathrm{poly}} \simeq \mathscr{C}^{\infty}(T^*[1]\mathscr{M})$.
- In this context, Poisson manifolds are interpreted as differential graded symplectic manifolds (or NPQ-manifolds) of degree 1.
- More generally, NPQ-manifolds of positive degree n naturally form the target space of AKSZ-type σ -models over a source of dimension d = n + 1:
 - d=2: Poisson σ -model Ikeda 93', Schaller-Strobl 94'
 - d = 3: Courant σ -model Ikeda 02', Roytenberg 02'
- Kontsevich's quantization formula can be interpreted as the Feynman diagram expansion associated to the quantization of the Poisson σ-model Cattaneo, Felder 99'.
- What about higher d?

- The morphism $\mathsf{fGC}_2 \hookrightarrow \mathsf{CE}(\mathcal{T}_{\mathrm{poly}})$ is given by explicit local formulas making implicit use of the supergeometric interpretation of the Schouten algebra as the algebra of functions on a graded symplectic manifold (or NP-manifold) of degree 1, *i.e.* $\mathcal{T}_{\mathrm{poly}} \simeq \mathscr{C}^{\infty}(T^*[1]\mathscr{M})$.
- In this context, Poisson manifolds are interpreted as differential graded symplectic manifolds (or NPQ-manifolds) of degree 1.
- More generally, NPQ-manifolds of positive degree n naturally form the target space of AKSZ-type σ -models over a source of dimension d = n + 1:
 - d=2: Poisson σ -model Ikeda 93', Schaller-Strobl 94'
 - d=3: Courant σ -model Ikeda 02', Roytenberg 02'
- Kontsevich's quantization formula can be interpreted as the Feynman diagram expansion associated to the quantization of the Poisson σ-model Cattaneo, Felder 99'.
- What about higher d?

- The morphism $\mathsf{fGC}_2 \hookrightarrow \mathsf{CE}(\mathcal{T}_{\mathrm{poly}})$ is given by explicit local formulas making implicit use of the supergeometric interpretation of the Schouten algebra as the algebra of functions on a graded symplectic manifold (or NP-manifold) of degree 1, *i.e.* $\mathcal{T}_{\mathrm{poly}} \simeq \mathscr{C}^{\infty}(T^*[1]\mathscr{M})$.
- In this context, Poisson manifolds are interpreted as differential graded symplectic manifolds (or NPQ-manifolds) of degree 1.
- More generally, NPQ-manifolds of positive degree n naturally form the target space of AKSZ-type σ -models over a source of dimension d = n + 1:
 - d=2: Poisson σ -model Ikeda 93', Schaller-Strobl 94'
 - d=3: Courant σ -model Ikeda 02', Roytenberg 02'
- Kontsevich's quantization formula can be interpreted as the Feynman diagram expansion associated to the quantization of the Poisson σ-model Cattaneo, Felder 99'.
- What about higher d?

- The morphism $\mathsf{fGC}_2 \hookrightarrow \mathsf{CE}(\mathcal{T}_{\mathrm{poly}})$ is given by explicit local formulas making implicit use of the supergeometric interpretation of the Schouten algebra as the algebra of functions on a graded symplectic manifold (or NP-manifold) of degree 1, *i.e.* $\mathcal{T}_{\mathrm{poly}} \simeq \mathscr{C}^{\infty}(T^*[1]\mathscr{M})$.
- In this context, Poisson manifolds are interpreted as differential graded symplectic manifolds (or NPQ-manifolds) of degree 1.
- More generally, NPQ-manifolds of positive degree n naturally form the target space of AKSZ-type σ -models over a source of dimension d = n + 1:
 - d = 2: Poisson σ -model Ikeda 93', Schaller-Strobl 94'
 - d=3: Courant σ -model Ikeda 02', Roytenberg 02'
- Kontsevich's quantization formula can be interpreted as the Feynman diagram expansion associated to the quantization of the Poisson σ-model Cattaneo, Felder 99'.
- What about higher d?

- The morphism $\mathsf{fGC}_2 \hookrightarrow \mathsf{CE}(\mathcal{T}_{\mathrm{poly}})$ is given by explicit local formulas making implicit use of the supergeometric interpretation of the Schouten algebra as the algebra of functions on a graded symplectic manifold (or NP-manifold) of degree 1, *i.e.* $\mathcal{T}_{\mathrm{poly}} \simeq \mathscr{C}^{\infty}(T^*[1]\mathscr{M})$.
- In this context, Poisson manifolds are interpreted as differential graded symplectic manifolds (or NPQ-manifolds) of degree 1.
- More generally, NPQ-manifolds of positive degree n naturally form the target space of AKSZ-type σ -models over a source of dimension d = n + 1:
 - + d = 2: Poisson σ -model Ikeda 93', Schaller-Strobl 94'
 - d = 3: Courant σ -model Ikeda 02', Roytenberg 02'
- Kontsevich's quantization formula can be interpreted as the Feynman diagram expansion associated to the quantization of the Poisson σ-model Cattaneo, Felder 99'.
- What about higher d?

Graded geometry

- The morphism $\mathsf{fGC}_2 \hookrightarrow \mathsf{CE}(\mathcal{T}_{\mathrm{poly}})$ is given by explicit local formulas making implicit use of the supergeometric interpretation of the Schouten algebra as the algebra of functions on a graded symplectic manifold (or NP-manifold) of degree 1, *i.e.* $\mathcal{T}_{\mathrm{poly}} \simeq \mathscr{C}^{\infty}(T^*[1]\mathscr{M})$.
- In this context, Poisson manifolds are interpreted as differential graded symplectic manifolds (or NPQ-manifolds) of degree 1.
- More generally, NPQ-manifolds of positive degree n naturally form the target space of AKSZ-type σ -models over a source of dimension d = n + 1:
 - + d = 2: Poisson σ -model Ikeda 93', Schaller-Strobl 94'
 - d = 3: Courant σ -model Ikeda 02', Roytenberg 02'
- Kontsevich's quantization formula can be interpreted as the Feynman diagram expansion associated to the quantization of the Poisson σ-model Cattaneo, Felder 99'.
- What about higher d?

•

Graded geometry

- The morphism $\mathsf{fGC}_2 \hookrightarrow \mathsf{CE}(\mathcal{T}_{\mathrm{poly}})$ is given by explicit local formulas making implicit use of the supergeometric interpretation of the Schouten algebra as the algebra of functions on a graded symplectic manifold (or NP-manifold) of degree 1, *i.e.* $\mathcal{T}_{\mathrm{poly}} \simeq \mathscr{C}^{\infty}(T^*[1]\mathscr{M})$.
- In this context, Poisson manifolds are interpreted as differential graded symplectic manifolds (or NPQ-manifolds) of degree 1.
- More generally, NPQ-manifolds of positive degree n naturally form the target space of AKSZ-type σ -models over a source of dimension d = n + 1:
 - + d = 2: Poisson σ -model Ikeda 93', Schaller-Strobl 94'
 - d = 3: Courant σ -model Ikeda 02', Roytenberg 02'
- Kontsevich's quantization formula can be interpreted as the Feynman diagram expansion associated to the quantization of the Poisson *σ*-model Cattaneo, Felder 99'.
- What about higher d?

•

Graded geometry

- The morphism $\mathsf{fGC}_2 \hookrightarrow \mathsf{CE}(\mathcal{T}_{\mathrm{poly}})$ is given by explicit local formulas making implicit use of the supergeometric interpretation of the Schouten algebra as the algebra of functions on a graded symplectic manifold (or NP-manifold) of degree 1, *i.e.* $\mathcal{T}_{\mathrm{poly}} \simeq \mathscr{C}^{\infty}(T^*[1]\mathscr{M})$.
- In this context, Poisson manifolds are interpreted as differential graded symplectic manifolds (or NPQ-manifolds) of degree 1.
- More generally, NPQ-manifolds of positive degree n naturally form the target space of AKSZ-type σ -models over a source of dimension d = n + 1:
 - + d = 2: Poisson σ -model Ikeda 93', Schaller-Strobl 94'
 - d = 3: Courant σ -model Ikeda 02', Roytenberg 02'
- Kontsevich's quantization formula can be interpreted as the Feynman diagram expansion associated to the quantization of the Poisson σ-model Cattaneo, Felder 99'.
- What about higher d?

•

$Graph \ operad \ Gra_d \quad See \ e.g. \ Willwacher \ 10'$

Elements of $\operatorname{Gra}_d(N)$ are linear combinations of directed graphs with N vertices modulo the following equivalence relations:

- Flipping of edges:
- $i \rightarrow 2 \sim (-1)^d (1 \leftarrow 2)$

iv

iii

Relabelling of edges:

The symmetric group \mathbb{S}_N acts naturally on $\operatorname{Gra}_d(N)$ by permuting the label of vertices. Partial compositions are defined as:

Graph operad Gra_d See e.g. Willwacher 10'

Elements of $\operatorname{Gra}_d(N)$ are linear combinations of directed graphs with N vertices modulo the following equivalence relations:

- · Flipping of edges:
- $(1) \xrightarrow{i} (2) \sim (-1)^d (1) \xrightarrow{i} (2)$

 $(1) \xrightarrow{i} (2) \xrightarrow{ii} (3) \sim (-1)^{d+1} (1) \xrightarrow{ii} (2)$

ii

iii

iv

Relabelling of edges:

The symmetric group \mathbb{S}_N acts naturally on $\operatorname{Gra}_d(N)$ by permuting the label of vertices. Partial compositions are defined as:

Elements of $\operatorname{Gra}_d(N)$ are linear combinations of directed graphs with N vertices modulo the following equivalence relations:

- Flipping of edges:
- · Relabelling of edges:

~ $(-1)^d$ (1)- $\frac{i}{2}$

 $(1) \xrightarrow{i} (2) \xrightarrow{ii} (3) \sim (-1)^{d+1} (1) \xrightarrow{ii} (2) \xrightarrow{i} (3)$

ii

iii

iv

4

The symmetric group \mathbb{S}_N acts naturally on $\operatorname{Gra}_d(N)$ by permuting the label of vertices. Partial compositions are defined as:

Elements of $\operatorname{Gra}_d(N)$ are linear combinations of directed graphs with N vertices modulo the following equivalence relations:

- Flipping of edges:
- $(1) \xrightarrow{i} (2) \sim (-1)^d (1) \xleftarrow{i} (2)$
- Relabelling of edges:
- $(1 \xrightarrow{i} (2) \xrightarrow{ii} (3) \sim (-1)^{d+1} (1) \xrightarrow{ii} (2) \xrightarrow{i} (3)$

ii

iii

iv

4

5

The symmetric group S_N acts naturally on $\operatorname{Gra}_d(N)$ by permuting the label of vertices. Partial compositions are defined as:

Elements of $\operatorname{Gra}_d(N)$ are linear combinations of directed graphs with N vertices modulo the following equivalence relations:

- Flipping of edges:
- $(1) \xrightarrow{i} (2) \sim (-1)^d (1) \xleftarrow{i} (2)$
- Relabelling of edges:
- $(1 \xrightarrow{i} (2 \xrightarrow{ii} (3) \sim (-1)^{d+1} (1 \xrightarrow{ii} (2 \xrightarrow{i} (3))))$

ii

iii

iv

4

5

The symmetric group S_N acts naturally on $Gra_d(N)$ by permuting the label of vertices. Partial compositions are defined as:

Elements of $\operatorname{Gra}_d(N)$ are linear combinations of directed graphs with *N* vertices modulo the following equivalence relations:

- Flipping of edges:
- Relabelling of edges:
- $1 \xrightarrow{i} 2 \xrightarrow{ii} 3 \sim (-1)^{d+1} (1 \xrightarrow{ii} 2 \xrightarrow{i} 3$

~ $(-1)^d$ (1) (2)

iv

4

iii

The symmetric group S_N acts naturally on $Gra_d(N)$ by permuting the label of vertices. Partial compositions are defined as:

Elements of $\operatorname{Gra}_d(N)$ are linear combinations of directed graphs with N vertices modulo the following equivalence relations:

- Flipping of edges:
- Relabelling of edges:
- $1 \xrightarrow{i} 2 \xrightarrow{ii} 3 \sim (-1)^{d+1} (1 \xrightarrow{ii} 2 \xrightarrow{i} (-1)^{d+1} (1) \xrightarrow{ii} 3 \xrightarrow{i} (-1)^{d+1} (1) \xrightarrow{ii} (-1)^{d+1} (-1)^{d+1} (1) \xrightarrow{ii} (-1)^{d+1} (-1)^{d+1} (1) \xrightarrow{ii} (-1)^{d+1} (-1)^$

~ $(-1)^d$ (1) (1)

iv

iii

5

The symmetric group S_N acts naturally on $Gra_d(N)$ by permuting the label of vertices. Partial compositions are defined as:

The partial composition operations \circ_i endow the total space

$$\mathsf{fGC}_d := \prod_{N \ge 1} \left(\mathsf{Gra}_d(N) \otimes \operatorname{sgn}_N^{\otimes d} [d(1-N)] \right)^{\mathbb{S}_N}$$

with a structure of graded Lie algebra where:

- A graph γ with N vertices and k edges has degree $|\gamma| = d(N-1) + k(1-d)$.
- The sign conventions depend on the parity of d as:

	Vertex label

• The graph $(1) \xrightarrow{\iota} (2)$ is a Maurer–Cartan element of fGC_d for all d.

- The differential δ is defined by the adjoint action with respect to $(1) \xrightarrow{i} (2)$.

The partial composition operations \circ_i endow the total space

$$\mathsf{fGC}_d := \prod_{N \ge 1} \left(\mathsf{Gra}_d(N) \otimes \operatorname{sgn}_N^{\otimes d} [d(1-N)] \right)^{\mathbb{S}_N}$$

with a structure of graded Lie algebra where:

- A graph γ with N vertices and k edges has degree $|\gamma| = d(N-1) + k(1-d)$.
- The sign conventions depend on the parity of d as:

	Vertex label

- The graph $(1) \xrightarrow{\iota} (2)$ is a Maurer–Cartan element of fGC_d for all d.
- The differential δ is defined by the adjoint action with respect to $(1) \xrightarrow{i} (2)$.

The partial composition operations \circ_i endow the total space

$$\mathsf{fGC}_d := \prod_{N \ge 1} \left(\mathsf{Gra}_d(N) \otimes \operatorname{sgn}_N^{\otimes d} [d(1-N)] \right)^{\mathbb{S}_N}$$

with a structure of graded Lie algebra where:

• A graph γ with N vertices and k edges has degree $|\gamma| = d(N-1) + k(1-d)$.

The sign conventions depend on the parity of d as:

	Vertex label

• The graph $(1) \xrightarrow{\iota} (2)$ is a Maurer–Cartan element of fGC_d for all d.

- The differential δ is defined by the adjoint action with respect to $1 \xrightarrow{i} 2$.

The partial composition operations \circ_i endow the total space

$$\mathsf{fGC}_d := \prod_{N \ge 1} \left(\mathsf{Gra}_d(N) \otimes \operatorname{sgn}_N^{\otimes d} [d(1-N)] \right)^{\otimes_N}$$

with a structure of graded Lie algebra where:

- A graph γ with N vertices and k edges has degree $|\gamma| = d(N-1) + k(1-d)$.
- The sign conventions depend on the parity of *d* as:

	Edge direction	Edge label	Vertex label
d even	+	_	+
<i>a</i> odd	_	+	_

• The graph $(1) \xrightarrow{i} (2)$ is a Maurer–Cartan element of fGC_d for all d.

- The differential δ is defined by the adjoint action with respect to $1 \xrightarrow{i} 2$.

The partial composition operations \circ_i endow the total space

$$\mathsf{fGC}_d := \prod_{N \ge 1} \left(\mathsf{Gra}_d(N) \otimes \operatorname{sgn}_N^{\otimes d} [d(1-N)] \right)^{\otimes_N}$$

with a structure of graded Lie algebra where:

- A graph γ with N vertices and k edges has degree $|\gamma| = d(N-1) + k(1-d)$.
- The sign conventions depend on the parity of *d* as:

	Edge direction	Edge label	Vertex label
$d \operatorname{even}$	+	_	+
$d \operatorname{odd}$	_	+	—

• The graph
$$(1) \xrightarrow{i} (2)$$
 is a Maurer–Cartan element of fGC_d for all d.

• The differential δ is defined by the adjoint action with respect to $1 \xrightarrow{i} 2$.

The partial composition operations \circ_i endow the total space

$$\mathsf{fGC}_d := \prod_{N \ge 1} \left(\mathsf{Gra}_d(N) \otimes \operatorname{sgn}_N^{\otimes d} [d(1-N)] \right)^{\otimes_N}$$

with a structure of graded Lie algebra where:

- A graph γ with N vertices and k edges has degree $|\gamma| = d(N-1) + k(1-d)$.
- The sign conventions depend on the parity of *d* as:

	Edge direction	Edge label	Vertex label
$d \operatorname{even}$	+	_	+
$d \operatorname{odd}$	_	+	—

• The graph
$$(1) \xrightarrow{\iota} (2)$$
 is a Maurer–Cartan element of fGC_d for all d.

• The differential δ is defined by the adjoint action with respect to $(1) \xrightarrow{\iota} (2)$.

• Loop cocycles: (for all d in which these are non-trivial)

• Loop cocycles: (for all d in which these are non-trivial)

• Wheel cocycles: (for *d* even) containing with non-zero coefficient:

• Loop cocycles: (for all d in which these are non-trivial)

• Loop cocycles: (for all d in which these are non-trivial)

• Loop cocycles: (for all d in which these are non-trivial)

• Loop cocycles: (for all d in which these are non-trivial)

• Loop cocycles: (for all d in which these are non-trivial)

Let (\mathcal{V}, ω) be a NP-manifold of degree n and denote d = n + 1.

Proposition

The graded algebra of functions on \mathcal{V} is endowed with a structure of a Gra_d-algebra.

Explicitly, we construct a tower of injective morphisms $\operatorname{Gra}_d \hookrightarrow \operatorname{End}_{\mathscr{C}^{\infty}(\mathcal{V})}$ mapping graphs to multidifferential operators on $\mathscr{C}^{\infty}(\mathcal{V})$.

This generalises the result of Kontsevich 94', Willwacher 10' from d = 2 to any d.

- For all d :
 - The graph $(1) \xrightarrow{i} (2)$ is mapped to the Poisson bracket $\{f,g\}_{\omega}$ on $\mathscr{C}^{\infty}(\mathcal{V})$.
 - The graph (1) (2) is mapped to the graded commutative product $f \cdot g$ on $\mathscr{C}^{\infty}(\mathcal{V})$.
- For d = 1 :
 - The sum of graphs $\sum_{j\geq 0} \frac{1}{j!}$ (1) (2) is mapped to the **Groenewold–Moyal** product.

Let (\mathcal{V}, ω) be a NP-manifold of degree n and denote d = n + 1.

Proposition

The graded algebra of functions on \mathcal{V} is endowed with a structure of a Gra_d -algebra.

Explicitly, we construct a tower of injective morphisms $\operatorname{Gra}_d \hookrightarrow \operatorname{End}_{\mathscr{C}^{\infty}(\mathcal{V})}$ mapping graphs to multidifferential operators on $\mathscr{C}^{\infty}(\mathcal{V})$.

This generalises the result of Kontsevich 94', Willwacher 10' from d = 2 to any d.

- For all d :
 - The graph $(1) \xrightarrow{i} (2)$ is mapped to the Poisson bracket $\{f,g\}_{\omega}$ on $\mathscr{C}^{\infty}(\mathcal{V})$.
 - The graph (1) (2) is mapped to the graded commutative product $f \cdot g$ on $\mathscr{C}^{\infty}(\mathcal{V})$.
- For d = 1 :
 - The sum of graphs $\sum_{j\geq 0} \frac{1}{j!}$ (1) : 2) is mapped to the **Groenewold–Moyal** product.

Let (\mathcal{V}, ω) be a NP-manifold of degree n and denote d = n + 1.

Proposition

The graded algebra of functions on \mathcal{V} is endowed with a structure of a Gra_d-algebra.

Explicitly, we construct a tower of injective morphisms $\operatorname{Gra}_d \hookrightarrow \operatorname{End}_{\mathscr{C}^{\infty}(\mathcal{V})}$ mapping graphs to multidifferential operators on $\mathscr{C}^{\infty}(\mathcal{V})$.

This generalises the result of Kontsevich 94', Willwacher 10' from d = 2 to any d.

- For all d :
 - The graph $(1) \xrightarrow{i} (2)$ is mapped to the Poisson bracket $\{f,g\}_{\omega}$ on $\mathscr{C}^{\infty}(\mathcal{V})$.
 - The graph (1) (2) is mapped to the graded commutative product $f \cdot g$ on $\mathscr{C}^{\infty}(\mathcal{V})$.
- For d = 1 :
 - The sum of graphs $\sum_{j\geq 0} \frac{1}{j!}$ $(1, \dots, 2)$ is mapped to the **Groenewold–Moyal** product.

Let (\mathcal{V}, ω) be a NP-manifold of degree n and denote d = n + 1.

Proposition

The graded algebra of functions on \mathcal{V} is endowed with a structure of a Gra_d-algebra.

Explicitly, we construct a tower of injective morphisms $\operatorname{Gra}_d \hookrightarrow \operatorname{End}_{\mathscr{C}^{\infty}(\mathcal{V})}$ mapping graphs to multidifferential operators on $\mathscr{C}^{\infty}(\mathcal{V})$.

This generalises the result of Kontsevich 94', Willwacher 10' from d = 2 to any d.

- For all d
 - The graph $(1) \xrightarrow{i} (2)$ is mapped to the Poisson bracket $\{f,g\}_{\omega}$ on $\mathscr{C}^{\infty}(\mathcal{V})$.
 - The graph (1) (2) is mapped to the graded commutative product $f \cdot g$ on $\mathscr{C}^{\infty}(\mathcal{V})$.
- For d = 1 :
 - The sum of graphs $\sum_{j\geq 0} \frac{1}{j!}$ (1) (2) is mapped to the **Groenewold–Moyal** product.

Let (\mathcal{V}, ω) be a NP-manifold of degree n and denote d = n + 1.

Proposition

The graded algebra of functions on \mathcal{V} is endowed with a structure of a Gra_d-algebra.

Explicitly, we construct a tower of injective morphisms $\operatorname{Gra}_d \hookrightarrow \operatorname{End}_{\mathscr{C}^{\infty}(\mathcal{V})}$ mapping graphs to multidifferential operators on $\mathscr{C}^{\infty}(\mathcal{V})$.

This generalises the result of Kontsevich 94', Willwacher 10' from d = 2 to any d.

- For all *d* :
 - The graph $(1) \xrightarrow{i} (2)$ is mapped to the Poisson bracket $\{f,g\}_{\omega}$ on $\mathscr{C}^{\infty}(\mathcal{V})$.
 - The graph (1) (2) is mapped to the graded commutative product $f \cdot g$ on $\mathscr{C}^{\infty}(\mathcal{V})$.
- For d = 1 :
 - The sum of graphs $\sum_{j\geq 0} \frac{1}{j!}$ (1) (2) is mapped to the **Groenewold–Moyal** product.

Let (\mathcal{V}, ω) be a NP-manifold of degree n and denote d = n + 1.

Proposition

The graded algebra of functions on \mathcal{V} is endowed with a structure of a Gra_d-algebra.

Explicitly, we construct a tower of injective morphisms $\operatorname{Gra}_d \hookrightarrow \operatorname{End}_{\mathscr{C}^{\infty}(\mathcal{V})}$ mapping graphs to multidifferential operators on $\mathscr{C}^{\infty}(\mathcal{V})$.

This generalises the result of Kontsevich 94', Willwacher 10' from d = 2 to any d.

- For all *d* :
 - The graph $(1) \xrightarrow{i} (2)$ is mapped to the Poisson bracket $\{f, g\}_{ij}$ on $\mathscr{C}^{\infty}(\mathcal{V})$.
 - The graph (1) (2) is mapped to the graded commutative product $f \cdot g$ on $\mathscr{C}^{\infty}(\mathcal{V})$.
- For d = 1 :
 - The sum of graphs $\sum_{j\geq 0} \frac{1}{j!}$ $\underbrace{1}_{j \in Q}$ is mapped to the **Groenewold–Moyal** product.

Let (\mathcal{V}, ω) be a NP-manifold of degree n and denote d = n + 1.

Proposition

The graded algebra of functions on \mathcal{V} is endowed with a structure of a Gra_d-algebra.

Explicitly, we construct a tower of injective morphisms $\operatorname{Gra}_d \hookrightarrow \operatorname{End}_{\mathscr{C}^{\infty}(\mathcal{V})}$ mapping graphs to multidifferential operators on $\mathscr{C}^{\infty}(\mathcal{V})$.

This generalises the result of Kontsevich 94', Willwacher 10' from d = 2 to any d.

- For all d :
 - The graph $(1) \xrightarrow{i} (2)$ is mapped to the Poisson bracket $\{f, g\}_{\omega}$ on $\mathscr{C}^{\infty}(\mathcal{V})$.
 - The graph (1) (2) is mapped to the graded commutative product $f \cdot g$ on $\mathscr{C}^{\infty}(\mathcal{V})$.
- For d = 1 :
 - The sum of graphs $\sum rac{1}{j!}$ (1) (1) is mapped to the **Groenewold–Moyal** product.

Let (\mathcal{V}, ω) be a NP-manifold of degree n and denote d = n + 1.

Proposition

The graded algebra of functions on \mathcal{V} is endowed with a structure of a Gra_d-algebra.

Explicitly, we construct a tower of injective morphisms $\operatorname{Gra}_d \hookrightarrow \operatorname{End}_{\mathscr{C}^{\infty}(\mathcal{V})}$ mapping graphs to multidifferential operators on $\mathscr{C}^{\infty}(\mathcal{V})$.

This generalises the result of Kontsevich 94', Willwacher 10' from d = 2 to any d.

- For all d :
 - The graph $(1) \xrightarrow{i} (2)$ is mapped to the Poisson bracket $\{f, g\}_{\omega}$ on $\mathscr{C}^{\infty}(\mathcal{V})$.
 - The graph (1) (2) is mapped to the graded commutative product $f \cdot g$ on $\mathscr{C}^{\infty}(\mathcal{V})$.
- For $d=1\,$:
 - The sum of graphs $\sum rac{1}{j!}$ (1) : 2) is mapped to the **Groenewold–Moyal** product.

Let (\mathcal{V}, ω) be a NP-manifold of degree n and denote d = n + 1.

Proposition

The graded algebra of functions on \mathcal{V} is endowed with a structure of a Gra_d-algebra.

Explicitly, we construct a tower of injective morphisms $\operatorname{Gra}_d \hookrightarrow \operatorname{End}_{\mathscr{C}^{\infty}(\mathcal{V})}$ mapping graphs to multidifferential operators on $\mathscr{C}^{\infty}(\mathcal{V})$.

This generalises the result of Kontsevich 94', Willwacher 10' from d = 2 to any d.

- ${\scriptstyle \bullet}~$ For all $d\,$:
 - The graph $(1) \xrightarrow{i} (2)$ is mapped to the Poisson bracket $\{f, g\}_{\omega}$ on $\mathscr{C}^{\infty}(\mathcal{V})$.
 - The graph (1) (2) is mapped to the graded commutative product $f \cdot g$ on $\mathscr{C}^{\infty}(\mathcal{V})$.
- For $d=1\,$:
 - The sum of graphs $\sum_{j\geq 0} \frac{1}{j!}$ (1) : 2) is mapped to the **Groenewold–Moyal** product.

Let (\mathcal{V}, ω) be a NP-manifold of degree n and denote d = n + 1.

Corollary

The morphism of operads $\operatorname{Gra}_d \hookrightarrow \operatorname{End}_{\mathscr{C}^\infty(\mathcal{V})}$ induces a morphism of dg Lie algebras $\operatorname{fGC}_d \hookrightarrow \operatorname{CE}(\mathcal{T}^{(n)}_{\operatorname{poly}})$

where $\mathcal{T}_{poly}^{(n)} = \mathscr{C}^{\infty}(\mathcal{V})[n]$ stands for the *n*-suspension of the algebra of functions on \mathcal{V} .

This defines a universal model for the deformation theory of the graded Lie algebra $\mathcal{T}_{poly}^{(n)}$. As a by-product, we obtain a classification of universal structures on NP-manifolds:

- $H^1(\mathsf{fGC}_d)$: Universal deformations of $\mathcal{T}^{(n)}_{\mathrm{poly}}$ as a Lie $_\infty$ -algebra (obstructions to formality).
- $H^0(\mathsf{fGC}_d)$: Universal Lie_{∞}-automorphisms of $\mathcal{T}_{polv}^{(n)}$ (classification of formality morphisms).

Proposition

Let (\mathcal{V}, ω) be a NP-manifold of degree n and denote d = n + 1.

Corollary

The morphism of operads $\operatorname{Gra}_d \hookrightarrow \operatorname{End}_{\mathscr{C}^\infty(\mathcal{V})}$ induces a morphism of dg Lie algebras $\operatorname{fGC}_d \hookrightarrow \operatorname{CE}(\mathcal{T}_{\operatorname{poly}}^{(n)})$

where $\mathcal{T}_{poly}^{(n)} = \mathscr{C}^{\infty}\left(\mathcal{V}\right)[n]$ stands for the *n*-suspension of the algebra of functions on \mathcal{V} .

This defines a universal model for the deformation theory of the graded Lie algebra $\mathcal{T}_{poly}^{(n)}$. As a by-product, we obtain a classification of universal structures on NP-manifolds:

- $H^1(\mathsf{fGC}_d)$: Universal deformations of $\mathcal{T}^{(n)}_{\mathrm{poly}}$ as a Lie $_\infty$ -algebra (obstructions to formality).
- $H^0(\mathsf{fGC}_d)$: Universal Lie $_\infty$ -automorphisms of $\mathcal{T}^{(n)}_{\mathrm{poly}}$ (classification of formality morphisms).

Proposition

Let (\mathcal{V}, ω) be a NP-manifold of degree n and denote d = n + 1.

Corollary

The morphism of operads $\operatorname{Gra}_d \hookrightarrow \operatorname{End}_{\mathscr{C}^{\infty}(\mathcal{V})}$ induces a morphism of dg Lie algebras $\operatorname{fGC}_d \hookrightarrow \operatorname{CE}(\mathcal{T}_{\operatorname{rolu}}^{(n)})$

where $\mathcal{T}_{poly}^{(n)} = \mathscr{C}^{\infty}\left(\mathcal{V}\right)[n]$ stands for the *n*-suspension of the algebra of functions on \mathcal{V} .

This defines a universal model for the deformation theory of the graded Lie algebra $\mathcal{T}_{poly}^{(n)}$.

As a by-product, we obtain a classification of universal structures on NP-manifolds:

- $H^1(\mathsf{fGC}_d)$: Universal deformations of $\mathcal{T}_{\mathrm{poly}}^{(n)}$ as a Lie $_\infty$ -algebra (obstructions to formality).
- $H^0(\mathsf{fGC}_d)$: Universal Lie_{∞}-automorphisms of $\mathcal{T}^{(n)}_{\text{poly}}$ (classification of formality morphisms).

Proposition

Let (\mathcal{V}, ω) be a NP-manifold of degree n and denote d = n + 1.

Corollary

The morphism of operads $\operatorname{Gra}_d \hookrightarrow \operatorname{End}_{\mathscr{C}^\infty(\mathcal{V})}$ induces a morphism of dg Lie algebras

$$\mathsf{fGC}_d \hookrightarrow \mathsf{CE}(\mathcal{T}^{(n)}_{\mathrm{poly}})$$

where $\mathcal{T}_{poly}^{(n)} = \mathscr{C}^{\infty}\left(\mathcal{V}\right)[n]$ stands for the *n*-suspension of the algebra of functions on \mathcal{V} .

This defines a universal model for the deformation theory of the graded Lie algebra $\mathcal{T}_{poly}^{(n)}$. As a by-product, we obtain a classification of universal structures on NP-manifolds:

- $H^1(\mathsf{fGC}_d)$: Universal deformations of $\mathcal{T}_{\mathrm{poly}}^{(n)}$ as a Lie $_\infty$ -algebra (obstructions to formality).
- $H^0(\mathsf{fGC}_d)$: Universal Lie_{∞}-automorphisms of $\mathcal{T}_{\mathrm{polv}}^{(n)}$ (classification of formality morphisms).

Proposition

Let (\mathcal{V}, ω) be a NP-manifold of degree n and denote d = n + 1.

Corollary

The morphism of operads $\mathsf{Gra}_d \hookrightarrow \mathsf{End}_{\mathscr{C}^\infty(\mathcal{V})}$ induces a morphism of dg Lie algebras

$$\mathsf{fGC}_d \hookrightarrow \mathsf{CE}(\mathcal{T}^{(n)}_{\mathrm{poly}})$$

where $\mathcal{T}_{poly}^{(n)} = \mathscr{C}^{\infty}\left(\mathcal{V}\right)[n]$ stands for the *n*-suspension of the algebra of functions on \mathcal{V} .

This defines a universal model for the deformation theory of the graded Lie algebra $\mathcal{T}_{poly}^{(n)}$. As a by-product, we obtain a classification of universal structures on NP-manifolds:

- $H^1(\mathsf{fGC}_d)$: Universal deformations of $\mathcal{T}_{\mathrm{poly}}^{(n)}$ as a Lie $_\infty$ -algebra (obstructions to formality).
- $H^0(\mathsf{fGC}_d)$: Universal Lie $_{\infty}$ -automorphisms of $\mathcal{T}_{\mathrm{poly}}^{(n)}$ (classification of formality morphisms).

Proposition

Let (\mathcal{V}, ω) be a NP-manifold of degree n and denote d = n + 1.

Corollary

The morphism of operads $\operatorname{Gra}_d \hookrightarrow \operatorname{End}_{\mathscr{C}^{\infty}(\mathcal{V})}$ induces a morphism of dg Lie algebras

$$\mathsf{fGC}_d \hookrightarrow \mathsf{CE}(\mathcal{T}^{(n)}_{\mathrm{poly}})$$

where $\mathcal{T}_{poly}^{(n)} = \mathscr{C}^{\infty}\left(\mathcal{V}\right)[n]$ stands for the *n*-suspension of the algebra of functions on \mathcal{V} .

This defines a universal model for the deformation theory of the graded Lie algebra $\mathcal{T}_{poly}^{(n)}$. As a by-product, we obtain a classification of universal structures on NP-manifolds:

- $H^1(\mathsf{fGC}_d)$: Universal deformations of $\mathcal{T}_{\mathrm{poly}}^{(n)}$ as a Lie $_\infty$ -algebra (obstructions to formality).
- $H^0(\mathsf{fGC}_d)$: Universal Lie_{∞}-automorphisms of $\mathcal{T}^{(n)}_{\text{poly}}$ (classification of formality morphisms).

Proposition

Let (\mathcal{V}, ω) be a NP-manifold of degree n and denote d = n + 1.

Corollary

The morphism of operads $\mathsf{Gra}_d \hookrightarrow \mathsf{End}_{\mathscr{C}^\infty(\mathcal{V})}$ induces a morphism of dg Lie algebras

$$\mathsf{fGC}_d \hookrightarrow \mathsf{CE}(\mathcal{T}^{(n)}_{\mathrm{poly}})$$

where $\mathcal{T}_{poly}^{(n)} = \mathscr{C}^{\infty}\left(\mathcal{V}\right)[n]$ stands for the *n*-suspension of the algebra of functions on \mathcal{V} .

This defines a universal model for the deformation theory of the graded Lie algebra $\mathcal{T}_{poly}^{(n)}$. As a by-product, we obtain a classification of universal structures on NP-manifolds:

- $H^1(\mathsf{fGC}_d)$: Universal deformations of $\mathcal{T}_{\mathrm{poly}}^{(n)}$ as a Lie $_\infty$ -algebra (obstructions to formality).
- $H^0(\mathsf{fGC}_d)$: Universal Lie $_\infty$ -automorphisms of $\mathcal{T}^{(n)}_{\mathrm{poly}}$ (classification of formality morphisms).

Proposition

Applications

Universal deformations of Poisson manifolds cf. A. V. Kiselev's talk

Let (\mathscr{M}, π) be a Poisson manifold defining the Hamiltonian function $\mathscr{H} = \frac{1}{2} \pi^{\mu\nu} p_{\mu} p_{\nu}$ on the associated NP-manifold of degree 1. The zeroth cohomology of the graph complex fGC₂ is infinite dimensional and isomorphic to the Grothendieck–Teichmüller algebra \mathfrak{grt}_1 (conjecturally) generated by wheel cocycles. Examples

• The simplest wheel cocycle is given by the tetrahedron graph $\gamma_3 =$

The associated tetrahedral Hamiltonian flow maps the Hamiltonian function \mathscr{H} to the associated universal Lichnerowicz cocycle defined as $\overset{\circ}{\mathscr{H}} = \frac{1}{2} \overset{\circ}{\pi}^{\mu\nu} p_{\mu} p_{\nu}$ where:

- skewsym. $(\mu - \nu)$

Applications

Universal deformations of Poisson manifolds cf. A. V. Kiselev's talk

Let (\mathscr{M},π) be a Poisson manifold defining the Hamiltonian function

$\mathscr{H} = \frac{1}{2} \pi^{\mu\nu} p_{\mu} p_{\nu}$ on the associated NP-manifold of degree 1.

The zeroth cohomology of the graph complex fGC_2 is infinite dimensional and isomorphic to the Grothendieck–Teichmüller algebra \mathfrak{grt}_1 (conjecturally) generated by wheel cocycles. Examples

• The simplest wheel cocycle is given by the tetrahedron graph $\gamma_3 =$

The associated tetrahedral Hamiltonian flow maps the Hamiltonian function \mathscr{H} to the associated universal Lichnerowicz cocycle defined as $\overset{\circ}{\mathscr{H}} = \frac{1}{2} \overset{\circ}{\pi}^{\mu\nu} p_{\mu} p_{\nu}$ where:

Universal deformations of Poisson manifolds cf. A. V. Kiselev's talk

Let (\mathscr{M},π) be a Poisson manifold defining the Hamiltonian function

 $\mathscr{H} = \frac{1}{2} \pi^{\mu\nu} p_{\mu} p_{\nu}$ on the associated NP-manifold of degree 1.

The zeroth cohomology of the graph complex fGC_2 is infinite dimensional and isomorphic to the Grothendieck–Teichmüller algebra \mathfrak{grt}_1 (conjecturally) generated by wheel cocycles. Examples

• The simplest wheel cocycle is given by the tetrahedron graph $\gamma_3 =$

The associated tetrahedral Hamiltonian flow maps the Hamiltonian function \mathscr{H} to the associated universal Lichnerowicz cocycle defined as $\overset{\circ}{\mathscr{H}} = \frac{1}{2} \overset{\circ}{\pi}^{\mu\nu} p_{\mu} p_{\nu}$ where:

Universal deformations of Poisson manifolds cf. A. V. Kiselev's talk Let (\mathcal{M}, π) be a Poisson manifold defining the Hamiltonian function $\mathscr{H} = \frac{1}{2} \pi^{\mu\nu} p_{\mu} p_{\nu}$ on the associated NP-manifold of degree 1. The zeroth cohomology of the graph complex fGC_2 is infinite dimensional and isomorphic to the Grothendieck-Teichmüller algebra grt1 (conjecturally) generated by wheel cocycles.

- The simplest wheel cocycle is given by the tetrahedron graph $\gamma_3 =$

Universal deformations of Poisson manifolds *cf.* A. V. Kiselev's talk Let (\mathcal{M}, π) be a Poisson manifold defining the Hamiltonian function $\mathscr{H} = \frac{1}{2}\pi^{\mu\nu} p_{\mu} p_{\nu}$ on the associated NP-manifold of degree 1. The zeroth cohomology of the graph complex fGC₂ is infinite dimensional and isomorphic to the Grothendieck–Teichmüller algebra grt₁ (conjecturally) generated by wheel cocycles. Examples

- The simplest wheel cocycle is given by the tetrahedron graph $\gamma_3 =$

The associated tetrahedral Hamiltonian flow maps the Hamiltonian function \mathscr{H} to the associated universal Lichnerowicz cocycle defined as $\overset{\circ}{\mathscr{H}} = \frac{1}{2} \overset{\circ}{\pi}^{\mu\nu} p_{\mu} p_{\nu}$ where:

Universal deformations of Poisson manifolds *cf.* A. V. Kiselev's talk Let (\mathcal{M}, π) be a Poisson manifold defining the Hamiltonian function $\mathscr{H} = \frac{1}{2}\pi^{\mu\nu} p_{\mu} p_{\nu}$ on the associated NP-manifold of degree 1. The zeroth cohomology of the graph complex fGC₂ is infinite dimensional and isomorphic to the Grothendieck–Teichmüller algebra grt₁ (conjecturally) generated by wheel cocycles. Examples

- The simplest wheel cocycle is given by the tetrahedron graph $\gamma_3 =$

The associated tetrahedral Hamiltonian flow maps the Hamiltonian function \mathscr{H} to the associated universal Lichnerowicz cocycle defined as $\overset{\circ}{\mathscr{H}} = \frac{1}{2} \overset{\circ}{\pi}^{\mu\nu} p_{\mu} p_{\nu}$ where:

$$\overset{\circ}{\pi}{}^{\mu\nu} = \partial_{\epsilon} \pi^{\alpha\beta} \partial_{\alpha} \pi^{\gamma\delta} \partial_{\gamma} \pi^{\epsilon\lambda} \partial_{\beta\delta\lambda} \pi^{\mu\nu} + 6 \partial_{\epsilon} \pi^{\alpha\beta} \partial_{\alpha} \pi^{\gamma\delta} \partial_{\gamma\lambda} \pi^{\epsilon[\mu} \partial_{\beta\delta} \pi^{\nu]\lambda}.$$
Kontsevich 94', Bouisaghouane & Kiselev 16', Bouisaghouane, Buring & Kiselev 16'

• For the pentagon graph γ_5 and heptagon graph γ_7 , see Buring, Kiselev & Rutten 17'.

Universal deformations of Poisson manifolds *cf.* A. V. Kiselev's talk Let (\mathcal{M}, π) be a Poisson manifold defining the Hamiltonian function $\mathscr{H} = \frac{1}{2}\pi^{\mu\nu} p_{\mu} p_{\nu}$ on the associated NP-manifold of degree 1. The zeroth cohomology of the graph complex fGC₂ is infinite dimensional and isomorphic to the Grothendieck–Teichmüller algebra \mathfrak{grt}_1 (conjecturally) generated by wheel cocycles. Examples

- The simplest wheel cocycle is given by the tetrahedron graph $\gamma_3 =$

The associated tetrahedral Hamiltonian flow maps the Hamiltonian function \mathscr{H} to the associated universal Lichnerowicz cocycle defined as $\overset{\circ}{\mathscr{H}} = \frac{1}{2} \overset{\circ}{\pi}^{\mu\nu} p_{\mu} p_{\nu}$ where:

$$\overset{\circ}{\pi}{}^{\mu\nu} = \partial_{\epsilon} \pi^{\alpha\beta} \partial_{\alpha} \pi^{\gamma\delta} \partial_{\gamma} \pi^{\epsilon\lambda} \partial_{\beta\delta\lambda} \pi^{\mu\nu} + 6 \partial_{\epsilon} \pi^{\alpha\beta} \partial_{\alpha} \pi^{\gamma\delta} \partial_{\gamma\lambda} \pi^{\epsilon[\mu} \partial_{\beta\delta} \pi^{\nu]\lambda}.$$
Kontsevich 94', Bouisaghouane & Kiselev 16', Bouisaghouane, Buring & Kiselev 16'

• For the pentagon graph γ_5 and heptagon graph γ_7 , see Buring, Kiselev & Rutten 17'.

Universal deformations of Courant algebroids

Let C be a Courant algebroid defining the Hamiltonian function $\mathscr{H} = \rho_a{}^{\mu}\xi^a p_{\mu} + \frac{1}{6}T_{abc}\xi^a\xi^b\xi^c$ on the associated NP-manifold of degree 2. The zeroth cohomology of the graph complex fGC₃ is one dimensional and spanned by the triangle loop class $H^0(\text{fGC}_3) = \mathbb{K} \langle L_3 \rangle$ where $L_3 =$

The associated triangle Hamiltonian flow maps the Hamiltonian function \mathscr{H} to the associated universal cocycle defined as $\overset{\circ}{\mathscr{H}} = \overset{\circ}{\rho}_{a}{}^{\mu}\xi^{a}p_{\mu} + \frac{1}{6}\overset{\circ}{T}_{abc}\xi^{a}\xi^{b}\xi^{c}$ where:

Universal deformations of Courant algebroids

Let C be a Courant algebroid defining the Hamiltonian function $\mathscr{H} = \rho_a{}^{\mu}\xi^a p_{\mu} + \frac{1}{6}T_{abc}\xi^a\xi^b\xi^c$ on the associated NP-manifold of degree 2. The zeroth cohomology of the graph complex fGC₃ is one dimensional and spanned by the triangle loop class $H^0(\text{fGC}_3) = \mathbb{K} \langle L_3 \rangle$ where $L_3 = \mathbb{K} \langle L_3 \rangle$

The associated triangle Hamiltonian flow maps the Hamiltonian function \mathscr{H} to the associated universal cocycle defined as $\overset{\circ}{\mathscr{H}} = \overset{\circ}{\rho}_{a}{}^{\mu}\xi^{a}p_{\mu} + \frac{1}{6}\overset{\circ}{T}_{abc}\xi^{a}\xi^{b}\xi^{c}$ where:

Universal deformations of Courant algebroids

Let C be a Courant algebroid defining the Hamiltonian function $\mathscr{H} = \rho_a{}^{\mu} \xi^a p_{\mu} + \frac{1}{6} T_{abc} \xi^a \xi^b \xi^c$ on the associated NP-manifold of degree 2. The zeroth cohomology of the graph complex fGC₃ is one dimensional and spanned by the triangle loop class $H^0(\text{fGC}_3) = \mathbb{K} \langle L_3 \rangle$ where $L_3 = \P$.

The associated triangle Hamiltonian flow maps the Hamiltonian function \mathscr{H} to the associated universal cocycle defined as $\overset{\circ}{\mathscr{H}} = \overset{\circ}{\rho}_{a}{}^{\mu}\xi^{a}p_{\mu} + \frac{1}{6}\overset{\circ}{T}_{abc}\xi^{a}\xi^{b}\xi^{c}$ where:

Universal deformations of Courant algebroids

Let C be a Courant algebroid defining the Hamiltonian function $\mathscr{H} = \rho_a{}^{\mu} \xi^a p_{\mu} + \frac{1}{6} T_{abc} \xi^a \xi^b \xi^c$ on the associated NP-manifold of degree 2. The zeroth cohomology of the graph complex fGC₃ is one dimensional and spanned by the triangle loop class $H^0(\text{fGC}_3) = \mathbb{K} \langle L_3 \rangle$ where $L_3 =$

The associated triangle Hamiltonian flow maps the Hamiltonian function \mathscr{H} to the associated universal cocycle defined as $\overset{\circ}{\mathscr{H}} = \overset{\circ}{\rho}_{a}^{\ \mu} \xi^{a} p_{\mu} + \frac{1}{6} \overset{\circ}{T}_{abc} \xi^{a} \xi^{b} \xi^{c}$ where:

Universal deformations of Courant algebroids

Let C be a Courant algebroid defining the Hamiltonian function $\mathscr{H} = \rho_a{}^{\mu} \xi^a p_{\mu} + \frac{1}{6} T_{abc} \xi^a \xi^b \xi^c$ on the associated NP-manifold of degree 2. The zeroth cohomology of the graph complex fGC₃ is one dimensional and spanned by the triangle loop class $H^0(\text{fGC}_3) = \mathbb{K} \langle L_3 \rangle$ where $L_3 =$

The associated triangle Hamiltonian flow maps the Hamiltonian function \mathscr{H} to the associated universal cocycle defined as $\overset{\circ}{\mathscr{H}} = \overset{\circ}{\rho}_{a}^{\ \mu} \xi^{a} p_{\mu} + \frac{1}{6} \overset{\circ}{T}_{abc} \xi^{a} \xi^{b} \xi^{c}$ where:

$$\stackrel{\circ}{\rho}{}_{a}{}^{\mu} = \rho_{b}{}^{\lambda}\partial_{\lambda}\rho_{a}{}^{\nu}\partial_{\nu}\rho^{b|\mu} + \rho_{b}{}^{\lambda}\partial_{\lambda}\rho_{c}{}^{\mu}T_{a}{}^{bc}$$

$$\stackrel{\circ}{T}{}_{abc} = \partial_{\mu}\rho_{a}{}^{\nu}\partial_{\nu}\rho_{b}{}^{\lambda}\partial_{\lambda}\rho_{c}{}^{\mu} - \partial_{\mu}\rho_{a}{}^{\lambda}\partial_{\nu}\rho_{b}{}^{\mu}\partial_{\lambda}\rho_{c}{}^{\nu} - T_{a}{}^{de}T_{bdf}T_{ce}{}^{f}$$

$$+ 3\rho_{d}{}^{\mu}\partial_{\mu}\rho_{[a}{}^{\nu}\partial_{\nu}T_{bc]}{}^{d} + 3\rho_{d}{}^{\mu}T_{[a}{}^{de}\partial_{\mu}T_{bc]e}$$

It can be checked that $\left\{\mathscr{H}, \overset{\circ}{\mathscr{H}}\right\}_{\omega} = 0$ as a consequence of $\left\{\mathscr{H}, \mathscr{H}\right\}_{\omega} = 0$.

Universal deformations of Courant algebroids

Let C be a Courant algebroid defining the Hamiltonian function $\mathscr{H} = \rho_a{}^{\mu} \xi^a p_{\mu} + \frac{1}{6} T_{abc} \xi^a \xi^b \xi^c$ on the associated NP-manifold of degree 2. The zeroth cohomology of the graph complex fGC₃ is one dimensional and spanned by the triangle loop class $H^0(\text{fGC}_3) = \mathbb{K} \langle L_3 \rangle$ where $L_3 =$

The associated triangle Hamiltonian flow maps the Hamiltonian function \mathscr{H} to the associated universal cocycle defined as $\overset{\circ}{\mathscr{H}} = \overset{\circ}{\rho}_{a}^{\ \mu} \xi^{a} p_{\mu} + \frac{1}{6} \overset{\circ}{T}_{abc} \xi^{a} \xi^{b} \xi^{c}$ where:

$$\stackrel{\circ}{\rho}{}_{a}{}^{\mu} = \rho_{b}{}^{\lambda}\partial_{\lambda}\rho_{a}{}^{\nu}\partial_{\nu}\rho^{b|\mu} + \rho_{b}{}^{\lambda}\partial_{\lambda}\rho_{c}{}^{\mu}T_{a}{}^{bc}$$

$$\stackrel{\circ}{T}{}_{abc} = \partial_{\mu}\rho_{a}{}^{\nu}\partial_{\nu}\rho_{b}{}^{\lambda}\partial_{\lambda}\rho_{c}{}^{\mu} - \partial_{\mu}\rho_{a}{}^{\lambda}\partial_{\nu}\rho_{b}{}^{\mu}\partial_{\lambda}\rho_{c}{}^{\nu} - T_{a}{}^{de}T_{bdf}T_{ce}{}^{f}$$

$$+ 3\rho_{d}{}^{\mu}\partial_{\mu}\rho_{[a}{}^{\nu}\partial_{\nu}T_{bc]}{}^{d} + 3\rho_{d}{}^{\mu}T_{[a}{}^{de}\partial_{\mu}T_{bc]e}$$

It can be checked that $\left\{\mathscr{H}, \overset{\circ}{\mathscr{H}}\right\}_{\omega}=0$ as a consequence of $\left\{\mathscr{H}, \mathscr{H}\right\}_{\omega}=0.$

Universal (conformal) deformations of Courant algebroids Let C be a Courant algebroid defining the Hamiltonian function

 $\mathscr{H} = \rho_a{}^{\mu} \xi^a p_{\mu} + \frac{1}{6} T_{abc} \xi^a \xi^b \xi^c$ on the associated NP-manifold of degree 2.

The dominant degree of the cohomology of the graph complex fGC_3 is located in degree -3 and spanned by trivalent graphs (modulo IHX relations).

To each trivalent graph, one can associate a (conformal) Hamiltonian flow mapping the Hamiltonian function \mathscr{H} to the associated universal cocycle defined as $\overset{\circ}{\mathscr{H}} = \Omega \cdot \mathscr{H}$. Examples

•
$$\bigcirc$$
 $\mapsto \Omega = T_{\bullet \bullet \bullet} - T_{\bullet \bullet \bullet} + 6 \rho_{\bullet} - P_{\bullet} = T_{abc} T^{abc} + 6 \partial_{\nu} \rho_{a}{}^{\lambda} \partial_{\lambda} \rho^{a|\nu}$

$$\circ \bigotimes \mapsto \Omega = T_{abc} T^{abd} T^{cef} T_{def} + 4 \, \partial_{\mu} \rho_{a}{}^{\nu} \, \partial_{\nu} \rho_{b}{}^{\mu} \, \partial_{\lambda} \rho^{a|\rho} \, \partial_{\rho} \rho^{b|\lambda} \\ - 8 \, \partial_{\mu} \rho_{a}{}^{\nu} \, \partial_{\nu} \rho^{a|\lambda} \, \partial_{\lambda} \rho_{b}{}^{\rho} \, \partial_{\rho} \rho^{b|\mu} + 4 \, \partial_{\mu} \rho^{a|\nu} \, \partial_{\nu} \rho_{d}{}^{\mu} T_{abc} \, T^{dbc}$$

Universal (conformal) deformations of Courant algebroids Let C be a Courant algebroid defining the Hamiltonian function $\mathscr{H} = \rho_a{}^{\mu}\xi^a{}_{P\mu} + \frac{1}{6}T_{abc}\xi^a\xi^b\xi^c$ on the associated NP-manifold of degree 2. The dominant degree of the cohomology of the graph complex fGC₃ is located in degree -3 and spanned by trivalent graphs (modulo IHX relations).

To each trivalent graph, one can associate a (conformal) Hamiltonian flow mapping the Hamiltonian function \mathscr{H} to the associated universal cocycle defined as $\overset{\circ}{\mathscr{H}} = \Omega \cdot \mathscr{H}$. Examples

•
$$\bigcirc$$
 $\mapsto \Omega = T_{\bullet \bullet \bullet} + 6 \rho_{\bullet} - T_{abc} T^{abc} + 6 \partial_{\nu} \rho_{a}^{\lambda} \partial_{\lambda} \rho^{a|\nu}$

$$\circ \bigotimes \mapsto \Omega = T_{abc} T^{abd} T^{cef} T_{def} + 4 \,\partial_{\mu}\rho_{a}{}^{\nu} \,\partial_{\nu}\rho_{b}{}^{\mu} \,\partial_{\lambda}\rho^{a|\rho} \,\partial_{\rho}\rho^{b|\lambda} \\ - 8 \,\partial_{\mu}\rho_{a}{}^{\nu} \,\partial_{\nu}\rho^{a|\lambda} \,\partial_{\lambda}\rho_{b}{}^{\rho} \,\partial_{\rho}\rho^{b|\mu} + 4 \,\partial_{\mu}\rho^{a|\nu} \,\partial_{\nu}\rho_{d}{}^{\mu}T_{abc} T^{dbc}$$

•
$$\bigotimes \mapsto \Omega = T_{abc} T^a{}_{de} T^{bdf} T^{ce}{}_f - 8 \,\partial_\mu \rho_a{}^\nu \,\partial_\nu \rho_b{}^\lambda \,\partial_\lambda \rho_c{}^\mu T^{abc}$$
$$- 6 \,\partial_\mu \rho_a{}^\nu \,\partial_\nu \rho_b{}^\lambda \,\partial_\lambda \rho^{a|\rho} \,\partial_\rho \rho^{b|\mu}$$

$$\Theta \mapsto \Omega = T_{abc} T^{abc} + 6 \rho_{\bullet} = T_{abc} T^{abc} + 6 \partial_{\nu} \rho_{a}^{\lambda} \partial_{\lambda} \rho^{a|\nu}$$

$$\Theta \mapsto \Omega = T_{abc} T^{abd} T^{cef} T_{def} + 4 \partial_{\mu} \rho_{a}^{\nu} \partial_{\nu} \rho_{b}^{\mu} \partial_{\lambda} \rho^{a|\rho} \partial_{\rho} \rho^{b|\lambda}$$

$$- 8 \partial_{\mu} \rho_{a}^{\nu} \partial_{\nu} \rho^{a|\lambda} \partial_{\lambda} \rho_{b}^{\rho} \partial_{\rho} \rho^{b|\mu} + 4 \partial_{\mu} \rho^{a|\nu} \partial_{\nu} \rho_{d}^{\mu} T_{abc} T^{dbc}$$

$$\Theta = T_{abc} T^{abd} T^{cef} T_{def} + 4 \partial_{\mu} \rho_{a}^{\nu} \partial_{\nu} \rho_{b}^{\mu} \partial_{\mu} \rho^{b|\lambda}$$

$$\bigotimes \mapsto \Omega = T_{abc} T^a{}_{de} T^{oaj} T^{ce}{}_{f} - 8 \partial_{\mu}\rho_a{}^{\nu} \partial_{\nu}\rho_b{}^{\lambda} \partial_{\lambda}\rho_c{}^{\mu} T$$
$$-6 \partial_{\mu}\rho_a{}^{\nu} \partial_{\nu}\rho_b{}^{\lambda} \partial_{\lambda}\rho^{a|\rho} \partial_{\rho}\rho^{b|\mu}$$

$$\circ \bigoplus \mapsto \Omega = T_{abc} T^{abd} T^{cef} T_{def} + 4 \partial_{\mu} \rho_{a}^{\nu} \partial_{\nu} \rho_{b}^{\mu} \partial_{\lambda} \rho^{a|\rho} \partial_{\rho} \rho^{b|\lambda}$$

$$\circ \bigoplus \Omega = T_{abc} T^{abd} T^{cef} T_{def} + 4 \partial_{\mu} \rho_{a}^{\nu} \partial_{\nu} \rho_{b}^{\mu} \partial_{\lambda} \rho^{a|\rho} \partial_{\rho} \rho^{b|\lambda}$$

$$-8 \partial_{\mu} \rho_{a}^{\nu} \partial_{\nu} \rho^{a|\lambda} \partial_{\lambda} \rho_{b}^{\rho} \partial_{\rho} \rho^{b|\mu} + 4 \partial_{\mu} \rho^{a|\nu} \partial_{\nu} \rho_{d}^{\mu} T_{abc} T^{dbc}$$

$$\circ \bigotimes \mapsto \Omega = T_{abc} T^{a}_{\ de} T^{bdf} T^{ce}_{\ f} - 8 \partial_{\mu} \rho_{a}^{\nu} \partial_{\nu} \rho_{b}^{\lambda} \partial_{\lambda} \rho_{c}^{\mu} T^{abc}$$

$$-6 \partial_{\mu} \rho_{a}^{\nu} \partial_{\nu} \rho_{b}^{\lambda} \partial_{\lambda} \rho^{a|\rho} \partial_{\rho} \rho^{b|\mu}$$

$$\circ \bigoplus \mapsto \Omega = T_{abc} T^{abd} T^{cef} T_{def} + 4 \partial_{\mu} \rho_{a}^{\nu} \partial_{\nu} \rho_{b}^{\mu} \partial_{\lambda} \rho^{a|\rho} \partial_{\rho} \rho^{b|\lambda}$$

$$\circ \bigoplus \mapsto \Omega = T_{abc} T^{abd} T^{cef} T_{def} + 4 \partial_{\mu} \rho_{a}^{\nu} \partial_{\nu} \rho_{b}^{\mu} \partial_{\lambda} \rho^{a|\rho} \partial_{\rho} \rho^{b|\lambda}$$

$$-8 \partial_{\mu} \rho_{a}^{\nu} \partial_{\nu} \rho^{a|\lambda} \partial_{\lambda} \rho_{b}^{\rho} \partial_{\rho} \rho^{b|\mu} + 4 \partial_{\mu} \rho^{a|\nu} \partial_{\nu} \rho_{d}^{\mu} T_{abc} T^{dbc}$$

$$\circ \bigoplus \Theta = T_{abc} T^{a}{}_{de} T^{bdf} T^{ce}{}_{f} - 8 \partial_{\mu} \rho_{a}^{\nu} \partial_{\nu} \rho_{b}^{\lambda} \partial_{\lambda} \rho_{c}^{\mu} T^{abc}$$

$$-6 \partial_{\mu} \rho_{a}^{\nu} \partial_{\nu} \rho_{b}^{\lambda} \partial_{\lambda} \rho^{a|\rho} \partial_{\rho} \rho^{b|\mu}$$

$$\circ \bigoplus \mapsto \Omega = T_{abc} T^{abd} T^{cef} T_{def} + 4 \partial_{\mu} \rho_{a}^{\nu} \partial_{\nu} \rho_{b}^{\mu} \partial_{\lambda} \rho^{a|\rho} \partial_{\rho} \rho^{b|\lambda}$$

$$\circ \bigotimes \mapsto \Omega = T_{abc} T^{abd} T^{cef} T_{def} + 4 \partial_{\mu} \rho_{a}^{\nu} \partial_{\nu} \rho_{b}^{\mu} \partial_{\lambda} \rho^{a|\rho} \partial_{\rho} \rho^{b|\lambda}$$

$$-8 \partial_{\mu} \rho_{a}^{\nu} \partial_{\nu} \rho^{a|\lambda} \partial_{\lambda} \rho_{b}^{\rho} \partial_{\rho} \rho^{b|\mu} + 4 \partial_{\mu} \rho^{a|\nu} \partial_{\nu} \rho_{d}^{\mu} T_{abc} T^{dbc}$$

$$\circ \bigotimes \mapsto \Omega = T_{abc} T^{a}{}_{de} T^{bdf} T^{ce}{}_{f} - 8 \partial_{\mu} \rho_{a}^{\nu} \partial_{\nu} \rho_{b}^{\lambda} \partial_{\lambda} \rho_{c}^{\mu} T^{abc}$$

$$-6 \partial_{\mu} \rho_{a}^{\nu} \partial_{\nu} \rho_{b}^{\lambda} \partial_{\lambda} \rho^{a|\rho} \partial_{\rho} \rho^{b|\mu}$$

Summary and Outlook Deformation

- The Kontsevich universal model for the deformation theory of Poisson manifolds (for d = 2) is generalised to all NPQ-manifolds (for any positive d).
 - Classification of universal structures on NP(Q)-manifolds.
 - New explicit universal deformations of Courant algebroids.

Quantization

- This construction provide new insights regarding the deformation quantization problem for NPQ-manifolds of higher *d*.
 - $H^1(fGC_3) = 0$: The existence of formality morphisms for Courant algebroids is unobstructed.
 - $H^0(fGC_3) = \mathbb{K}$: The space of formality morphisms is one-dimensional.

- Globalisation à la Fedosov See e.g. Jost 12' for d = 2
- Considering (multi)-oriented graph complexes will allow to see some incarnation of grt1 (or equivalently Drinfel'd associators) within the quantization of NPQ-manifolds of higher d.

Summary and Outlook Deformation

- The Kontsevich universal model for the deformation theory of Poisson manifolds (for d = 2) is generalised to all NPQ-manifolds (for any positive d).
 - Classification of universal structures on NP(Q)-manifolds.
 - New explicit universal deformations of Courant algebroids.

Quantization

- This construction provide new insights regarding the deformation quantization problem for NPQ-manifolds of higher *d*.
 - $H^1(fGC_3) = 0$: The existence of formality morphisms for Courant algebroids is unobstructed.
 - $H^0(fGC_3) = \mathbb{K}$: The space of formality morphisms is one-dimensional.

- Globalisation à la Fedosov See e.g. Jost 12' for d = 2
- Considering (multi)-oriented graph complexes will allow to see some incarnation of grt1 (or equivalently Drinfel'd associators) within the quantization of NPQ-manifolds of higher d.

Deformation

- The Kontsevich universal model for the deformation theory of Poisson manifolds (for *d* = 2) is generalised to all NPQ-manifolds (for any positive *d*).
 - Classification of universal structures on $\mathsf{NP}(\mathsf{Q})\text{-manifolds}.$
 - New explicit universal deformations of Courant algebroids.

Quantization

- This construction provide new insights regarding the deformation quantization problem for NPQ-manifolds of higher *d*.
 - $H^1(fGC_3) = 0$: The existence of formality morphisms for Courant algebroids is unobstructed.
 - $H^0(fGC_3) = \mathbb{K}$: The space of formality morphisms is one-dimensional.

- Globalisation à la Fedosov See e.g. Jost 12' for d = 2
- Considering (multi)-oriented graph complexes will allow to see some incarnation of grt1 (or equivalently Drinfel'd associators) within the quantization of NPQ-manifolds of higher d.

Deformation

- The Kontsevich universal model for the deformation theory of Poisson manifolds (for *d* = 2) is generalised to all NPQ-manifolds (for any positive *d*).
 - Classification of universal structures on $\mathsf{NP}(\mathsf{Q})\text{-manifolds}.$
 - New explicit universal deformations of Courant algebroids.

Quantization

- This construction provide new insights regarding the deformation quantization problem for NPQ-manifolds of higher *d*.
 - $H^1(fGC_3) = 0$: The existence of formality morphisms for Courant algebroids is unobstructed.
 - $H^0(fGC_3) = \mathbb{K}$: The space of formality morphisms is one-dimensional.

- Globalisation à la Fedosov See e.g. Jost 12' for d = 2
- Considering (multi)-oriented graph complexes will allow to see some incarnation of grt1 (or equivalently Drinfel'd associators) within the quantization of NPQ-manifolds of higher d.

Deformation

- The Kontsevich universal model for the deformation theory of Poisson manifolds (for *d* = 2) is generalised to all NPQ-manifolds (for any positive *d*).
 - Classification of universal structures on $\mathsf{NP}(\mathsf{Q})\text{-manifolds}.$
 - · New explicit universal deformations of Courant algebroids.

Quantization

- This construction provide new insights regarding the deformation quantization problem for NPQ-manifolds of higher *d*.
 - $H^1(fGC_3) = 0$: The existence of formality morphisms for Courant algebroids is unobstructed.
 - $H^0(fGC_3) = \mathbb{K}$: The space of formality morphisms is one-dimensional.

- Globalisation à la Fedosov See e.g. Jost 12' for d = 2
- Considering (multi)-oriented graph complexes will allow to see some incarnation of grt1 (or equivalently Drinfel'd associators) within the quantization of NPQ-manifolds of higher d.

Deformation

- The Kontsevich universal model for the deformation theory of Poisson manifolds (for *d* = 2) is generalised to all NPQ-manifolds (for any positive *d*).
 - Classification of universal structures on $\mathsf{NP}(\mathsf{Q})\text{-manifolds}.$
 - · New explicit universal deformations of Courant algebroids.

Quantization

- This construction provide new insights regarding the deformation quantization problem for NPQ-manifolds of higher *d*.
 - $H^1(fGC_3) = 0$: The existence of formality morphisms for Courant algebroids is unobstructed.
 - $H^0(fGC_3) = \mathbb{K}$: The space of formality morphisms is one-dimensional.

- Globalisation à la Fedosov See e.g. Jost 12' for d = 2
- Considering (multi)-oriented graph complexes will allow to see some incarnation of grt1 (or equivalently Drinfel'd associators) within the quantization of NPQ-manifolds of higher d.

Deformation

- The Kontsevich universal model for the deformation theory of Poisson manifolds (for *d* = 2) is generalised to all NPQ-manifolds (for any positive *d*).
 - Classification of universal structures on $\mathsf{NP}(\mathsf{Q})\text{-manifolds}.$
 - · New explicit universal deformations of Courant algebroids.

Quantization

- This construction provide new insights regarding the deformation quantization problem for NPQ-manifolds of higher *d*.
 - $H^1(fGC_3) = 0$: The existence of formality morphisms for Courant algebroids is unobstructed.
 - $H^0(fGC_3) = \mathbb{K}$: The space of formality morphisms is one-dimensional.

- Globalisation à la Fedosov See e.g. Jost 12' for d = 2
- Considering (multi)-oriented graph complexes will allow to see some incarnation of grt1 (or equivalently Drinfel'd associators) within the quantization of NPQ-manifolds of higher d.

Deformation

- The Kontsevich universal model for the deformation theory of Poisson manifolds (for *d* = 2) is generalised to all NPQ-manifolds (for any positive *d*).
 - Classification of universal structures on $\mathsf{NP}(\mathsf{Q})\text{-manifolds}.$
 - · New explicit universal deformations of Courant algebroids.

Quantization

- This construction provide new insights regarding the deformation quantization problem for NPQ-manifolds of higher *d*.
 - $H^1(fGC_3) = 0$: The existence of formality morphisms for Courant algebroids is unobstructed.
 - $H^0(fGC_3) = \mathbb{K}$: The space of formality morphisms is one-dimensional.

- Globalisation à la Fedosov See e.g. Jost 12' for d = 2
- Considering (multi)-oriented graph complexes will allow to see some incarnation of grt1 (or equivalently Drinfel'd associators) within the quantization of NPQ-manifolds of higher d.

Deformation

- The Kontsevich universal model for the deformation theory of Poisson manifolds (for *d* = 2) is generalised to all NPQ-manifolds (for any positive *d*).
 - Classification of universal structures on $\mathsf{NP}(\mathsf{Q})\text{-manifolds}.$
 - · New explicit universal deformations of Courant algebroids.

Quantization

- This construction provide new insights regarding the deformation quantization problem for NPQ-manifolds of higher *d*.
 - $H^1(fGC_3) = 0$: The existence of formality morphisms for Courant algebroids is unobstructed.
 - $H^0(fGC_3) = \mathbb{K}$: The space of formality morphisms is one-dimensional.

- Globalisation à la Fedosov See e.g. Jost 12' for d = 2
- Considering (multi)-oriented graph complexes will allow to see some incarnation of grt1 (or equivalently Drinfel'd associators) within the quantization of NPQ-manifolds of higher d.

Deformation

- The Kontsevich universal model for the deformation theory of Poisson manifolds (for *d* = 2) is generalised to all NPQ-manifolds (for any positive *d*).
 - Classification of universal structures on $\mathsf{NP}(\mathsf{Q})\text{-manifolds}.$
 - · New explicit universal deformations of Courant algebroids.

Quantization

- This construction provide new insights regarding the deformation quantization problem for NPQ-manifolds of higher *d*.
 - $H^1(fGC_3) = 0$: The existence of formality morphisms for Courant algebroids is unobstructed.
 - $H^0(fGC_3) = \mathbb{K}$: The space of formality morphisms is one-dimensional.

- Globalisation à la Fedosov See e.g. Jost 12' for d = 2
- Considering (multi)-oriented graph complexes will allow to see some incarnation of grt₁ (or equivalently Drinfel'd associators) within the quantization of NPQ-manifolds of higher d.

Deformation

- The Kontsevich universal model for the deformation theory of Poisson manifolds (for *d* = 2) is generalised to all NPQ-manifolds (for any positive *d*).
 - Classification of universal structures on $\mathsf{NP}(\mathsf{Q})\text{-manifolds}.$
 - · New explicit universal deformations of Courant algebroids.

Quantization

- This construction provide new insights regarding the deformation quantization problem for NPQ-manifolds of higher *d*.
 - $H^1(fGC_3) = 0$: The existence of formality morphisms for Courant algebroids is unobstructed.
 - $H^0(fGC_3) = \mathbb{K}$: The space of formality morphisms is one-dimensional.

- Globalisation à la Fedosov See e.g. Jost 12' for d = 2
- Considering (multi)-oriented graph complexes will allow to see some incarnation of grt1 (or equivalently Drinfel'd associators) within the quantization of NPQ-manifolds of higher d.

Summary and Outlook Thank you! Deformation

- The Kontsevich universal model for the deformation theory of Poisson manifolds (for d = 2) is generalised to all NPQ-manifolds (for any positive d).
 - Classification of universal structures on $\mathsf{NP}(\mathsf{Q})\text{-manifolds}.$
 - · New explicit universal deformations of Courant algebroids.

Quantization

- This construction provide new insights regarding the deformation quantization problem for NPQ-manifolds of higher *d*.
 - $H^1(fGC_3) = 0$: The existence of formality morphisms for Courant algebroids is unobstructed.
 - $H^0(fGC_3) = \mathbb{K}$: The space of formality morphisms is one-dimensional.

- Globalisation à la Fedosov See e.g. Jost 12' for d = 2
- Considering (multi)-oriented graph complexes will allow to see some incarnation of grt1 (or equivalently Drinfel'd associators) within the quantization of NPQ-manifolds of higher d.