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Motivations
Formality
In his seminal 97’ preprint, “Deformation quantization of Poisson manifolds I”,

M. Kontsevich constructs an explicit Lie∞quasi-isomorphism

U : Tpoly(Rm) ∼−→ Dpoly(Rm)
between

Tpoly the Schouten graded Lie algebra of polyvector fields on the affine space Rm

Dpoly the Hochschild differential graded Lie algebra of multidifferential operators on Rm.

Formality map

Quantization
An important corollary of the formality theorem is that it provides an explicit bijective map:

Û : FPoiss ∼−→ Star
between the sets

FPoiss of (equivalence classes of) formal Poisson structures on Rm

Star of (equivalence classes of) star products on Rm.

Quantization map
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Motivations
Formality

The formality theorem settles positively (and constructively) the “Formality conjecture”

formulated by Kontsevich around 93’-94’, cf. also Voronov 97’.

It provides a complete solution to the quantization problem formulated in Berezin 75’,

Bayen, Flato, Fronsdal, Lichnerowicz, Sternheimer 78’.

The Taylor coefficients of the formality morphism U are:

universal i.e. are written in terms of graphs and independently of the dimension.

transcendental i.e. involve (hard) integrals over configuration spaces of points
(or more generally, Drinfel’d associators).

It would be desirable to address questions in formality via methods which evade

transcendental formulas while retaining universality.

In the formulation of his “Formality conjecture”, M. Kontsevich precisely introduced

such universal algebraic methods.
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Motivations
Universal model for deformation theory

On general grounds, any dg Lie algebra g is quasi-isomorphic (as a Lie∞-algebra) to its

cohomology H(g) endowed with a certain Lie∞-structure obtained from the dg Lie

algebra structure on g via the homotopy transfer theorem.

This allows in particular to address formality questions by studying the space of

Lie∞-structures deforming the graded Lie structure on H(g). The relevant deformation

theory is therefore controlled by the Chevalley–Eilenberg dg Lie algebra CE
(
(H(g)

)
.

M. Kontsevich introduced a universal version of the Chevalley–Eilenberg complex

associated to the Schouten algebra of polyvector fields CE(Tpoly) in the guise of a dg

Lie algebra of graphs, denoted fGC2, together with an injective morphism:

fGC2 ↪→ CE(Tpoly)
given by local formulas.

Existence: Obstructions to universal formality live in H1(fGC2).

Classification: The space of universal formality morphisms is classified by H0(fGC2).
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Motivations
Graded geometry

The morphism fGC2 ↪→ CE(Tpoly) is given by explicit local formulas making implicit use

of the supergeometric interpretation of the Schouten algebra as the algebra of functions

on a graded symplectic manifold (or NP-manifold) of degree 1, i.e. Tpoly ' C∞ (T ∗[1]M ).

In this context, Poisson manifolds are interpreted as differential graded symplectic

manifolds (or NPQ-manifolds) of degree 1.

More generally, NPQ-manifolds of positive degree n naturally form the target space of

AKSZ-type σ-models over a source of dimension d = n+ 1:

d = 2: Poisson σ-model Ikeda 93’, Schaller-Strobl 94’

d = 3: Courant σ-model Ikeda 02’, Roytenberg 02’
...

Kontsevich’s quantization formula can be interpreted as the Feynman diagram

expansion associated to the quantization of the Poisson σ-model Cattaneo, Felder 99’.

What about higher d?
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Graph operad Grad See e.g. Willwacher 10’
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Graph dg Lie algebra fGCd

The partial composition operations ◦i endow the total space

fGCd :=
∏
N≥1

(
Grad(N)⊗ sgn⊗dN [d(1−N)]

)SN

with a structure of graded Lie algebra where:

A graph γ with N vertices and k edges has degree |γ| = d(N − 1) + k(1− d).

The sign conventions depend on the parity of d as:

Edge direction Edge label Vertex label

d even + − +
d odd − + −

The graph 1 2
i

is a Maurer–Cartan element of fGCd for all d.

The differential δ is defined by the adjoint action with respect to 1 2
i

.
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Examples of graph cocycles

Loop cocycles: (for all d in which these are non-trivial)

1 2 3
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3 1 2

3 4
3

2

1

5 4
· · ·

Wheel cocycles: (for d even) containing with non-zero coefficient:

21

3

4 3

2

1

5 4

6

3
2
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7

56

4
8 · · ·

Trivalent graphs: (for d odd, modulo IHX relations)

· · ·
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Main result
Let (V, ω) be a NP-manifold of degree n and denote d = n+ 1.

Proposition

The graded algebra of functions on V is endowed with a structure of a Grad-algebra.

Explicitly, we construct a tower of injective morphisms Grad ↪→ EndC∞(V)

mapping graphs to multidifferential operators on C∞ (V).
This generalises the result of Kontsevich 94’, Willwacher 10’ from d = 2 to any d.

Examples

For all d :

The graph 1 2
i

is mapped to the Poisson bracket
{
f, g
}
ω

on C∞ (V).

The graph 1 2 is mapped to the graded commutative product f · g on C∞ (V).

For d = 1 :

The sum of graphs
∑
j≥0

1
j!

1
...

j edges

2 is mapped to the Groenewold–Moyal product.
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Main result
Let (V, ω) be a NP-manifold of degree n and denote d = n+ 1.

Corollary

The morphism of operads Grad ↪→ EndC∞(V) induces a morphism of dg Lie algebras

fGCd ↪→ CE(T (n)
poly)

where T (n)
poly = C∞ (V) [n] stands for the n-suspension of the algebra of functions on V.

This defines a universal model for the deformation theory of the graded Lie algebra T (n)
poly.

As a by-product, we obtain a classification of universal structures on NP-manifolds:

H1(fGCd): Universal deformations of T (n)
poly as a Lie∞-algebra (obstructions to formality).

H0(fGCd): Universal Lie∞-automorphisms of T (n)
poly (classification of formality morphisms).

Proposition

Universal structures for d > 2 are classified by loop cocycles.
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Applications
Universal deformations of Poisson manifolds cf. A. V. Kiselev’s talk
Let (M , π) be a Poisson manifold defining the Hamiltonian function

H = 1
2π

µν pµ pν on the associated NP-manifold of degree 1.

The zeroth cohomology of the graph complex fGC2 is infinite dimensional and isomorphic

to the Grothendieck–Teichmüller algebra grt1 (conjecturally) generated by wheel cocycles.

Examples

The simplest wheel cocycle is given by the tetrahedron graph γ3 =

21

3

4
.

The associated tetrahedral Hamiltonian flow maps the Hamiltonian function H to the

associated universal Lichnerowicz cocycle defined as
◦

H = 1
2
◦
πµν pµ pν where:

◦
πµν =

ππ

πµν

π

− 6

ππ

πν

πµ

+ skewsym. (µ− ν)
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in degree −3 and spanned by trivalent graphs (modulo IHX relations).

To each trivalent graph, one can associate a (conformal) Hamiltonian flow mapping the

Hamiltonian function H to the associated universal cocycle defined as
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Summary and Outlook
Deformation

The Kontsevich universal model for the deformation theory of Poisson manifolds
(for d = 2) is generalised to all NPQ-manifolds (for any positive d).

Classification of universal structures on NP(Q)-manifolds.

New explicit universal deformations of Courant algebroids.

Quantization
This construction provide new insights regarding the deformation quantization problem
for NPQ-manifolds of higher d.

H1(fGC3) = 0: The existence of formality morphisms for Courant algebroids is unobstructed.

H0(fGC3) = K: The space of formality morphisms is one-dimensional.

Perspectives
Globalisation à la Fedosov See e.g. Jost 12’ for d = 2

Considering (multi)-oriented graph complexes will allow to see some incarnation of grt1
(or equivalently Drinfel’d associators) within the quantization of NPQ-manifolds of higher d.
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H1(fGC3) = 0: The existence of formality morphisms for Courant algebroids is unobstructed.
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