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Introduction

Aims:

Construction of the background superfield method for 6D,N = (1, 0)
non-Abelian vector multiplet coupled to hypermultiplet

Calculation of the one-loop off-shell divergences in vector multiplet and
hypermultiplet sectors for arbitrary N = (1, 0) gauge theory

Analysis of divergences in the N = (1, 1) SYM theory

Two-loop divergences

The talk is based on:
I.L.Buchbinder, E.A. Ivanov, K.V. Stepanayantz, B.M., arXiv:1907.12302
Nucl. Phys. B 936 (2018), arXiv:1808.08446; Phys. Lett. B 778 (2018), arXiv:1711.11514;
Nucl. Phys. B 921 (2017), arXiv:1704.02530; JHEP 1701 (2017), arXiv:1612.03190;
Phys. Lett. B 763 (2016), arXiv:1609.00975;
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General motivation

The modern interest to 6D supersymmetric gauge theories is stipulated by the
following reasons:

I The problem of describing the quantum structure of six-dimensional
supersymmetric gauge theories dimensionally reduced from superstrings and the
connection of effective action for the D5-branes at low energies with maximally
supersymmetric Yang-Mills theory in six dimensions. [N.Seiberg (1996), E. Witten

(1996); N. Seiberg, (1997)].

I Lagrangian description of the interacting multiple M5-branes is related to 6D,
N = (2, 0) supersymmetric gauge theory. The theory includes self-dual
non-Abelian antisymmetric tensor and it is not constructed still (see e.g. review [J.

Bagger, N. Lambert, S. Mikhu, C. Papageorgakis (2013) ]).

Boris Merzlikin (Tomsk) 6D, N = (1, 0) and N = (1, 1) SYM Dubna, 2018 4 / 39



Motivations

I The problem of miraculous cancellation of on-shell divergences in higher
dimensional maximally supersymmetric gauge theories (theories with 16
supercharges). All these theories are non-renormalizable by power counting.

Field limit of superstring amplitude shows that 6D,N = (1, 1) SYM theory is
on-shell finite at one-loop [M.B. Green, J.H. Schwarz, L. Brink, (1982)].

Analysis based on on-shell supersymmetries, gauge invariance and field
redefinitions [P.S. Howe, K.S. Stelle, (1984), (2003); G. Bossard, P.S. Howe, K.S.

Stelle, (2009)].

Direct one-loop and two-loop component calculations (mainly in bosonic
sector and mainly on-shell) [E.S. Fradkin, A.A. Tseytlin, (1983); N. Marcus, A.

Sagnotti, (1984), (1985)].

Direct calculations of scattering amplitudes in 6D theory up to five loops and
in D8, 10 theories up to four loops [L.V. Bork, D.I. Kazakov, M.V. Kompaniets,

D.M. Tolkachev, D.E. Vlasenko, (2015).]

Results: On-shell divergences in 6D theory start at three loops.
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Some properties of 6D,N = (1, 1) SYM theory

Purpose

To study one- and two-loop divergences of the superfield effective action in
N = (1, 1) SYM theory.

Properties

6D,N = (1, 1) SYM theory possesses some properties close or analogous to
4D,N = 4 SYM theory.

The 6D,N = (1, 1) SYM theory can be formulated in harmonic superspace
as well as the 4D,N = 4 SYM theory.

The 6D,N = (1, 1) SYM theory possesses the manifest N = (1, 0)
supersymmetry and additional hidden N = (0, 1) supersymmetry analogous
to 4D,N = 4 SYM theory where there is the manifest N = 2 supersymmetry
and additional hidden N = 2 supersymmetry.

The 6D,N = (1, 1) SYM theory as well as the 4D,N = 4 SYM theory is
characterized by the non-trivial moduli space.

The 6D,N = (1, 1) SYM theory is anomaly free as well as the 4D,N = 4
SYM theory and satisfies some non-renormaization theorems.
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6D supersymmetry

P.S. Howe, G. Sierra, P.K. Townsend, (1983).

6D Minkowski space

Coordinates xM , M = 0, 1, 2, 3, 4, 5

Metric ηMN = diag(1,−1,−1,−1,−1,−1)

Proper Lorentz group SO(1, 5)

Two types of 6D Spinors

Left (1, 0) spinors ψa, a = 1, 2, 3, 4

Right (0, 1) spinors φa, a = 1, 2, 3, 4
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6D supersymmetry

Dirac matrices

8× 8 Dirac matrices ΓM ,

ΓMΓN + ΓNΓM = 2ηMN

Representation of the Dirac matrices

ΓM =

(
0 γ̃M
−γM 0

)
,

Antisymmetric 4× 4 Pauli-type matrices γM and γ̃M ,

γM γ̃N + γN γ̃M = −2ηMN

(γ̃M )ab =
1

2
εabcd(γM )cd

Spinor representation of the vectors, Vab = 1
2 (γM )abVM .
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6D supersymmetry

6D superalgebra

Two types of independent supercharges
QIa, Q

a
J , I = 1, ..., 2m; J = 1, ..., 2n

N = (m,n) supersymmetry

Anticommutational relations for supercharges

{QIa, QKb } = 2ΩIKPab

{QaJ , QbL} = 2ΩJLP
ab

Matrix ΩIK belongs to USp(2n) group (R-symmetry group), ΩIKΩKJ = δJI
N = (1, 0) superspace, I = i, coordinates z = (xM , θai ), i = 1, 2

Basic spinor derivatives

Di
a =

∂

∂θai
− iθib∂ab, {Di

a, D
j
b} = −2iΩij∂ab
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Harmonic superspace

4D
A.Galperin, E. Ivanov, S. Kalitsyn, V. Ogievetsky, E. Sokatchev, (1984).
A.Galperin, E. Ivanov, V. Ogievetsky, E. Sokatchev, Harmonic Superspace, (2001).

General purpose:
to formulate N = 2 models in terms of unconstrained N = 2 superfields.
General idea:
to use the parameters u±i(i = 1, 2) (harmonics) related to SU(2) automorphism
group of the N = 2 superalgebra and parameterizing the 2-sphere, u+iu−i = 1.

It allows to introduce the N = 2 superfields and formulate the theory with
manifest N = 2 supersymmetry in harmonic superspace. Price for this is a
presence of extra bosonic variables, harmonics u±i.

6D
P.S. Howe, K.S. Stelle, P.C. West, (1985).
B.M. Zupnik, (1986); (1999).

G. Bossard, E. Ivanov, A. Smilga, (2015).

Note! Pure spinor approach to describe 6D SYM theories, [M. Cederwall, (2018)].
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6D,N = (1, 0) harmonic superspace

N = (1, 0) harmonic superspace

USp(2) ∼ SU(2), I = i The same harmonics u±i as in 4D,N = 2
supersymmetry

Harmonic 6D, (1, 0) superspace with coordinates Z = (xM , θai , u
±i)

Analytic basis Z(an) = (xM(an), θ
±a, u±i ),

xM(an) = xM + i
2θ
−a(γM )abθ

+b, θ±a = u±i θ
ai

The coordinates ζ = (xM(an), θ
+a, u±i ) form a subspace closed under (1, 0)

supersymmetry

The harmonic derivatives

D++ = u+i ∂

∂u−i
+ iθ+aθ+b∂ab + θ+a ∂

∂θ−a
,

D0 = u+i ∂

∂u+i
− u−i ∂

∂u−i
+ θ+a ∂

∂θ+a
− θ−a ∂

∂θ−a

Spinor derivatives in the analytic basis

D+
a =

∂

∂θ−a
, D−a = − ∂

∂θ+a
− 2i∂abθ

−b, {D+
a , D

−
b } = 2i∂ab

Analytic superfields φ do not depend on θ−α, D+
αφ = 0
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Harmonic superfields

Hypermultiplet in conventional 6D superspace

The N = (1, 0) hypermultiplet is described in conventional 6D,N = (1, 0)
superspace by the superfields qi(x, θ) and their conjugate q̄i(x, θ), where
q̄i = (qi)+ under the constraint

D(i
a q

j)(x, θ) = 0

On-shell component form of the hypermultiplet

qi(z) = f i(x) + θaiψa(x)

where the scalar field f i(x) and the spinor field ψa(x) satisfy the equations
2f i = 0, ∂abψb = 0
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Harmonic superfields

Hypermultiplet in harmonic superspace: off-shell Lagrangian formulation

Off-shell hypermultiplet is described by the analytic superfield q+
A(ζ, u),

D+
a q

+
A(ζ, u) = 0, satisfying the reality condition

(̃q+A) ≡ q+
A = εABq

+B = (q+ − q̃+). Pauli-Gürsey indices A,B = 1, 2

Off-shell hypermultiplet harmonic superfield contains infinite set of auxiliary
fields which vanish on-shell due to the equations of motion

D++q+(ζ, u) = 0

The equations of motion follow from the action

SHY PER = −1

2

∫
dζ(−4)du q+AD++q+

A

Here dζ(−4) = d6xd4θ+.
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Harmonic superfields

The N = (1, 0) non-Abelian vector multiplet in 6D conventional superspace

Gauge covariant derivatives

∇M = DM + iAM, [∇M,∇N ] = iTMN
L∇L + FMN

with DM = (∂M , D
i
a) being the flat covariant derivatives and AM being the

gauge connection taking the values in the Lie algebra of the gauge group.

The constraints

F ijab = 0, {∇ia,∇
j
b} = 2iεij∇ab, [∇ic,∇ab] =

i

2
εabcdW

id

Here W ia is the superfield strength obeying the Bianchi identities.

The constraints are solved in the framework of the harmonic superspace.
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Harmonic superfields

The N = (1, 0) non-Abelian vector multiplet in 6D, N = (1, 0) harmonic
superspace

Harmonic covariant derivative

∇++ = D++ + iV ++

Connection V ++, takes the values in the Lie algebra of the gauge group, this
is an unconstrained analytic potential of the 6D,N = (1, 0) SYM theory.

On-shell contents: V ++ = θ+aθ+bAab + 2(θ+)aλ
−a, Aab is a vector field,

λ−a = λaiu−i , λ
ai is a spinor field.

The superfield action of 6D,N = (1, 0) SYM theory is written in the form

SSYM =
1

f2
0

∞∑
n=1

(−1)n+1

n
tr

∫
d14zdu1 . . . dun

V ++(z, u1) . . . V ++(z, un)

(u+
1 u

+
2 ) . . . (u+

nu
+
1 )

Here f0 is the dimensional coupling constant ([f0] = −1)

Gauge transformations

V ++′ = −ieiλD++e−iλ + eiλV ++e−iλ, q+′ = eiλq+
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Harmonic superfields

Theory of N = (1, 0) non-Abelian vector multiplet coupled to hypermultiplet
(chiral anomaly in harmonic superspace formulation calculated by S. M. Kuzenko,

J. Novak and I. B. Samsonov (2017).]

Action

S[V ++, q+] =
1

f2
0

∞∑
n=2

(−i)n

n
tr

∫
d14z du1 . . . dun

V ++(z, u1) . . . V ++(z, un)

(u+
1 u

+
2 ) . . . (u+

nu
+
1 )

−
∫
dζ−4duq̃+∇++q+

Harmonic covariant derivative

∇++ = D++ + iV ++

Equations of motion

F++ − 2if2
0 q̃

+q+ = 0 , ∇++q+ = 0 .

F++ = (D+)4V −−, D++V −− −D−−V ++ + i[V ++, V −−] = 0
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N = (1, 1) SYM theory

N = (1, 1) SYM theory can be formulated in terms of N = (1, 0) harmonic
superfields as the N = (1, 0) vector multiplet coupled to hypermultiplet in adjoint
representation. The theory is manifestly N = (1, 0) supersymmetric and possesses
the extra hidden N = (0, 1) supersymmetry.

Action
S[V ++, q+] = SSYM [V ++] + SHY PER[q+, V ++]

The action is manifestly N = (1, 0) supersymmetric.

The action is invariant under the transformations of extra hidden N = (0, 1)
supersymmetry

δV ++ = ε+q+, δq+ = −(D+)4(ε−V −−)

where the transformation parameter ε±A = εaAθ
±A.
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General scheme of calculations

We start with harmonic superfield formulations of vector multiplet coupled to
hypermultiplet.

Effective action is formulated in the framework of the background field
method in harmonic superspace. It provides manifest N = (1, 0)
supersymmetry and gauge invariance of effective action under the classical
gauge transformations.

Effective action can be calculated on the base of superfield proper-time
technique. It provides preservation of manifest N = (1, 0) supersymmetry
and manifest gauge invariance at all steps of calculations.

The effective action can also be calculated perturbatively on the base of
Feynman diagrams in superspace (supergraph technique).

We study the model where the N = (1, 0) vector multiplet interacts with
hypermultiplet in the arbitrary representation of the gauge group. Then, we
assume in the final result for one-loop divergences, that this representation is
adjoint what corresponds to N = (1, 1) SYM theory.
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Background field method

Aim: construction of gauge invariant effective action, (see, e.g., [B.DeWitt (1965)]).
Realization:

The superfields V ++, q+ are splitting into the sum of the background
V ++, Q+ and the quantum v++, q+ superfields

V ++ → V ++ + f0v
++, q+ → Q+ + q+

The action is expending in a power series in quantum fields.

The gauge-fixing function are imposed only on quantum superfiled

F (+4)
τ = D++v++

τ = e−ib(∇++v++)eib = e−ibF (+4)eib ,

where b(z) is a background-dependent gauge bridge superfield and τ means
τ -frame.
Faddev-Popov procedure is used. The effective action Γ[V ++, Q+] gauge
invariant under the classical gauge transformations. Background field
construction in the case under consideration is analogous to one in
4D,N = 2 SYM theory [I.L.Buchbinder, E.I. Buchbinder, S.M. Kuzenko, B.A.
Ovrut, (1998)].
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Background field method

The effective action Γ[V ++, Q+] is written in terms of path integral

eiΓ[V ++,Q+] = Det1/2 _
2

∫
Dv++Dq+DbDcDϕ eiSquant

The quantum action Squant has the structure

Squant = S + SGF [v++, V ++] + SFP [b, c, v++, V ++] + SNK [ϕ, V ++].

Gauge fixing action SGF [v++, V ++], Faddeed-Popov ghost action
SFP [b, c, v++, V ++], Nelson-Kalosh ghost action SNK [ϕ, V ++]

Operator
_
2 = 1

2 (D+)4(∇−−)2

_
2= ηMN∇M∇N +W+a∇−a + F++∇−− − 1

2
(∇−−F++)

All ghosts are the analytic superfields
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Background field method

The gauge fixing action

Sgf[v
++, V ++] = − 1

2ξ0
tr

∫
d14zdu1du2

v++
τ (1)v++

τ (2)

(u+
1 u

+
2 )2

+
1

4ξ0
tr

∫
d14zdu v++

τ (D−−)2v++
τ . (1)

Faddeed-Popov ghosts and Nelson-Kalosh ghost actions

SFP = tr

∫
dζ(−4)du b∇++(∇++ + iv++)c , (2)

SNK =
1

2
tr

∫
dζ(−4)duϕ(∇++)2ϕ . (3)

In what follows we assume gauge fixing parameter ξ0 = 1. The case ξ0 6= 1 will be
considered latter.
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Supergraphs

Perturbation theory can be given in terms of Feynman diagrams formulated
in superspace

Vector multiplet propagator

G(2,2)(1|2) = −2
(D+

1 )4

_
21

δ14(z1 − z2)δ(−2,2)(u1, u2)

Hypermultiplet propagator

G(1,1)(1|2) =
(D+

1 )4(D+
2 )4

_
21

δ14(z1 − z2)

(u+
1 u

+
2 )3

Ghost propagators have the analogous structure

Superspace delta-function

δ14(z1 − z2) = δ6(x1 − x2)δ8(θ1 − θ2)

The vertices are taken from the superfield action as usual
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Power counting

Superficial degree of divergence ω is a total degree of momenta in loop integral.

One can prove that due to structure of the propagators and the Grassmann
delta-functions in the propagators, any supergraph for effective action can be
written through the integrals over full N = (1, 0) superspace and contains
only a single integral over d8θ (non-renormalization theorem).

Mass dimensions: [x] = −1, [p] = 1, [
∫
d6p] = 6, [θ] = − 1

2 , [
∫
d8θ] = 4,

[q+] = 1, [V ++] = 0.

After summing all dimensions and using some identities, power counting gives
ω(G) = 2L−NQ − 1

2ND

ND is a number of spinor derivarives acting on external lines

A number of space-time derivatives in the counterterms increases with L.
The theory is multiplicatively non-renormalizable.

One loop approximation ω1−loop(G) = 2−NQ
The possible divergences correspond to ω1−loop = 2 and ω1−loop = 0

Calculations of ω are analogous to ones in 4D,N = 2 gauge theory [I.L.

Buchbinder, S.M. Kuzenko, B.A. Ovrut, (1998)].
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Structure of one-loop counterterm

According to the general analysis performed in [G. Bossard, E. Ivanov,

A. Smilga,(2015)] the logarithmic divergences in the one-loop approximation can be
written as

Γ
(1)
ln =

∫
dζ(−4) du

[
c1(F++A)2 + ic2F

++A(q̃+)m(TA)m
n(q+)n + c3

(
(q̃+)m(q+)m

)2]
,

(4)

where c1, c2, and c3 are numerical real coefficients.
We consider a possible form of one-loop counterterms on the base of superficial
degree of divergences.

Let NQ = 0, ND = 0, so that ω=2, and we use the dimensional
regularization. The corresponding counterterm has to be quadratic in
momenta and given by the full N = (1, 0) superspace integral. The only
admissible possibility is

Γ
(1)
1 ∼

∫
d14zduV −−�V ++

After some transformation it coincides with first term in Γ
(1)
div, with

dimensionless divergent coefficient c1. Being dimensionless, this coefficient
must be proportional to 1/ε , where ε = d− 6 is a regularization parameter.
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Let NQ = 2, ND = 0 so that ω = 0 and we use the dimensional
regularization. The corresponding counterterm has to be momentum
independent and given by the full N = (1, 0) superspace integral. The only
admissible possibility is

Γ
(1)
2 ∼

∫
d14zduq̃+V −−q+

After some transformation it coincides with second term in Γ
(1)
div, with

dimensionless divergent coefficient c2. Being dimensionless, this coefficient
must be proportional to 1/ε , where ε = d− 6 is a regularization parameter.

Let NQ = 4, ND = 0 so that ω = −2 and the corresponding supergraph is

convergent. It means that c3 = 0 in Γ
(1)
div. As a result, all one-loop (q+)4

possible contributions to effective action are finite.
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Manifestly covariant calculation

Calculating the one-loop divergences of superfield functional determinants is
carried out in the framework of proper-time technique (superfield version of
Schwinger-De Witt technique). Such technique allows us to preserve the manifest
gauge invariance and manifest N = (1, 0) supersymmetry at all steps of
calculations.
General scheme of calculations

Proper-time representation

Tr lnO ∼ Tr

∫ ∞
0

d(is)

(is)1+ε
eisO1δ(1, 2)|2=1

Here s is the proper-time parameter and ε is a parameter of dimensional
regularization.

Typically the δ(1, 2) contains δ8(θ1 − θ2), which vanishes at θ1 = θ2

Typically the operator O contains some number of spinor derivatives D+
a , D

−
a

which act on the Grassmann delta-functions δ8(θ1 − θ2) and can kill them.
Non-zero result will be only if all these δ-functions are killed.

Only these terms are taking into account which have the pole 1
ε after

integration over proper-time.
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Calculation

In the one-loop approximation, the first quantum correction to the classical action,
Γ(1)[V ++, Q+] , is given by the quadratic action S2:

S2 =
1

2

∫
dζ(−4)du v++A _

2
AB

v++B +

∫
dζ(−4)dubA(∇++)2ABcB

+
1

2

∫
dζ(−4)duϕA(∇++)2ABϕB −

∫
dζ(−4)du q̃+m(∇++)m

nq+n (5)

−
∫
dζ(−4)du

{
Q̃+mif0(v++)C(TC)m

nq+n + q̃+mif0(v++)C(TC)m
nQ+

n

}
,

We consider the special change of hypermultiplet variables [I.L. Buchbinder, N.G.

Pletnev, JHEP 0704; S. M. Kuzenko, S. J. Tyler, JHEP 0705] in the one-loop effective
action

q+n (1) = h+
n (1)− f0

∫
dζ

(−4)
2 du2G

(1,1)(1|2)n
p iv++C(2) (TC)p

lQ+
l (2) , (6)

with h+
n are new independent variable in the path integral describing the

hypermultiplet.
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The one-loop quantum correction Γ(1)[V ++, Q+] to the classical action, which
has the following formal expression

Γ(1)[V ++, Q] =
i

2
Tr ln

{
_
2

AB
−4f2

0 Q̃
+m(TAGTB)

m

nQ+
n

}
− i

2
Tr ln

_
2Adj

−iTr ln(∇++)2Adj +
i

2
Tr ln(∇++)2Adj + iTr ln∇++

R . (7)

The (F++)2 is defined by the last three terms in Eq. (16).

Γ
(1)

F2 [V ++] = −iTr ln∇++
Adj + iTr ln∇++

R . (8)

The divergent contribution reads

Γ
(1)
F 2 =

C2 − T (R)

6(4π)3ε

∫
dζ(−4)du (F++A)2 . (9)
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Divergent part of the one-loop effective action

The hypermultiplet-dependent part Q̃+F++Q+ of the one-loop counterterm
comes out from the first term in (16).

i

2
Tr ln

{
_
2

AB
−4f2Q̃+m(TAGTB)

m

nQ+
n

}
=
i

2
Tr ln

_
2 (10)

+
i

2
Tr ln

{
δAB − 4f2(

_
2
−1

)ACQ̃+m(TCGTB)
m

nQ+
n

}
.

We decompose the logarithm up to the first order and compute the functional
trace

Γ
(1)
QFQ = −2if2

∫
dζ(−4)du Q̃+mQ+

n (
_
2
−1

)AB(TBGTA)
m

n
∣∣∣2=1

div

= −2if2

∫
dζ(−4)du Q̃+mQ+

n (11)

× (
_
2
−1

)AB(TB _
2
−1

TA)
m

n(u+
1 u

+
2 ) δ6(x1 − x2)

∣∣∣
2=1

.
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Divergent part of the one-loop effective action

Passing to momentum representation we finally obtain

Γ
(1)
QFQ[V ++, Q+] = − 2if2

(4π)3ε

∫
dζ(−4)du

Q̃+m(C2δ
l
m − C(R)m

l)(F++)A (TA)l
nQ+

n . (12)

Summing up the contributions (9) and (12), we finally obtain the total divergent
contribution

Γ
(1)
div[V ++, Q+] =

C2 − T (R)

3(4π)3ε
tr

∫
dζ(−4)du (F++)2

− 2if2
0

(4π)3ε

∫
dζ(−4)du Q̃+(C2 − C(R))F++Q+. (13)
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One-loop divergences

Results of calculations

Γ
(1)
div[V

++, Q+] =
C2 − T (R)

3(4π)3ε
tr

∫
dζ(−4)du(F++)2 (14)

− 2if2
0

(4π)3ε

∫
dζ(−4)duQ̃+m(C2δm

n − C(R)m
n)F++Q+

n.

The quantities C2, T (R), C(R) are defined as follows

tr (TATB) = T (R)δAB , T (Adj) = C2 , (TATA)m
n = C(R)δm

n.

Results of calculations correspond to analysis done on the base of power
counting. The coefficients c1, c2 are found. The coefficient c3 = 0 as we
expected.

In N = (1, 1) SYM theory, the hypermultiplet is in the same representation as

the vector multiplet. Then C2 = T (R) = C(R). Then Γ
(1)
div[V

++, Q+] = 0.

The result depends on choice of gauge fixing function.
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Supergraph calculations

Figure: Supergraphs for two-point function of vector multiplet
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Supergraph calculations

Figure: Supergraph for two-point function of hypermultiplet
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Supergraph calculations

Figure: Supergraphs for three-point vector multiplet - hypermultiplet function
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Two-loop loop divergences

Let we discuss the structure of the two-loop divergences in the hypermultiplet
sector.
The total contribution to the divergent part of effective action from two-point
supergraphs with the hypermultiplet legs vanishes off shell in case N = (1, 1)
SYM theory.

4f4
0

∫
d6pd8θ

(2π)6

∫
du1 du2

(u+
1 u

+
2 )

[
q+
2 (−p)j

(
C2 − T (R)

)
C(R)i

j q̃+
1 (p)i × I1(p)

+q̃+
1 (p)i

(
− C(R)2 + C2C(R)

)
i

jq+
2 (−p)j × I2(p)

]
. (15)
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Gauge dependence

The absence of one-loop divergencies in N (1, 1) SYM theory is known to be a
gauge dependent (see [D. I. Kazakov, JHEP (2003)]).
The one-loop contribution Γ(1) to the superfield effective action in case ξ0 6= 1
reads

Γ(1)[V ++, Q; ξ0] =
i

2
Tr ln

{ 1

ξ0

_
2AB +

(
1− 1

ξ0

)
δAB

(D+
1 )4

(u+
1 u

+
2 )2

−4f2
0 Q̃

+
1 (TAG(1,1)TB)(1|2)Q+

2

}
− i

2
Tr ln

_
2 − i

2
Tr ln(∇++

Adj)
2 + iTr ln∇++

R . (16)
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Gauge dependence

The divergent part of the one-loop effective action can be written as

Γ(1)
∞ [V ++, Q+; ξ0] =

1

(4π)3ε

(1

3
(C2 − T (R)) + 2(ξ0 − 1)C2

)
tr

∫
dζ(−4)du (F++)2

− 2iξ0 f
2
0 (C2 − C(R))

(4π)3ε

∫
dζ(−4)du Q̃+F++Q+

− f2
0 (ξ0 − 1)C(R)

(4π)3ε

∫
d14z du

(
Q̃+Q− − Q̃−Q+

)
. (17)

In case of on-shell background multiplet we have Q− = ∇−−Q+ and∫
d14z du Q̃+Q− = i

∫
dζ(−4) du q̃+ F++q+. (18)

The gauge dependence vanishes! (see,e.g., [A.O. Barvinsky, G.A. Vilkovisky, Phys.Rep.

(1985)]).
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Summury

Background field method in N = (1, 0) harmonic superspace was developed.

Superficial degree of divergence was evaluated and structure of one-loop
counterterms was studied.

The one-loop divergences in the theories under consideration were calculated
for arbitrary gauge fixing parameter ξ0.

The one-loop divergences have been calculated independently with help of
N = (1, 0) supergraphs technique in case ξ0 = 1.

It is proved that N = (1, 1) SYM theory is one-loop off-shell finite in case
ξ0 = 1.

Two-loop divergences of the 2-point Green function is calculated.

Outlook

Superfield Euler-Heisenberg effective action in 6D, N = (1, 1) SYM theory.

Background field method and study of one-loop divergences in N = (1, 0)
SYM theories with high derivatives (component analysis [E.A. Ivanov,

A.V.Smilga, (2006)] and [L. Casarina, A. Tseytlin, (2019)]).
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