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Introduction

@ Construction of the background superfield method for 6D, N' = (1,0)
non-Abelian vector multiplet coupled to hypermultiplet

@ Calculation of the one-loop off-shell divergences in vector multiplet and
hypermultiplet sectors for arbitrary A" = (1,0) gauge theory

@ Analysis of divergences in the N' = (1,1) SYM theory
@ Two-loop divergences
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General motivation

The modern interest to 6D supersymmetric gauge theories is stipulated by the
following reasons:

» The problem of describing the quantum structure of six-dimensional
supersymmetric gauge theories dimensionally reduced from superstrings and the
connection of effective action for the D5-branes at low energies with maximally
supersymmetric Yang-Mills theory in six dimensions. [N.Seiberg (1996), E. Witten
(1996); N. Seiberg, (1997)].

» Lagrangian description of the interacting multiple M 5-branes is related to 6D,
N = (2,0) supersymmetric gauge theory. The theory includes self-dual
non-Abelian antisymmetric tensor and it is not constructed still (see e.g. review [J.
Bagger, N. Lambert, S. Mikhu, C. Papageorgakis (2013) ])
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» The problem of miraculous cancellation of on-shell divergences in higher
dimensional maximally supersymmetric gauge theories (theories with 16
supercharges). All these theories are non-renormalizable by power counting.

@ Field limit of superstring amplitude shows that 6D, ' = (1,1) SYM theory is
on-shell finite at one-loop [M.B. Green, J.H. Schwarz, L. Brink, (1982)].

@ Analysis based on on-shell supersymmetries, gauge invariance and field
redefinitions [P.S. Howe, K.S. Stelle, (1984), (2003); G. Bossard, P.S. Howe, K.S.
Stelle, (2009)].

@ Direct one-loop and two-loop component calculations (mainly in bosonic
sector and mainly on-shell) [E.S. Fradkin, A.A. Tseytlin, (1983); N. Marcus, A.
Sagnotti, (1984), (1985)].

@ Direct calculations of scattering amplitudes in 6D theory up to five loops and
in D8, 10 theories up to four loops [L.V. Bork, D.l. Kazakov, M.V. Kompaniets,
D.M. Tolkachev, D.E. Vlasenko, (2015).]

Results: On-shell divergences in 6D theory start at three loops.
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Some properties of 6D, N = (1,1) SYM theory

To study one- and two-loop divergences of the superfield effective action in
N = (1,1) SYM theory.

| A

Properties

6D, N = (1,1) SYM theory possesses some properties close or analogous to
4D, N = 4 SYM theory.

@ The 6D, N = (1,1) SYM theory can be formulated in harmonic superspace
as well as the 4D, N' = 4 SYM theory.

@ The 6D, N = (1,1) SYM theory possesses the manifest N' = (1, 0)
supersymmetry and additional hidden A/ = (0, 1) supersymmetry analogous
to 4D, N = 4 SYM theory where there is the manifest A" = 2 supersymmetry
and additional hidden A/ = 2 supersymmetry.

@ The 6D, N = (1,1) SYM theory as well as the 4D, N' = 4 SYM theory is
characterized by the non-trivial moduli space.

@ The 6D, N = (1,1) SYM theory is anomaly free as well as the 4D, N' = 4
SYM theory and satisfies some non-renormaization theorems.
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6D supersymmetry

P.S. Howe, G. Sierra, P.K. Townsend, (1983).

6D Minkowski space
e Coordinates 2™, M =0,1,2,3.4,5
e Metric nyny = diag(l,—1,—1,—1,—1,—1)
@ Proper Lorentz group SO(1,5)
Two types of 6D Spinors
o Left (1,0) spinors ¢, a =1,2,3,4
@ Right (0,1) spinors ¢, a =1,2,3,4
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6D supersymmetry

Dirac matrices

@ 8 x 8 Dirac matrices 'y,
Iy +TnDar = 20N
@ Representation of the Dirac matrices
0 Im
F =
M ( -y 0 ) ’
@ Antisymmetric 4 x 4 Pauli-type matrices v and 4y,

YMAN +INYM = —2NMN

- 1
('YM)ab _ ieade(')/M)cd
@ Spinor representation of the vectors, Vo, = 2(v™)asVar
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6D supersymmetry

6D superalgebra

@ Two types of independent supercharges
5Qy, I=1,...2mJ=1,...2n

o N = (m,n) supersymmetry

@ Anticommutational relations for supercharges
I HK IK
{Qa) Qb } = QQ PCLb

{Q5,Q1) =20, P
Matrix Qrx belongs to USp(2n) group (R-symmetry group), Q;x Q57 = §/
e N = (1,0) superspace, I =i, coordinates z = (z™,6%),i =1,2

@ Basic spinor derivatives

Dia

"= g7 i0%8u, {D%, D]} = 2070,
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Harmonic superspace

4D
A.Galperin, E. lvanov, S. Kalitsyn, V. Ogievetsky, E. Sokatchev, (1984).
A.Galperin, E. lvanov, V. Ogievetsky, E. Sokatchev, Harmonic Superspace, (2001).

General purpose:

to formulate A/ = 2 models in terms of unconstrained N' = 2 superfields.
General idea:

to use the parameters u*?(i = 1,2) (harmonics) related to SU(2) automorphism
group of the A/ = 2 superalgebra and parameterizing the 2-sphere, u™tu; = 1.

It allows to introduce the ANV = 2 superfields and formulate the theory with
manifest A" = 2 supersymmetry in harmonic superspace. Price for this is a

presence of extra bosonic variables, harmonics uTe.

6D
P.S. Howe, K.S. Stelle, P.C. West, (1985).
B.M. Zupnik, (1986); (1999).

G. Bossard, E. Ivanov, A. Smilga, (2015).

Note! Pure spinor approach to describe 6D SYM theories, [M. Cederwall, (2018)].
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6D, N = (1,0) harmonic superspace

N =

(1,0) harmonic superspace

e USp(2) ~ SU(2),I =i The same harmonics u™* as in 4D, N = 2
supersymmetry

e Harmonic 6D, (1,0) superspace with coordinates Z = (™, 0% u*?)

@ Analytic basis Z ;) = (m(an),ﬂi“, u)

Tty = 2+ 5070 (M0, 0 = w0

The coordinates ¢ = (xf\;’n), 0+, uF) form a subspace closed under (1,0)

supersymmetry

@ The harmonic derivatives

.0 0
44+ 4 -n+apn+b +a
DTt =u Fu= +i070 O + 0 50—’
.0 G 0 0
DO =yt T —— 4t -0
e " g T e U goe
@ Spinor derivatives in the analytic basis
D} = 9 p--_ 2 20,07, {DJF, Dy} = 2i0u

dg—a’ T T ppta
@ Analytic superfields ¢ do not depend on 7%, D¢ =0
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Harmonic superfields

Hypermultiplet in conventional 6D superspace

@ The N' = (1,0) hypermultiplet is described in conventional 6D, A = (1,0)
superspace by the superfields q*(x,0) and their conjugate g;(z,0), where
¢ = (¢*)™ under the constraint

D¢" (x,0) =0
@ On-shell component form of the hypermultiplet
q'(2) = f'(2) + 0*a(z)

where the scalar field f?(z) and the spinor field ¥, () satisfy the equations
Off = 0,0, = 0
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Harmonic superfields

Hypermultiplet in harmonic superspace: off-shell Lagrangian formulation

o Off-shell hypermultiplet is described by the analytic superfield qX(C,u).,
D} g} (¢, u) = 0, satisfying the reality condition

(¢t4) = qf =eapqt® = (¢* — G"). Pauli-Giirsey indices A, B = 1,2

o Off-shell hypermultiplet harmonic superfield contains infinite set of auxiliary
fields which vanish on-shell due to the equations of motion

D gt (¢u) =0
@ The equations of motion follow from the action

1 _
SuypPER = —§/d§( D du q+AD++qZ

Here d¢(—% = dSzd*0+.
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Harmonic superfields

The N = (1,0) non-Abelian vector multiplet in 6D conventional superspace

@ Gauge covariant derivatives
Vi =Dpm+iAm, [V, Val =iTun“Ve + Fuy

with D = (9ar, DY) being the flat covariant derivatives and Ay, being the
gauge connection taking the values in the Lie algebra of the gauge group.

@ The constraints

FT =0, {V.,V]}=2iV, [vz,vab]zgsabcdwid

Here W@ is the superfield strength obeying the Bianchi identities.

The constraints are solved in the framework of the harmonic superspace.
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Harmonic superfields

The A = (1,0) non-Abelian vector multiplet in 6D, A" = (1,0) harmonic
superspace

@ Harmonic covariant derivative
v++ — D++ +iV++

Connection V7, takes the values in the Lie algebra of the gauge group, this
is an unconstrained analytic potential of the 6D, V' = (1,0) SYM theory.

@ On-shell contents: V+ = 9+99+b A 1 4+ 2(601),A™%, Ay is a vector field,
AT = X%y, A" is a spinor field.

@ The superfield action of 6D, N/ = (1,0) SYM theory is written in the form

oo

1 -1 n+1 ++ AU Ve s e "
Ssym = — E Ltr /d14zdu1 . ..dunV (z,01) . V(2 un)
0 n

(uiug).. (uliuf)

n=1

Here fy is the dimensional coupling constant ([fo] = —1)
o Gauge transformations

V++/ — _iei)\D++e—i)\ + €i>\V++€_i)\, q+l — ei)\q+
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Harmonic superfields

Theory of N' = (1,0) non-Abelian vector multiplet coupled to hypermultiplet

(chiral anomaly in harmonic superspace formulation calculated by S. M. Kuzenko,
J. Novak and I. B. Samsonov (2017).]

@ Action

S[v-H- +

VIt (z,ur) ... VI (z,u,)
tr [ d"“zdu; ... du, ! s
/ (ufug) ... (unui)

—/d§_4duq+v++q+
@ Harmonic covariant derivative
vt = Dttt
@ Equations of motion
FH —2if24 ¢t =0, vttgt =0.

Ftt=(DHWW-—, DV DVt [Vt v—] =0
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N = (1,1) SYM theory

N = (1,1) SYM theory can be formulated in terms of A" = (1,0) harmonic
superfields as the A = (1,0) vector multiplet coupled to hypermultiplet in adjoint

representation. The theory is manifestly A" = (1,0) supersymmetric and possesses
the extra hidden A = (0, 1) supersymmetry.

@ Action
SV q" = Ssym[VTH] + Suyrerlet, V]
@ The action is manifestly V' = (1,0) supersymmetric.

@ The action is invariant under the transformations of extra hidden ' = (0,1)
supersymmetry

SVt =gt Sgt = —(DNHe V)

where the transformation parameter ¢ = ¢, 4%
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General scheme of calculations

@ We start with harmonic superfield formulations of vector multiplet coupled to
hypermultiplet.

o Effective action is formulated in the framework of the background field
method in harmonic superspace. It provides manifest ' = (1,0)
supersymmetry and gauge invariance of effective action under the classical
gauge transformations.

o Effective action can be calculated on the base of superfield proper-time
technique. It provides preservation of manifest N' = (1,0) supersymmetry
and manifest gauge invariance at all steps of calculations.

@ The effective action can also be calculated perturbatively on the base of
Feynman diagrams in superspace (supergraph technique).

@ We study the model where the NV = (1,0) vector multiplet interacts with
hypermultiplet in the arbitrary representation of the gauge group. Then, we
assume in the final result for one-loop divergences, that this representation is
adjoint what corresponds to N' = (1,1) SYM theory.
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Background field method

Aim: construction of gauge invariant effective action, (see, e.g., [B.DeWitt (1965)]).
Realization:

@ The superfields V*+, ¢ are splitting into the sum of the background
V++, Q7 and the quantum vt ¢T superfields

vVt S v 4 fott ¢t = QF +qt

@ The action is expending in a power series in quantum fields.

@ The gauge-fixing function are imposed only on quantum superfiled

].-T(+4) — D++v7{r+ _ e—ib(v++v++)eib — o ib F(+4) gib ’

where b(z) is a background-dependent gauge bridge superfield and 7 means
T-frame.

@ Faddev-Popov procedure is used. The effective action I'[V T, Q7] gauge
invariant under the classical gauge transformations. Background field
construction in the case under consideration is analogous to one in
4D, N =2 SYM theory [I.L.Buchbinder, E.l. Buchbinder, S.M. Kuzenko, B.A.
Ovrut, (1998)].
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Background field method

@ The effective action T[V*++ QT] is written in terms of path integral

eTVTQT — pet!/2 T / Dutt Dgt Db De Dy eiSauant

The quantum action Sgy,qn¢ has the structure

Squant =S+ SGF[U_H_, V++] + Spp[b7 c, ’U++, V++] + SNK[QO, V++].

Gauge fixing action Sgp[vT™, V], Faddeed-Popov ghost action
Spp[b,c, v, V], Nelson-Kalosh ghost action Syx[p, V]

Operator a = %(D+)4(v77)2

—~

1
O= VNV Vy + WV, + FHIVT = (VR

@ All ghosts are the analytic superfields
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Background field method

@ The gauge fixing action

1 v T (vt (2
ng[y++7v++] = Etr /d14ZdU1dU2(u(_1,’_)u;_)2()
+%tr /d14zduv )2t (1)

o Faddeed-Popov ghosts and Nelson-Kalosh ghost actions

Spp tr /dC(_4)du VTV vt T)e, 2

SNK

—tr /dC(_4)du4p(V++)2<p. 3)

In what follows we assume gauge fixing parameter §y = 1. The case &y # 1 will be
considered latter.
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Supergraphs

@ Perturbation theory can be given in terms of Feynman diagrams formulated
in superspace

@ Vector multiplet propagator

(2,2) (D) 4 (—2,2)
G'> (1|2) = _ZT(S (21 — 2:2)(5 ’ (ul,uz)
1
@ Hypermultiplet propagator
G (1)2) = (DF)M(D3)* 6 (21 — 22)
= +,1)3
0y (ugus)

Ghost propagators have the analogous structure

Superspace delta-function
(514(21 - 22) = 66(1’1 — IE2)58(91 — 92)

@ The vertices are taken from the superfield action as usual
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Power counting

Superficial degree of divergence w is a total degree of momenta in loop integral.

@ One can prove that due to structure of the propagators and the Grassmann
delta-functions in the propagators, any supergraph for effective action can be
written through the integrals over full A/ = (1,0) superspace and contains
only a single integral over d®¢ (non-renormalization theorem).

e Mass dimensions: [z] = —1, [p] =1, [[ d°p] =6, [6] = —1, [[ d®0] = 4,
[¢f]=1 [V*H]=o0.

@ After summing all dimensions and using some identities, power counting gives
w(G) =2L — Ng — %ND

@ Np is a number of spinor derivarives acting on external lines

@ A number of space-time derivatives in the counterterms increases with L.
The theory is multiplicatively non-renormalizable.

@ One loop approximation wi_;.0,(G) = 2 — Ng
@ The possible divergences correspond to wi_jo0p = 2 and wi—jpep = 0

Calculations of w are analogous to ones in 4D, N = 2 gauge theory [I.L.
Buchbinder, S.M. Kuzenko, B.A. Ovrut, (1998)].
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Structure of one-loop counterterm

According to the general analysis performed in [G. Bossard, E. Ivanov,
A. Smilga,(2015)] the logarithmic divergences in the one-loop approximation can be
written as

2
iy = / A du [en(F7H)? 4 icaF A G )™ (0™ (q o+ es (@)™ )m)

(4)
where ¢y, ¢o, and c3 are numerical real coefficients.

We consider a possible form of one-loop counterterms on the base of superficial
degree of divergences.

@ Let Np =0, Np =0, so that w=2, and we use the dimensional
regularization. The corresponding counterterm has to be quadratic in
momenta and given by the full AV = (1,0) superspace integral. The only
admissible possibility is

) ~ / d"zduV OV

After some transformation it coincides with first term in ng with
dimensionless divergent coefficient ¢;. Being dimensionless, this coefficient
must be proportional to 1/¢, where ¢ = d — 6 is a regularization parameter.
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@ Let Np =2, Np =0 so that w = 0 and we use the dimensional
regularization. The corresponding counterterm has to be momentum
independent and given by the full A" = (1,0) superspace integral. The only
admissible possibility is

Fgl) ~ /cllzlzclu(frV__q’L

After some transformation it coincides with second term in Fgl with
dimensionless divergent coefficient ¢o. Being dimensionless, this coefficient
must be proportional to 1/, where ¢ = d — 6 is a regularization parameter.

@ Let Ng =4, Np = 0 so that w = —2 and the corresponding supergraph is
convergent. |t means that c3 = 0 in F((iliz}. As a result, all one-loop (¢7)*
possible contributions to effective action are finite.
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Manifestly covariant calculation

Calculating the one-loop divergences of superfield functional determinants is
carried out in the framework of proper-time technique (superfield version of
Schwinger-De Witt technique). Such technique allows us to preserve the manifest
gauge invariance and manifest A" = (1,0) supersymmetry at all steps of
calculations.

General scheme of calculations

@ Proper-time representation

% d(is)
ZS 1+s

TrinO ~ Tr/ e®915(1,2)|9=1

@ Here s is the proper-time parameter and ¢ is a parameter of dimensional
regularization.

@ Typically the §(1,2) contains §%(6; — 62), which vanishes at §; = 0

@ Typically the operator O contains some number of spinor derivatives D, D
which act on the Grassmann delta-functions §%(0; — 6,) and can kill them.

Non-zero result will be only if all these d-functions are killed.

@ Only these terms are taking into account which have the pole %

integration over proper-time.

after
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Calculation

In the one-loop approximation, the first quantum correction to the classical action,
rM[V++, Q%] is given by the quadratic action Sy:

Sy = %/dd*‘”duv*“‘ g e +/d<<*4>dub*“(v++)“5c5
1 — — ~ m n
by [P T - [ A D T g )
= [ dc P aud @t gt @k 7 o0 (T QL

We consider the special change of hypermultiplet variables [I.L. Buchbinder, N.G.
Pletnev, JHEP 0704; S. M. Kuzenko, S. J. Tyler, JHEP 0705] in the one-loop effective
action

(1) = hE (1) — fo / dCsVdus GOV (112),7 it (2) (TO),1QF (2),  (6)

with il are new independent variable in the path integral describing the
hypermultiplet.
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The one-loop quantum correction I'V [V ++ Q7] to the classical action, which
has the following formal expression

rOwt Q) = %Trln{ g4 —4f§c§+m(TAGTB)m"Q,t} - %Trln Bag

—iTrin(VHH)34 + %Tr In(V* )3 +iTrin VLT ©)

The (F™+)? is defined by the last three terms in Eq. (16).

IOV = —Trin VL +iTrin VLT (8)

The divergent contribution reads

1 _ G —T(R)

T =
e 6(47)3¢

/ d¢CH du (FH4)2, (9)
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Divergent part of the one-loop effective action

The hypermultiplet-dependent part Q+ F++Q of the one-loop counterterm
comes out from the first term in (16).

i —AB e N i ~
5Trln{ 5% —4p?Qtm(r4ar”) QI} = 2Trln O (10)

~—1

+%Trln {5"‘3 —4f2(O )AC@“”(TCGTB)W"Q;} .

We decompose the logarithm up to the first order and compute the functional
trace
2=1

m

F(Qll)wQ _ —2if2/d§(_4)du@+mQ;f (a—l)AB(TBGTA) n

div
= f? [d PV w@ ol (1)

1 1
x (O )AB (TB O TA)m"(ufuér) 56(I1 — acg)‘
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Divergent part of the one-loop effective action

Passing to momentum representation we finally obtain

O ot = _2if? a9
QFQ[ 7Q ] - (471_)35 C U

Q"™ (Caby — C(R))(FFH)™ (T):" Q3. (12)

Summing up the contributions (9) and (12), we finally obtain the total divergent
contribution

Co—T(R _
M@t = S [y

- (Z;J;O; / AV Ot (Co — C(R)FHT Q. (13)
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One-loop divergences

Results of calculations

vt @t Wtr / dCY du(FHT)? (14)
22]‘3 (—4) A+m n n
- / AN GG (Cab™ — C(R)™F Q.

@ The quantities Cy, T(R), C(R) are defined as follows
tr (TATP) = T(R)64B | T(Adj) = Cy, (TATH),," = C(R)d".

@ Results of calculations correspond to analysis done on the base of power
counting. The coefficients ¢y, ¢y are found. The coefficient ¢3 = 0 as we
expected.

e In NV = (1,1) SYM theory, the hypermultiplet is in the same representation as
the vector multiplet. Then Cy = T(R) = C(R). Then TV [V++,Q*] = 0.

@ The result depends on choice of gauge fixing function.

Boris Merzlikin (Tomsk) 6D, N = (1,0) and N’ = (1, 1) SYM Dubna, 2018 31/39



Supergraph calculations

(1) @ @ C
-vww’/ A 'vww A
(5) 6) 777 W

Figure: Supergraphs for two-point function of vector multiplet
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Supergraph calculations

Figure: Supergraph for two-point function of hypermultiplet
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Supergraph calculations

(1) (2)

Figure: Supergraphs for three-point vector multiplet - hypermultiplet function
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Two-loop loop divergences

Let we discuss the structure of the two-loop divergences in the hypermultiplet
sector.

The total contribution to the divergent part of effective action from two-point
supergraphs with the hypermultiplet legs vanishes off shell in case NV = (1, 1)
SYM theory.

4f§/ dSpd®0 /du1 dusg
@2m)° ) (ufuy)

3 () ( — C(B)* + CO(R) ) T (=), x L(p) |.

3
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Fig. 1. One- and two-loop diagrams contributing to the two-point Green function of
the hypermultiplet.

‘“‘W< )-’WW = % % + ‘vvvvg ?M/\/\
+ A W + WV\/Q/WW
x s

Fig. 2. One-loop subdiagrams entering the two-loop diagram (5) in Fig. 1.
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Gauge dependence

The absence of one-loop divergencies in A/(1,1) SYM theory is known to be a
gauge dependent (see [D. I. Kazakov, JHEP (2003)]).

The one-loop contribution ') to the superfield effective action in case &, # 1
reads

+\4
TV Q; &) = fTrln{go g4B (1 _ ;})5/13(5-3;4)_)2
12
—4f2©+(TAG(L”TB)(1|2)Q;}

- 7Trln g- 7Trln(VAdJ) +iTrin Vi, (16)
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Gauge dependence

The divergent part of the one-loop effective action can be written as

FOVQ 6] = o (50— TR + 26— 1) e [ ac V(2
 2io fo((if - /dg( DO QT
_ f02(5t3(4—7r)1) (R) /d14z du (@*Q’ _ @’Q*). (17)
In case of on-shell background multiplet we have Q= = V= ~Q* and
/d14z duQt Q™ = i/d<<*4> dugt Ftigt, (18)

The gauge dependence vanishes! (see,e.g., [A.O. Barvinsky, G.A. Vilkovisky, Phys.Rep.
(1985))]).
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Background field method in A/ = (1,0) harmonic superspace was developed.

Superficial degree of divergence was evaluated and structure of one-loop
counterterms was studied.

The one-loop divergences in the theories under consideration were calculated
for arbitrary gauge fixing parameter &.

The one-loop divergences have been calculated independently with help of
N = (1,0) supergraphs technique in case & = 1.

It is proved that ' = (1,1) SYM theory is one-loop off-shell finite in case
& =1.

Two-loop divergences of the 2-point Green function is calculated.

Superfield Euler-Heisenberg effective action in 6D, AN/ = (1,1) SYM theory.

Background field method and study of one-loop divergences in A = (1,0)
SYM theories with high derivatives (component analysis [E.A. Ivanov,
A.V.Smilga, (2006)] and [L. Casarina, A. Tseytlin, (2019)]).

Boris Merzlikin (Tomsk) 6D, N = (1,0) and N’ = (1, 1) SYM Dubna, 2018 39 /39



	Plan
	6D (1,0) harmonic superspace
	Background field method

