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1. INTRODUCTION

Twistor theory (Penrose 1967 ...) - the proposal of more fundamental (elemen-

tary) geometric level under the space-time geometry. For flat space-time

Twistor space coordinates tA ∈C4 = T 4

(or CP(3)) described by conformal

(projective) D=4 spinors parametrize

light-like lines in space-time

Ð→

Space-time points xµ ∈M3,1(real

Minkowski space) or Zµ ∈CM(4)
(complex Minkowski space)

parametrize twistor 2-planes

↓
Twistor 2-plane (α-plane)

given by a pair of twistors

ti
A
= (πiα,ωα̇i) i = 1,2

←→
Cartan-Penrose incidence relation

ωα̇i = izα̇βπi
β

or

Ω = iZΠ← 2 × 2 matrix eq.

with solution
↓

Bilocal (nonlocal) functions

in twistor space provide the

Minkowski space-time points:

zα̇β = − i

π1απ2
α
(ω1α̇π2β −ω2α̇π1β)

Ð→ nonlocal relation between twistor and space-time geometries

Ð→ fundamental geometry is spinorial-conformal (mass parameters

are not present ab initio)
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In Penrose program twistors (besides describing conformal - invariant fields) should

in its nonflat version encode the information about the curved space-time structure,

provides new geometric description of gravity (GR)

However: Penrose program has been only partially fulfilled: we are not able to

encode in twistor language all structures of Einstein space-time, in particular with

arbitrary Weyl curvature occurring in GR

Recent hope: New conjecture that NC twistors after generalizing QM quantization

should be helpful in deriving full twistorial description of GR (!!!???)

Geometrization of incidence relations linking twistors and complex Minkowski space-

time can be derived from the coset decomposition of conformal group SU(2,2):

CP (3) = SU(2,2)
U(2,1) Ð→ GSU(2,2)(4;2) = SU(2,2)

S(U(2)⊗U(2)) ∋CM(4)
single projective twistors composite Minkowski coordinates

CM(4) parametrizes (modulo scaling) complexified D=6 light cone:

● O(4,2) = SU(2,2) Ð→O(4,2) 6-vectors ≡ SU(2,2) bispinors Z[AB]

● O(4,2) metric is εABCD Ð→ ZABεABCD ZCD = 0⇒ Z[AB] simple

Z[AB]Z[AB] = 0 A,B=1,2,3,4

(six-dimensional light cone)
←→

Z[AB] ∼ t1[A ⋅ t2
B] ∈CP (5)

(composite space-time)
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Two levels of noncommutativity of twistors - in analogy with two levels of noncom-

mutativity of standard phase space variables (xµ, pν) in standard framework:

classical phase space
QMÐÐÐÐ→ quantum-mechanical phase-space (x(QM)

µ , p
(QM)
µ )

QM +QGÐÐÐÐÐÐÐ→ quantum-deformed phase space with QG effects (x̂µ, p̂µ)
Only at the second QM+QG stage we get x̂µ = xQMµ +xQGµ

[xµ,xν] = 0
QGÔÔ⇒ [x̂µ, x̂ν] ≠ 0 (NC space-time)

Symmetries of NC space-time: quantum-deformed Poincaré-Hopf algebra H and

quantum-deformed dual Poincaré-Hopf quantum group H̃:

H Ð→ generalization of momenta sector ∶ (Pµ,Mµν)

H̃ Ð→ generalization of coordinate sector: (Xµ,Λµν)

Hopf-algebraic

action of H on H̃ ∶ h▷ (a ⋅ b) = h(1)a ⋅h(2)b ( h ∈H
a,b ∈ H̃ )

H =H ▷ H̃ − Heisenberg double⇒ generalized

phase space (Xµ,Pν;Mµν,Λµν) - Hopf algebroid
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Two levels of noncommutativity in twistor theory: t̂A = tQM
A

+ tQG
A

1O Quantum - mechanical

twistors:

[tQM
A
, tQM
B

] = [t̄QM
A
, t̄QM
B

] = 0

[tQM
A
, t̄QM
B

] = h̵ηAB ← SU(2,2)
metric

QGÔÔ⇒

2O Quantum - deformed

twistors with QG effects

[t̂A, t̂B] ≠ 0 [ˆ̄tA, ˆ̄tB] ≠ 0

[t̂A, ˆ̄tB] ≠ 0

At level 2O we employ in analogous way for space-time and for twistors the quantum

Hopf-algebraic symmetries:

Quantum deformations of

Poincaré-Hopf algebra H

( quantum - deformed
vectorial space-time

) ::::::::→

Quantum deformations

of inhomogeneous con-

formal Hopf algebra

( quantum - deformed
spinorial twistors

)
(Mµν⋉Pµ) ::::→ (Mµν,D,Kµ,Pµ)⋉T̄ 4 = su(2,2)⋉T̄ 4

⎛
⎜⎜
⎝

Also possible alternative choice, obtained by partial duality map

(Mµν⋉Xµ) ( flat limit of

Snyder model
) ::::→ (Mµν,D,Kµ,Pµ)⋉T 4

⎞
⎟⎟
⎠

5/23



Comment: In twistor theory already on first QM level the composite space-time

is becoming noncommutative. One gets the extension of Heisenberg algebra by

necessary addition of (composite) Pauli-Lubanski four-vector coordinates Wµ

fourlinear

in t, t̄
→ Wµ = sr e(r)

µ (τ r)i jsr + δi jso = t̄Ai t
j

A
i, j = 1,2 r = 1,2,3

where sr, so are Lorentz-invariant spin projections (sr = 1
2
tr(t̄τ rt)) and

e
(r)
µ = 1

2
(σµ)α̇βπ̄iα̇ (τ r)ijπαj “soldering” of space-time and internal symmetries

↑
internal su(2) Pauli matrices

We get

WµW
µ = p2(S2

1 +S2
2 +S2

3)
O(3) quantizationÐÐÐÐÐÐÐÐÐÐÐÐ→

3

∑
r=1

S2
r = s(s + 1) s = 0,

1

2
,1, . . .

Extended Heisenberg algebra of Poisson brackets, which can be quantized

{xµ, pν} = ηµν {xµ,xν} = − 1
(p2)2 ∈µνρσW ρpσ

{Wµ,xν} = − 1
p2
W[µpν] {Wµ,Wν} = 0

{Wµ,Wν} =∈µνρτ W ρpτ {pµ, pν} = 0
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Passing from space-time to twistor geometry we make basic replacement

D=4 Lorentz o(3,1) ::::→ D= 4 conformal su(2,2)

D=4 Poincaré io(3,1) ::::→ i su(2,2), ı̄ su(2,2)

One can look for twistorial counterparts of various space-time quantum deformations

/ NC space-time models

− θµν − deformed Poincaré-

Hopf algebra
::::→ θAB -deformed inhomogeneous

su(2,2)Hopf algebra (Palatial twistors)

− Lorentzian Snyder

model
::::→ conformal - spinorial Snyder

model

− κ − deformed NC

space time
::::→ κ -deformed NC twistors

Two types of noncommutativity of twistors Za = (tA, t̄A):

[ZQMa ,ZQM
b

] ∼ h̵ [ZQGa ,ZQG
b

] ∼ (λp)k k= 1,2 . . . λp =
h̵

mp c
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2.TWIST-DEFORMED QM TWISTORS AND INHOMOGENEOUS

CONFORMAL SYMMETRIES: TOWARDS PALATIAL TWISTORS

Penrose (2015) proposed concrete choice of holomorphic complex symplectic struc-

ture as describing noncommutativity of T 4 (θAB complex, constant)

ω2 = θABdtA ∧ dtB tA = (πα,ωα̇), tA = (ωα,πα̇) = ηAB t̄B θ̄AB = θAB

and have chosen θAB as the infinity twistor for D=4 AdS space-time written down

in Lorentz-covariant basis ([Λ] = L−2- cosmological constant, [πα] = L−1/2, [ωα̇] = L1/2)

θAB = λp (
Λ
6
εαβ 0

0 εα̇β̇
) θAB = λp (

εαβ 0

0 Λ
6
εα̇β̇

) θABθ
BC = −

Λλ2
p

6
δC
A

Such symplectic structure related with the quantization of QM twistors by means of

canonical conformal twist F = F(1) ⊗F(2) ∈ U(ı̄ su(2,2)) ⊗U(ı̄ su(2,2)) (Brain, Majid

2007). Analogy:

space-time:

Poincaré algebra with 2-cocycle

twist F ∈ U(P3;1) ⊗U(P3;1)
⇐⇒

twistor space:

inhomogeneous conformal algebra

with 2-cocycle twist

F ∈ U(ı̄ su(2,2)) ⊗U(ı̄ su(2,2))
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Two possible choices of inhomogeneous su(2,2):

α) ı su(2,2) ≡ su(2,2)⋊T 4 − tA ∈ T 4 as “twistor coordinates” (T̄ 4 as module)

β) ı̄ su(2,2) ≡ su(2,2)⋊T̄ 4 − tA ∈ T̄ 4 as “twistor momenta” (T 4 as module)

One uses two following twists F and F̄ related by the map tA → tA = ηAB t̄B (twistor

analogue of Born map x̂µ → p̂µ,λ→ λ−1; [λ] = L)

α) F = exp iλpθABtA ∧ tB (← exp i
θµν

λ2
xµ ∧xν)

β) F̄ = exp iλpθABtA ∧ tB (← exp iλ2θµνpµ ∧ pν ⇐ standard Moyal twist)
where tA → tA means πα → ωα = (ωα̇)⋆ and ωα̇ → πα̇ = (πα)⋆.

Twist quantizations by F and F̄ provides two different twist deformations, each

applied to two different inhomogeneous conformal Hopf algebras α) and β) with

algebra unchanged, coalgebra modified by similarity transformation

∆(F )(ĝ) = F −1 ○∆(0)(ĝ) ○F ĝ ∈ SU(2,2)

(for ∆(F̄ ) analogously) and twisted antipodes changed also by similarity map.
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Further one considers deformation of tA (t̄A in case β)) as twist-deformed ı su(2,2)-
module (ı̄ su(2,2) - module in case β), which is given according to the formula

t̂A(F ) = (F −1
(1) ▷ t

A)F −1
(2) (F −1 = F −1

(1) ⊗F
−1
(2))

in case α) and analogously for F̄ in case β).

One can check that the classical commutators [tA, ĝ] are also F -deformed, but

[tA, ĝ] remains classical (for F̄ -twisting - opposite alternative)

Explicite formulae for Palatial choice of twists F , F̄ :

a) Twisted coproducts of su(2,2) generators ĝA
B
= tAtB − 1

4
(t, t)δA

B
: ((t, t) = tA tA)

∆(F )(ĝAB ) = F ○∆(ĝA
B
) ○F −1 = ∆0(ĝAB ) + 1

4
θCD[(ηC

B
tA ⊗ tD+

+ηC
B
tD ⊗ tA) − (C ↔ D)]

∆(F̄ )(ĝBA ) = F̄ ○∆0(ĝBA ) ○ F̄ −1 = ∆0(ĝBA ) + 1
4
θCD[(ηB

C
tA ⊗ tD+

+ηB
D
tC ⊗ tA) − (C ↔ D)]

Twisted antipodes are equal to the classical ones.

Further remains to consider for F -twist (case α)) and F̄ -twist (case β)) the twist

deformation of module algebras.
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b) Twisted quantum-mechanical twistors obtained as modules of twisted Hopf alge-

bras Uθ(̄i su(2,2)) and Uθ̄(i su(2,2)):

i) Uθ(̄i su(2,2)) ∶ t̂A(F ) = t
A − θABtB ˆ̄t(F )A = tA

ii) Uθ̄(i su(2,2)) ∶ t̂A(F ) = t
A ˆ̄t(F̄ )A = t̄A − θABtB

We obtain pair of algebras which are Born-dual but not Hermitean-dual

c) Quantum conformal covariance of deformed twistors

From Hopf-algebraic action formula

ĝ▷ â ⋅ b̂ = (ĝ(1) ▷ â)(ĝ(2) ▷ b̂) ĝ ∈ Uθ(̄i su(2,2)); â, b̂ ∈ T 4

by using deformed coproducts of su(2,2) generators one gets

as well as

ĝ▷{[t̂A(F ), t̂
B
(F )] − θ

AB} = 0 for ĝ ∈ Uθ (̄i su(2,2))

ĝ▷{[t(F̂ )A, t(F̄ )B] − θAB} = 0 for ĝ ∈ Uθ̄(i su(2,2))

The twist modification of classical coproducts of conformal algebra is exactly the one

which is needed for quantum conformal covariance

11/23



d) Quantum D=4 Heisenberg-conformal algebra (Hopf algebroid)

We introduce twistorial canonical phase space H4;4 = T 4 ⋉̵
h
T̄ 4 as inhomogeneous al-

gebraic sector added to su(2,2):

H ≡ su(2,2) ⋉
θ, θ̄
H4;4 ≡ su(2,2) ⋉

θ, θ̄
(T 4 ⋉̵

h
T̄ 4)

where h̵ indicates that H4;4 is twistorial QM phase space

Properties:

1) One can not introduce Hopf-algebraic twist which will deform simultaneously T 4

and T̄ 4 in su(2,2)⋉H4,4 in “Palatial way” - due to QM CCR (h̵ ≠ 0) in H4;4 the

algebra H is not a Hopf algebra, but Hopf algebroid – F, F̄ become algebroid twists.

2) In order to get the Hermitean-dual Palatial algebraic relations in H with θAB–de-

formed T 4 and θAB-deformed T̄ 4 one can use the relations obtained from F and F̄

twisting procedure in the form of so-called Bopp shifts

t̂A = tA − θABtB t̂A = tA − θABtB

as the quantization maps (without coalgebra structure), what leads to the following

relation (in general case θAB and θAB can be independent, for Palatial choice are

c.c.)

[t̂A, t̂B] = δA
B
+ θACθ̄BC = (h̵ −

Λλ2
p

6
)δA

B
← Palatial case
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3. QUANTUM DEFORMATIONS OF SU(2,2), CONFORMAL

SYMMETRY BREAKING AND NC TWISTORS

Quantum deformations are described infinitesimally by classical r-matrices satisfying

Yang-Baxter (YB) equations

i) homogeneous YB equation (r12 = r(1) ⊗ r(2) ⊗ 1, r13 = r(1) ⊗ 1⊗ r(2) etc. ) Ho

≪ r, r≫ ≡ [r12, r13] + [r12, r23] + [r13, r23] = 0 r = r(1) ⊗ r(2)

Such deformation, called triangular, provide explicite formulas for the twist quanti-

zation of symmetry algebras and their modules (NC representations). They provide

explicitly the quantization maps tA → t̂A of twistors as modules of quantum conformal

Hopf algebras, providing the contribution to tQG
A

t̂A = (F(1) ▷ tA)F(2) F = F(1) ⊗F(2)

Most important triangular deformations are described by Jordanian (generalized

Jordanian) nonstandard r-matrices, with the carrier algebra belonging to Borel sub-

algebras (B−(ĝ)) spanned by Cartan generators hi and positive (e+A) (negative (e−A))

root generators; further the reality conditions should map B±(ĝ) →B±(ĝ).
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ii) inhomogeneous YB equation, defining quasitriangular r-matrices

≪ r, r≫= ±Ω
sign+ – split r-matrices

sign− – non-split r-matrices

where Ω ∈ ĝ ∧ ĝ ∧ ĝ is ĝ-invariant ([∆(3)(ĝ),Ω] = 0)

For MKL = −MLK ∈O(n;C) (K,L,M = 1 . . . n) one gets

Ω =MKL ∧MLN ∧MNK

n=6 (O(6;C)) provides complexified D=4 conformal algebra.

The reality conditions for quasi-triangular r-matrices necessarily involve maps

e+A →CB
A
e−B from B± to b∓; the most popular “canonical” standard Drinfeld-Jumbo

r-matrix is invariant under the reality condition (e+A)� = e−A (CB
A
= δB

A
).

Because generators Pµ is standard physical basis are described by e+A ([Pµ] =M)

and conformal generators Kµ by e−A ([Kµ] =M −1), the DJ classical r-matrix

rDJ = i q∑
A

e+A ∧ e−A

has dimensionless deformation parameter q⇒ DJ quantization does not generate the

mass-like conformal symmetry breaking terms.
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More about o(6;c) ≃ sl(4;C) (complexified D=4 conformal):

Cartan-Weyl

basis of generators:
(h1,h2,h3;e+1, e+2, e+3´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

, e+4, e+5, e+6´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
;e−1 . . . e−3, e−4 . . . e−6´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

)
Cartan

generators

simple

positive

roots

composite

positive

roots

negative roots

The algebra can be written shortly as (A,B = 1 . . . 6)

[eA, e−A] = δAB hB h4,h5,h6 - extended Cartan generators

[hA, e+B] =AAB e+B

[hA, e−B] = −AAB e−B

AAB − extended Cartan matrix

Real forms of sl(4;C) giving su(2,2) ≃ o(4,2) are well-known.

If one uses reality conditions which maps B±(o(4,2)) →B±(o(4,2)) one can have at

most eight-dimensional carrier of triangular r-matrices, spanned by a pair of Cartan

generators and six generators e+A (A= 1, . . . 6)
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Some references on SU(2,2) quantum deformations:

1. V.K. Dobrev, ”Canonical q-deformations of noncompact Lie (super-) algebras,
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conformal symmetries”, Phys. Lett. B538, 375 (2002)

– recently (2014 - ....): papers by F. Delduc, A. Magro, B. Vicedo, K. Yoshida,

S. van Tongeren, B. Hoare, R. Borsato, L. Wulff etc. with calculations of YB defor-
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The class of triangular su(2,2) r-matrices with carrier ∈B+(o(4,2)) ≡B+(su(2,2)):

r =H2 ∧ e2 +H6 ∧ e6 + ce2 ∧ e6 + e1 ∧ e5 − e3 ∧ e4 ← for sl(4;C)

Hk = α(i)
k
hi k = 2,6 i = 1,2,3 α

(i)
2
,α

(i)
6
, c − 7 complex parameters

After imposing su(2,2) reality conditions 7 complex parameters → 4 real parame-

ters (ref. [5])

Some properties of such triangular deformation which can be applied to twistors:

i) As subcase one obtains the light-cone κ-deformation of Poincaré algebra, with

r-matrix, satisfying homogeneous YB equation and describing twist quantization

rLC
Poinc

=
1

κ
[L3 ∧P+ − (J1 −L2) ∧P2 + (J2 −L1) ∧P1]

Ji - o(3) space

rotations

Li - boosts

ii) By replacement in rLC
Poinc

: L3 → L3 −D (D - scale generator) one obtains κ-defor-

mation of Weyl-Poincaré algebra (Pµ,Mµν,D).

iii) In considered generalized Jordanian r-matrix there are not present conformal

generators Kµ because they belong to Borel subalgebra B−(o(4,2))
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4. QUANTUM DEFORMATIONS OF CM(4) IN SIX-DIMEN-

SIONAL APPROACH AND GRASSMANIAN FRAMEWORK

Compactified D=4 Minkowski space describes all light-cone directions in R4,2 (O(4,2)

light rays modulo scaling):

ds2 = dxk dxk = dxµdxµ − dx+dx− x± = x5 ±x6

k = 1, . . .6 metric (−,+,+,+,+,−) k = [AB] A,B = 1,2,3,4

One can choose the scaling gauge (xkxk = x̃k x̃k = 0)

xk = (xµ,x5,x6) → x̃k = (x̃µ =
xµ

x5

,1, x̃2
µ)

Introducing the light-cone condition in the form

εABCDx[AB]x[CD] = 0
followsÐÐÐÐÐ→ x[AB] ∼ t1[A t

2
B]

One gets D=6 incidence relation (A = α, α̇, β = β, β̇) for null 3-planes

x[AB] tB = 0 x[AB] =
⎛
⎝
x+εα̇β̇ xβ

α̇

−xα
β̇

−x−εαβ
⎞
⎠
, tB = (ω

β̇

πβ
)

↑
D=6 generalized α-plane
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In D=4 notation D=6 incidence relation takes the form

(1) x+εα̇β̇ω
β̇ +xβ

α̇
πα = 0

x+ = 1ÐÐÐÐÐÐ→ D=4 incidence relation

(2) −xα
β̇
ωβ̇ −x− εαβ = 0

inserting (1)ÐÐÐÐÐÐÐÐÐ→ x− = xµxµ → D=6 light cone

Three observations:

α) One can introduce D=6 dual incidence relations

X[AB] t̃B = 0 ←Ð D=6 generalized β-planes (null 3-planes)

In order to get nonzero intersection of D=6 generalized α-planes and β-planes

it is necessary to impose tA t̃A = 0 i.e.

complex compactified CM(4) ≃CP (5) ⇔Q5 = {CP (3) ⊗CP (3); tA t̃A = 0}

β) one can replace light cone by AdS5 with radius R

xkx
k = 0 Ð→ xkx

k = −R2 Ô⇒ AdS5 space-time

(complexified)
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The incidence relations for complexified AdS5 take the following modified form using

a pair of orthogonal twistors (tA t̃A = 0)

XABt
B =

1

2
Rt̃A XAB t̃B =

1

2
RtA ⇒ XAB X

BC =
1

4
R2δ C

A

γ) Infinity twistor breaks conformal covariance - to Poincaré group in flat case and

to AdS if R ≠0 (Palatial case).

Complex Minkowski space from Grassmanian G(4;2):

CP (3) ≃ SU(2,2)ÐÐÐÐÐÐ→
U(2,1)

Ð→ G(4,2) ≃ SU(2,2)ÐÐÐÐÐÐÐÐÐÐÐ→
S(U(2)⊗ U(2))

∈CM4

projective twistors tA ≃ λtA composite CM4 coordinates XAB

Quantum deformation

of twistor theory
::::→ Quantum deformations of

conformal group SU(2,2)
( Brain

Majid 2007 )

Twist quantization of U(su(2,2))

enveloping algebra
::::→ Cotwist quantization of

conformal group SU(2,2)
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twist quantization

– multiplication in Hopf

algebra not changed

– coproducts changed

Hopf←ÐÐÐÐÐÐÐ→
duality

cotwist quantization

– multiplication in Hopf

algebra changed

– coproducts unchanged

(remains classical)

Modified multiplication of quantum SU(2,2) group elements g,h

g ●h = Fθ(g(1),h(1))g(2)h(2) Fθ(g,h) =< F̄θ∣g ⊗h >

The cotwisting by F̄ results in RTT relations

gA
B
εSθU(2,2) ∶ RAC

BD
gB
E
gD
F
= gC

D
gA
B
RBD
EF

Fθ(gAB, g
C
D
) ≡ FAC

θ BD
⇒ RAC

BD
= (FT

θ
F−1
θ
)AC
BD

(θAB – dependent)

calculated from cotwist multiplication formula

One can also get the deformed commutators of x[AB] ∈CM(4):

Ð→ in general case one obtains the quadratic algebra(Brain+Majid)

Ð→ for special choices of θAB one gets some coordinates x[AB]

central and some satisfying c-number noncommutativity (Hannabus)
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5. FINAL REMARKS

i) Twistor space is a phase space Ð→ its quantum deformations are described

in the formalism of NC geometry by Hopf (Courant) algebroids

ii) Analogy of geometric methods in QG and twistor theory:

PHYSICS: GEOMETRY:

SPACE-TIME: Classical gravity ←→ (pseudo) Riemannian geometry

↓ h̵ ≠ 0 ↓ h̵ ≠ 0

Quantum gravity ←→ NC (pseudo) Riemannian geometry←Ð
⎛
⎝

S.Beggs, S.Majid
book just appeared

in Springer

⎞
⎠

↕ ↕ ↕ ↕

Classical twistor ←→ spinorial (curved)

theory conformal geometry

TWISTORS: ↓ h̵ ≠ 0 ↓ h̵ ≠ 0

Quantum twistor ←→ NC spinorial-conformal

theory curved geometry
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iii) Twistorial curved geometry and “bosonic SUSY”

Conformal

algebra
ĝ = su(2,2)

SUSY

ÐÐÐÐÐÐ→

bosonicÐÐÐÐÐÐ→SUSY

su(2,2;1) ∶ {Q̂, Q̂} ∈ ĝ Q ∈ su(2,2;1)
u(2,2)

su(2,3) ∶ {T̂ , T̂ } ∈ ĝ T̂ ∈ su(2,3)
u(2,2)

Twistors T̂ are spinorial (as Q̂) but bosonic! If “fermionic twistors” are intro-

duced Ô⇒ one gets superconformal algebra.

Analogy with Lorentz symmetry o(3,1) ←ÐÐ→ su(2,2) symmetry

space-time approach: AdS symmetry o(3,2) ←ÐÐ→ su(2,3) symmetry

Such “bosonic SUSY” geometries did appear already in literature, e.g.

S. Fedoruk, E. Ivanow, J. Lukierski, “Massless higher spin D=4 particle with both

N=1 SUSY and its bosonic counterpart, PLB641, 226 (2008).

(by Taylor expansion in “bosonic” spinor variables of generating fields one gets

infinite-component HS multiplets).

THANK YOU!
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