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Particles and the cosmological constant

Particles localized on hypersurfaces of the bulk geometry.
Particles in non-stationary curved spacetime

Cosmological constants



LLocalization to Hypersurfaces

Localization
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LLocalization to Hypersurfaces

Potential Well




LLocalization to Hypersurfaces

Warping the spacetime
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L Localization to Hypersurfaces

Scalar creepers in D-dimensional Minkowski spacetime are
scalar fields whose propagating modes are localized on d < D
dimensional subspaces.

Action

d—1

S= —/dDa: Z %nab3a¢3b¢+v(¢) ;

a,b=0

where 9, := 6%(1,

V(9) = gmPd? + Viu(0),

m? is a constant, and Vi (¢) gives self-interaction.



LLocalization to Hypersurfaces

Non interacting d = 1 creeper

S = %/de(60¢>)2,

time

space



LLocalization to Hypersurfaces

Correlation function

Dr(z ') = 271 / Do &S p(a)p(a),

where Z := [ D¢ €' is the partition function.
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L Localization to Hypersurfaces

Classical field equation

58 /5¢ = 0,

in which, g‘; (D(d) — m2) ¢ and O .= Zg bl 0 N, 0.
|

(D(d) — m2> Dp(z —2') = i6P(x — o).
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LLocalization to Hypersurfaces

Solution

|
Dp(z — ') = D (@, — 2)6P 4, — '),

where z{ := 2% fora =0,--- ,d -1, 29 := 2 for
a=d,---,D—1, and D%d) (2, — x]) denotes the celebrated
Feynman propagator in d-dimensional Minkowski spacetime.

e The corresponding one-particle states are localized on the d
dimensional subspace.



LLocalization to Hypersurfaces

Comments

Creepers on spacelike hypersurfaces can be introduced
similarly.

D-dimensional creepers in D-dimensional Minkowski
spacetime are the ordinary scalar fields.

For d < D, the classical field equation (D(d) — m2) ¢p=01is
not deterministic, if not meaningless altogether, because it
is silent about the behavior of the classical field in
directions 29 perpendicular to the hypersurface. But
classical fields do not participate in particle physics. The
particle interpretation of physical states comes from
quantum fields whose correlation function is well-defined
and can be interpreted in terms of the Feynman propagator
of one-particle states confined to the hypersurface.
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LCreepers in Curved spacetime

Ordinary scalars in curved spacetime

Action

1
S = —i/dDyeg“”3u¢au¢7

in which e := y/|det g|.

Local frames

Consider the tetrad e, satisfying n®etq,e’, = g** and the
vector fields 0, := e#,0,,,

1
S = —§/dDye77“b66aq§6eb¢.



LCreepers in Curved spacetime

Difficulty

Equation of Motion

0S8
% = enab (8ea86b 2 (vyea#)aeb) ¢a

where V, denotes the Levi-Civita connection, and we have used
the identity V,v* = ¢719, (e v*).

The roots of the difficulty

The vector fields Je, are not necessarily divergence free and they
do not commute with each other in general.



LCreepers in Curved spacetime

Creepers in curved spacetime

5= / dPy eL(; 8a))-

The Lagrangian density £(¢; g(q)) is diffeomorphism invariant
though it is independent of the spacetime metric g.
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LCreepers in Curved spacetime

Lagrangian

£(¢39(d))5 19(d 0up0ud — V(9),

where 0, := %,and

g(d' vaavba

a,b=0

vg's are divergence-free vector fields commuting with each other,
with vg being timelike asymptotically.
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LCreepers in Curved spacetime

A straightforward approach to obtain such vector fields is to
work with coordinate systems x* used in unimodular gravity
in which ¢ = 1. In these coordinates v,* = d,", i.e.,

0

Op, = 0" 0y =

Action

1 d
S = —/dD.I 5 Z nab8a¢8b¢+ V(¢) 9

a,b=0

Where 6(1 = 6%7 and n= dlag(_1’ 1’ e ’1)



LCreepers in Curved spacetime

tion of motion

where



LCreepers in Curved spacetime

Stress tensor

1 0S8
dghv

M = = =L guv,

which resembles a bare cosmological constant term Ap in the
Einstein field equation suggesting that

Bare cosmological constant

>\B = —8nG ,C‘

on—shell *
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LCreepers in Curved spacetime

Feature

Similarly to ordinary scalars, they are natural extensions of
scalars in Minkowski spacetime to curved spacetime. Their
actions are diffeomorphism invariant.

They havea well-defined notion of one-particle states in
nonstationary curved spacetimes, localized to d < D
dimensional hypersurfaces without using warp factors or
potential wells, hence the moniker.

Their stress tensor resembles a bare cosmological constant,
i.e., they all act like perfect fluid with equation of state
w = —1. So they do not describe ordinary matter.
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- Cosmological Constant

The cosmological constant problem

Local Lorentz symmetry implies that

<T;w> =—{p) Juv

where p ~ A% is the vacuum energy density and A is the high
energy cutoff of the ordinary QFT. For A ~ 1TeV

87G (p) ~ MpPA* ~ 10750 M3,

The incredible fine-tuning of Ap

Aeft = Ap + 87G (p) ~ 107122 M3,

21 /28



L Cosmological Constant

Recently Wang and Unruh have shown that the cosmological
constant problem can be resolved if fluctuations of p are taken
into account and Ap has taken a large negative value —Ag > A2,

e Q. Wang, “Fine-tuning of the cosmological constant is not
needed,” arXiv:1904.09566 [gr-qc|.
e Q. Wang and W. G. Unruh, “Vacuum fluctuation,

micro-cyclic "universes" and the cosmological constant
problem,” arXiv:1904.08599 |gr-qc].



L Cosmological Constant

Results

d =1 creepers correspond to A < 0. [Ap| ~ 1M3,.

For d = 2 the symmetry of the parameter space of classical
solutions corresponding to Ap # 0 is O(1,1) which
enhances to Zy x Diff(R!) at A\p = 0.

For d > 2 we obtain O(d — 1,1), O(d — 1) x Diff(R') and
O(d —1,1) x O(d — 2) x Diff(R!) corresponding to,
respectively, Ap < 0, Ap = 0 and, Ap > 0.
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. ‘Weinberg Particles

nberg field

1 —
s\ = [ atyesno,, —myw.

Equation of motion

(i"yaa@a - m)’¢ = 07

(#9°0y, +m)P = 0.



- ‘Weinberg Particles

Massless spin 1 Weinberg field
1
S =-3 / dYy e FupF,

where Fgp, := 0y, Ay — Oy Aa, A := v, Ay, and
fab = nacnbdfcd-

U(1) gauge symmetry

Ag — Ag + 0y, i,



berg Particles

The Lorentz gauge

where A® :=n® A4,

Field equation

17Dy, Dy AC = 0.



L Conclusion

Discussion

Weinberg’s interpretation of particles and interactions in 1960’s,
gives a particle interpretation of states of quantum field theory
in general nonstationary curved spacetimes only if

We understand the z-coordinates in his work, as a
coordinate system in which |det g| = 1.

We interpret the time-ordering as ordering with respect to
20 though 0y is not timelike everywhere,

Suppose that quantum fields located at z1 and xo
(anti)commute for ngp(z1 — 22)%(21 — 22)° < 0, though
Minkowski metric is not necessarily the metric of spacetime
in the z-coordinates.
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L Conclusion

Conclusion

Quanta of the dark energy

The scalar creepers and the Weinberg particles add to the
cosmological constant and can be considered as a dynamical
source for the bare cosmological constant.
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