One Particle States in Curved Spacetime

Farhang Loran

Isfahan University of Technology

Yerevan 2019

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

1/28

Overview

1 Questions

- 2 Localization to Hypersurfaces
- **3** Creepers in Curved spacetime
- 4 Cosmological Constant
- 5 Weinberg Particles

6 Conclusion

Particles and the cosmological constant

- **1** Particles localized on hypersurfaces of the bulk geometry.
- **2** Particles in non-stationary curved spacetime
- **3** Cosmological constants

Localization

Potential Well

Warping the spacetime

Scalar creepers in *D*-dimensional Minkowski spacetime are scalar fields whose propagating modes are localized on $d \leq D$ dimensional subspaces.

Action

$$\mathcal{S} = -\int d^D x \left(\sum_{a,b=0}^{d-1} \frac{1}{2} \eta^{ab} \partial_a \phi \partial_b \phi + V(\phi) \right),$$

where $\partial_a := \frac{\partial}{\partial x^a}$,

$$V(\phi) = \frac{1}{2}m^2\phi^2 + V_{\rm int}(\phi),$$

 m^2 is a constant, and $V_{\rm int}(\phi)$ gives self-interaction.

Non interacting d = 1 creeper

Action

$$\mathcal{S} := \frac{1}{2} \int d^D x (\partial_0 \phi)^2,$$

Correlation function

$$D_F(x-x') := \mathcal{Z}^{-1} \int \mathcal{D}\phi \, e^{i\mathcal{S}}\phi(x)\phi(x'),$$

where $\mathcal{Z} := \int \mathcal{D}\phi e^{i\mathcal{S}}$ is the partition function.

Classical field equation

$$\delta \mathcal{S}/\delta \phi = 0,$$

in which,
$$\frac{\delta S}{\delta \phi} = \left(\Box^{(d)} - m^2 \right) \phi$$
 and $\Box^{(d)} := \sum_{a,b=0}^{d-1} \eta^{ab} \partial_a \partial_b$.

$$\left(\Box^{(d)} - m^2\right) D_F(x - x') = i\delta^D(x - x').$$

Solution

$$D_F(x - x') = D_F^{(d)}(x_{||} - x'_{||})\delta^{D-d}(x_{\perp} - x'_{\perp}),$$

where $x_{\parallel}^a := x^a$ for $a = 0, \dots, d-1, x_{\perp}^a := x^a$ for $a = d, \dots, D-1$, and $D_F^{(d)}(x_{\parallel} - x'_{\parallel})$ denotes the celebrated Feynman propagator in *d*-dimensional Minkowski spacetime. • The corresponding one-particle states are localized on the *d* dimensional with mass

dimensional subspace.

Comments

- Creepers on spacelike hypersurfaces can be introduced similarly.
- 2 *D*-dimensional creepers in *D*-dimensional Minkowski spacetime are the ordinary scalar fields.
- 3 For d < D, the classical field equation (□^(d) m²) φ = 0 is not deterministic, if not meaningless altogether, because it is silent about the behavior of the classical field in directions x^a_⊥ perpendicular to the hypersurface. But classical fields do not participate in particle physics. The particle interpretation of physical states comes from quantum fields whose correlation function is well-defined and can be interpreted in terms of the Feynman propagator of one-particle states confined to the hypersurface.

Ordinary scalars in curved spacetime

Action

$$\mathcal{S} := -rac{1}{2}\int d^D y\, \mathfrak{e}\, g^{\mu
u}\partial_\mu\phi\partial_
u\phi,$$

in which $\mathfrak{e} := \sqrt{|\det g|}$.

Local frames

Consider the tetrad $e^{\mu}{}_{a}$ satisfying $\eta^{ab}e^{\mu}{}_{a}e^{\nu}{}_{b} = g^{\mu\nu}$ and the vector fields $\partial_{e_{a}} := e^{\mu}{}_{a}\partial_{\mu}$,

$$\mathcal{S}:=-rac{1}{2}\int d^D y\, \mathfrak{e}\, \eta^{ab}\partial_{e_a}\phi\partial_{e_b}\phi.$$

Equation of Motion

$$\frac{\delta S}{\delta \phi} = \mathfrak{e} \eta^{ab} \left(\partial_{e_a} \partial_{e_b} + (\nabla_\mu e_a{}^\mu) \partial_{e_b} \right) \phi,$$

where ∇_{μ} denotes the Levi-Civita connection, and we have used the identity $\nabla_{\mu}v^{\mu} = \mathfrak{e}^{-1}\partial_{\mu}(\mathfrak{e} v^{\mu}).$

The roots of the difficulty

The vector fields ∂_{e_a} are not necessarily divergence free and they do not commute with each other in general.

Creepers in curved spacetime

Action

$$\mathcal{S} = \int d^D y \, \mathfrak{e} \mathcal{L}(\phi; \mathfrak{g}_{(d)}).$$

The Lagrangian density $\mathcal{L}(\phi; \mathfrak{g}_{(d)})$ is diffeomorphism invariant though it is independent of the spacetime metric g.

Lagrangian

$$\mathcal{L}(\phi;\mathfrak{g}_{(d)}) := -\frac{1}{2}\mathfrak{g}_{(d)}^{\mu\nu}\partial_{\mu}\phi\partial_{\nu}\phi - V(\phi),$$

where $\partial_{\mu} := \frac{\partial}{\partial y^{\mu}}$, and

$$\mathfrak{g}_{(d)}^{\mu\nu} := \sum_{a,b=0}^{d-1} \eta^{ab} v_a{}^{\mu} v_b{}^{\nu},$$

 v_a 's are divergence-free vector fields commuting with each other, with v_0 being timelike asymptotically. A straightforward approach to obtain such vector fields is to work with coordinate systems x^{μ} used in **unimodular gravity** in which $\mathbf{e} = 1$. In these coordinates $v_a{}^{\mu} = \delta_a{}^{\mu}$, i.e.,

$$\partial_{v_a} := v_a{}^{\mu}\partial_{\mu} = \frac{\partial}{\partial x^a}$$

Action

$$\mathcal{S} := -\int d^D x \left(\frac{1}{2} \sum_{a,b=0}^d \eta^{ab} \partial_a \phi \partial_b \phi + V(\phi) \right)$$

where $\partial_a := \frac{\partial}{\partial x^a}$, and $\eta = \text{diag}(-1, 1, \cdots, 1)$.

Equation of motion

$$\frac{\delta S}{\delta \phi} = \left(\Box^{(d)} - m^2 \right) \phi,$$

where

$$\Box^{(d)} := \sum_{a,b=0}^{d-1} \eta^{ab} \partial_a \partial_b,$$

Stress tensor

$$T_{\mu\nu} := -2\mathfrak{e}^{-1}\frac{\delta\mathcal{S}}{\delta g^{\mu\nu}} = \mathcal{L}\,g_{\mu\nu},$$

which resembles a bare cosmological constant term λ_B in the Einstein field equation suggesting that

Bare cosmological constant

$$\lambda_B = -8\pi G \mathcal{L}|_{\text{on-shell}}.$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のQで 19/28

Feature

- Similarly to ordinary scalars, they are natural extensions of scalars in Minkowski spacetime to curved spacetime. Their actions are diffeomorphism invariant.
- 2 They have a well-defined notion of one-particle states in nonstationary curved spacetimes, localized to $d \leq D$ dimensional hypersurfaces without using warp factors or potential wells, hence the moniker.
- **3** Their stress tensor resembles a bare cosmological constant, i.e., they all act like perfect fluid with equation of state w = -1. So they do not describe ordinary matter.

The cosmological constant problem

Local Lorentz symmetry implies that

$$\langle T_{\mu\nu} \rangle = - \langle \rho \rangle g_{\mu\nu}$$

where $\rho \sim \Lambda^4$ is the vacuum energy density and Λ is the high energy cutoff of the ordinary QFT. For $\Lambda \sim 1$ TeV

$$8\pi G \left< \rho \right> \sim M_{\rm Pl}^{-2} \Lambda^4 \sim 10^{-56} M_{\rm Pl}^2. \label{eq:gamma_state}$$

The incredible fine-tuning of λ_B

 $\lambda_{\rm eff} = \lambda_B + 8\pi G \left< \rho \right> \sim 10^{-122} M_{\rm Pl}^2.$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで 21/28 Recently Wang and Unruh have shown that the cosmological constant problem can be resolved if fluctuations of ρ are taken into account and λ_B has taken a large negative value $-\lambda_B \gg \Lambda^2$.

- Q. Wang, "Fine-tuning of the cosmological constant is not needed," arXiv:1904.09566 [gr-qc].
- Q. Wang and W. G. Unruh, "Vacuum fluctuation, micro-cyclic "universes" and the cosmological constant problem," arXiv:1904.08599 [gr-qc].

Results

- $d = 1 \text{ creepers correspond to } \lambda_B < 0. \ |\lambda_B| \sim 1M_{\rm Pl}^2.$
- 2 For d = 2 the symmetry of the parameter space of classical solutions corresponding to $\lambda_B \neq 0$ is O(1,1) which enhances to $\mathbb{Z}_2 \times \text{Diff}(\mathbb{R}^1)$ at $\lambda_B = 0$.
- **B** For d > 2 we obtain O(d-1,1), $O(d-1) \times \text{Diff}(\mathbb{R}^1)$ and $O(d-1,1) \times O(d-2) \times \text{Diff}(\mathbb{R}^1)$ corresponding to, respectively, $\lambda_B < 0$, $\lambda_B = 0$ and, $\lambda_B > 0$.

Spin $\frac{1}{2}$ Weinberg field

$$\mathcal{S}_{\mathrm{W}}^{(\frac{1}{2})} = \int d^4 y \, \mathfrak{e} \overline{\psi} (i \gamma^a \partial_{v_a} - m) \psi.$$

Equation of motion

$$(i\gamma^a\partial_{v_a} - m)\psi = 0,$$

$$(i\gamma^a\partial_{v_a} + m)\overline{\psi} = 0.$$

< □ → < □ → < ■ → < ■ → < ■ → < ■ → ○ Q (~ 24 / 28

Massless spin 1 Weinberg field

$$\mathcal{S}_{\mathrm{W}}^{(1)} = -\frac{1}{4} \int d^4 y \, \mathfrak{e} \mathcal{F}_{ab} \mathcal{F}^{ab},$$

where
$$\mathcal{F}_{ab} := \partial_{v_a} \mathcal{A}_b - \partial_{v_b} \mathcal{A}_a$$
, $\mathcal{A}_a := v_a{}^{\mu} A_{\mu}$, and $\mathcal{F}^{ab} := \eta^{ac} \eta^{bd} \mathcal{F}_{cd}$.

U(1) gauge symmetry

$$\mathcal{A}_a \to \mathcal{A}_a + \partial_{v_a} \varphi,$$

The Lorentz gauge

$$\partial_{v_a} A^a = 0,$$

where $\mathcal{A}^a := \eta^{ab} \mathcal{A}_b$.

Field equation

$$\eta^{ab}\partial_{v_a}\partial_{v_b}\mathcal{A}^c = 0.$$

Discussion

Weinberg's interpretation of particles and interactions in 1960's, gives a particle interpretation of states of quantum field theory in general nonstationary curved spacetimes only if

- **1** We understand the x-coordinates in his work, as a coordinate system in which $|\det g| = 1$.
- 2 We interpret the time-ordering as ordering with respect to x^0 though ∂_0 is not timelike everywhere,
- **3** Suppose that quantum fields located at x_1 and x_2 (anti)commute for $\eta_{ab}(x_1 x_2)^a(x_1 x_2)^b < 0$, though Minkowski metric is not necessarily the metric of spacetime in the *x*-coordinates.

Conclusion

Quanta of the dark energy

The scalar creepers and the Weinberg particles add to the cosmological constant and can be considered as a dynamical source for the bare cosmological constant.