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Questions

Particles and the cosmological constant

1 Particles localized on hypersurfaces of the bulk geometry.
2 Particles in non-stationary curved spacetime
3 Cosmological constants
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Localization to Hypersurfaces

Localization

time

space
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Localization to Hypersurfaces

Potential Well

5 / 28



Localization to Hypersurfaces

Warping the spacetime
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Localization to Hypersurfaces

Scalar creepers in D-dimensional Minkowski spacetime are
scalar fields whose propagating modes are localized on d ≤ D
dimensional subspaces.

Action

S = −
∫
dDx

 d−1∑
a,b=0

1

2
ηab∂aφ∂bφ+ V (φ)

 ,

where ∂a := ∂
∂xa ,

V (φ) =
1

2
m2φ2 + Vint(φ),

m2 is a constant, and Vint(φ) gives self-interaction.
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Localization to Hypersurfaces

Non interacting d = 1 creeper
Action

S :=
1

2

∫
dDx(∂0φ)2,

time

space
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Localization to Hypersurfaces

Correlation function

DF (x− x′) := Z−1

∫
Dφ eiSφ(x)φ(x′),

where Z :=
∫
Dφ eiS is the partition function.
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Localization to Hypersurfaces

Classical field equation

δS/δφ = 0,

in which, δSδφ =
(
�(d) −m2

)
φ and �(d) :=

∑d−1
a,b=0 η

ab∂a∂b.

(
�(d) −m2

)
DF (x− x′) = iδD(x− x′).
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Localization to Hypersurfaces

Solution

DF (x− x′) = D
(d)
F (xq − x′q)δD−d(x⊥ − x′⊥),

where xaq := xa for a = 0, · · · , d− 1, xa⊥ := xa for
a = d, · · · , D − 1, and D(d)

F (xq − x′q) denotes the celebrated
Feynman propagator in d-dimensional Minkowski spacetime.
• The corresponding one-particle states are localized on the d
dimensional subspace.
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Localization to Hypersurfaces

Comments

1 Creepers on spacelike hypersurfaces can be introduced
similarly.

2 D-dimensional creepers in D-dimensional Minkowski
spacetime are the ordinary scalar fields.

3 For d < D, the classical field equation
(
�(d) −m2

)
φ = 0 is

not deterministic, if not meaningless altogether, because it
is silent about the behavior of the classical field in
directions xa⊥ perpendicular to the hypersurface. But
classical fields do not participate in particle physics. The
particle interpretation of physical states comes from
quantum fields whose correlation function is well-defined
and can be interpreted in terms of the Feynman propagator
of one-particle states confined to the hypersurface.
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Creepers in Curved spacetime

Ordinary scalars in curved spacetime

Action

S := −1

2

∫
dDy e gµν∂µφ∂νφ,

in which e :=
√
|det g|.

Local frames
Consider the tetrad eµa satisfying ηabeµaeνb = gµν and the
vector fields ∂ea := eµa∂µ,

S := −1

2

∫
dDy e ηab∂eaφ∂ebφ.
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Creepers in Curved spacetime

Difficulty

Equation of Motion

δS
δφ

= eηab (∂ea∂eb + (∇µeaµ)∂eb)φ,

where ∇µ denotes the Levi-Civita connection, and we have used
the identity ∇µvµ = e−1∂µ(e vµ).

The roots of the difficulty

The vector fields ∂ea are not necessarily divergence free and they
do not commute with each other in general.
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Creepers in Curved spacetime

Creepers in curved spacetime

Action

S =

∫
dDy eL(φ; g(d)).

The Lagrangian density L(φ; g(d)) is diffeomorphism invariant
though it is independent of the spacetime metric g.
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Creepers in Curved spacetime

Lagrangian

L(φ; g(d)) := −1

2
gµν(d)∂µφ∂νφ− V (φ),

where ∂µ := ∂
∂yµ ,and

gµν(d) :=
d−1∑
a,b=0

ηabva
µvb

ν ,

va’s are divergence-free vector fields commuting with each other,
with v0 being timelike asymptotically.
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Creepers in Curved spacetime

A straightforward approach to obtain such vector fields is to
work with coordinate systems xµ used in unimodular gravity
in which e = 1. In these coordinates vaµ = δa

µ, i.e.,

∂va := va
µ∂µ =

∂

∂xa
.

Action

S := −
∫
dDx

1

2

d∑
a,b=0

ηab∂aφ∂bφ+ V (φ)

 ,

where ∂a := ∂
∂xa , and η = diag(−1, 1, · · · , 1).
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Creepers in Curved spacetime

Equation of motion

δS
δφ

=
(
�(d) −m2

)
φ,

where

�(d) :=

d−1∑
a,b=0

ηab∂a∂b,

18 / 28



Creepers in Curved spacetime

Stress tensor

Tµν := −2e−1 δS
δgµν

= L gµν ,

which resembles a bare cosmological constant term λB in the
Einstein field equation suggesting that

Bare cosmological constant

λB = −8πG L|on−shell .
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Creepers in Curved spacetime

Feature

1 Similarly to ordinary scalars, they are natural extensions of
scalars in Minkowski spacetime to curved spacetime. Their
actions are diffeomorphism invariant.

2 They havea well-defined notion of one-particle states in
nonstationary curved spacetimes, localized to d ≤ D
dimensional hypersurfaces without using warp factors or
potential wells, hence the moniker.

3 Their stress tensor resembles a bare cosmological constant,
i.e., they all act like perfect fluid with equation of state
w = −1. So they do not describe ordinary matter.
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Cosmological Constant

The cosmological constant problem

Local Lorentz symmetry implies that

〈Tµν〉 = −〈ρ〉 gµν

where ρ ∼ Λ4 is the vacuum energy density and Λ is the high
energy cutoff of the ordinary QFT. For Λ ∼ 1TeV

8πG 〈ρ〉 ∼M−2
Pl Λ4 ∼ 10−56M2

Pl.

The incredible fine-tuning of λB
λeff = λB + 8πG 〈ρ〉 ∼ 10−122M2

Pl.
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Cosmological Constant

Recently Wang and Unruh have shown that the cosmological
constant problem can be resolved if fluctuations of ρ are taken
into account and λB has taken a large negative value −λB � Λ2.

• Q. Wang, “Fine-tuning of the cosmological constant is not
needed,” arXiv:1904.09566 [gr-qc].
• Q. Wang and W. G. Unruh, “Vacuum fluctuation,

micro-cyclic "universes" and the cosmological constant
problem,” arXiv:1904.08599 [gr-qc].

22 / 28



Cosmological Constant

Results

1 d = 1 creepers correspond to λB < 0. |λB| ∼ 1M2
Pl.

2 For d = 2 the symmetry of the parameter space of classical
solutions corresponding to λB 6= 0 is O(1, 1) which
enhances to Z2 ×Diff(R1) at λB = 0.

3 For d > 2 we obtain O(d− 1, 1), O(d− 1)×Diff(R1) and
O(d− 1, 1)×O(d− 2)×Diff(R1) corresponding to,
respectively, λB < 0, λB = 0 and, λB > 0.
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Weinberg Particles

Spin 1
2 Weinberg field

S( 1
2

)

W =

∫
d4y eψ(iγa∂va −m)ψ.

Equation of motion

(iγa∂va −m)ψ = 0,

(iγa∂va +m)ψ = 0.
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Weinberg Particles

Massless spin 1 Weinberg field

S(1)
W = −1

4

∫
d4y eFabFab,

where Fab := ∂vaAb − ∂vbAa, Aa := va
µAµ, and

Fab := ηacηbdFcd.

U(1) gauge symmetry

Aa → Aa + ∂vaϕ,
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Weinberg Particles

The Lorentz gauge

∂vaA
a = 0,

where Aa := ηabAb.

Field equation

ηab∂va∂vbA
c = 0.
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Conclusion

Discussion

Weinberg’s interpretation of particles and interactions in 1960’s,
gives a particle interpretation of states of quantum field theory
in general nonstationary curved spacetimes only if

1 We understand the x-coordinates in his work, as a
coordinate system in which |det g| = 1.

2 We interpret the time-ordering as ordering with respect to
x0 though ∂0 is not timelike everywhere,

3 Suppose that quantum fields located at x1 and x2

(anti)commute for ηab(x1 − x2)a(x1 − x2)b < 0, though
Minkowski metric is not necessarily the metric of spacetime
in the x-coordinates.
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Conclusion

Conclusion

Quanta of the dark energy

The scalar creepers and the Weinberg particles add to the
cosmological constant and can be considered as a dynamical
source for the bare cosmological constant.
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