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(1) PLAN

1. Variational problem for a rotating body in general relativity (that is for Mathisson-Papapetrou-
Tulczyjew-Dixon (MPTD) equations).

2. Three-dimensional acceleration in general relativity.

3. Unexpected behavior of MPTD-body in ultra-relativistic limit.

4. Modified equations (gravimagnetic body).

5. First post-Newtonian approximation: new 1/c2- corrections.
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(2) Mathisson (1937), Papapetrou (1951), Tulczyjew (1959), Dixon (1964).

(MPTD)-equations in the form studied by Dixon:

∇Pµ = −1

4
Rµναβ ẋ

νSαβ , ∇Sµν = 2(Pµẋν − P ν ẋµ), SµνPν = 0,

They are assumed to describe evolution of a rotating body in gravitational field gµν . In particular,
they are used for computation of 1/c2-corrections to Lense-thirring and frame-dragging effects
(measured during Stanford Gravity Probe B experiment, 2011) (Schiff 1960, Wald 1972, ...)

In these equations: xµ(τ) is ”a representative point of the body”, spin-tensor Sµν(τ) is associated
with inner angular momentum, Pµ(τ) is called ”momentum”.

From the beginning, they have been considered as a Hamiltonian-type system:

ẋµ =
√
−ẋGẋ
−P 2 T −1µνP ν , P 2 + f(S2) = −m2c2.

We realized this idea in explicit form, considering spin-tensor as a composite quantity: Sµν =
2(ωµπν − ωνπµ), where πµ is conjugated momentum for the vector ωµ - basic variable, taken for
description of spin. In this case, there is the Lagrangian variational problem that implies expected
equations of motion and constraints (AAD, Ramirez 2015).
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(3) LAGRANGIAN FORMULATION OF MPTD-EQUATIONS

Configuration variables: position xµ(τ) and vector ωµ(τ) attached to the point xµ. Frenkel spin-
tensor is composite quantity: Sµν = 2(ωµπν − ωνπµ), where πµ is conjugated momentum for ωµ.

Hanson-Regge type Lagrangian (parameter α determines spin: S2 = 8α):

L = − 1√
2

√
m2c2 − α

ω2

√
ẋNẋ+ ω̇Nω̇ −

√
[ẋNẋ+ ω̇Nω̇]2 − 4(ẋNω̇)2,

ω=0−→ −mc
√
ηµν ẋµẋν

N is the projector on the plane orthogonal to ωµ: Nµν ≡ gµν − ωµων

ω2 , then Nµνω
ν = 0.

Dixon equations appear for the minimal spin-gravity interaction:

ηµν → gµν , ω̇µ → ∇ωµ = dωµ

dτ + Γµαβ ẋ
αωβ .
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(4) DEFINITION OF THREE-ACCELERATION IN GENERAL RELATIVITY.

According to Landau-Lifshitz, time and space intervals between the events xµ and xµ + dxµ in
curved space gµν are

dt = − g0µdx
µ

c
√
−g00

, dl2 = γijdx
idxj , where γij(x

0,x) ≡ gij −
g0ig0j
g00

.

Then geodesic equation ∇dxµ

ds ≡
d2xµ

ds2 + Γµαβ
dxα

ds
dxβ

ds = 0 implies the following variation rate of

velocity components, d2

dt2 x(t), in the direction of velocity:

(vγ
dv

dt
) = −

√
c2 − vγv

c2
(vγ)jΓ

j
µν(g)vµvν − (vγv)

c2
(vγ)pΓ̃

p
jk(γ)vjvk − (vγv)

2c2
(v∂tγv).

This does not vanish as |v| → c. The reason is that the variation consist of three contributions:
acceleration of the particle; variation of a basis in the passage from x to x + dx; and variation of
the metric γ(t) during the time interval dt. To obtain three-dimensional acceleration, we need to
exclude the last two contributions:

ai
def
=

dvi

dt
+ Γ̃ijk(γ)vjvk +

1

2
(v∂0γγ

−1)i ≡ ∇(γ)vi +
1

2
(v∂0γγ

−1)i.

The definition guarantees that a point particle can not exceed the speed of light. Unfortunately,
this does not happen for MPTD-particle.
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(5) UNEXPECTED BEHAVIOR OF MPTD-PARTICLE AS v → c.

A consistent manifestly relativistic and reparametrization-invariant equations can not contain too
many velocities, since each vµ implies 1√

c2−v2 -factor:

Electrodynamics: dvµ

ds = Fµνv
µ → a|| ∼

√
c2 − v2,

Geodesics: dvµ

ds = −Γµναv
νvα → a|| ∼ 1,

Electrodynamics with non minimal interaction:

dvµ

ds = Fµνv
ν + (FF )ναv

νvαvµ → a|| ∼ 1√
c2−v2

, . . . ,

and for MPTD-equations we have:

∇Pµ = − 1
4R

µ
ναβẋ

νSαβ ,

∇Sµν = 2(Pµẋν − P ν ẋµ), → dvµ

ds ∼ A
µ
ναβv

νvαvβ → a|| ∼ 1√
c2−v2

.

In the result, MPTD equations are not consistent in ultra-relativistic limit: longitudinal accelera-
tion increases with velocity and diverges as v → c.
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(6) NON MINIMAL SPIN-GRAVITY INTERACTION: GRAVIMAGNETIC BODY

Our Lagrangian admits non minimal spin-gravity interaction through the gravimagnetic moment
κ. This can be thought as a deformation of original metric (in spin-sector): gµν → σµν = gµν +
κRα

µ
β
νωαωβ . Denoting K = (σ − λ2g)−1, the Lagrangian action is

S = −
∫
dτ

√
(mc)2 − α

ω2
×
√
−ẋNKσNẋ−∇ωNKN∇ω + 2λẋNKN∇ω.

The non minimal interaction modifies Hamiltonian (Khriplovich 1989):

H = P 2 + (mc)2 → H = P 2 + κ
[

1
32RαβµνS

αβ
]
Sµν + (mc)2,

this can be compared with Hamiltonian of charged spinning particle with magnetic moment µ:

H = P 2 + µ
[
e
2cFµν

]
Sµν + (mc)2.

The modified theory with κ = 1 (gravimagnetic body) is consistent in ultra-relativistic limit. It
also differs from MPTD-theory for small velocities already in 1/c2 -approximation:
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(7) IMPROVED MPTD-EQUATIONS: GRAVIMAGNETIC BODY

MPTD equations

∇Pµ = − 1
4R

µ
ναβẋ

νSαβ ,

∇Sµν = 0.

 ↔


Improved equations

∇Pµ = − 1
4θµν ẋ

ν −
√
−ẋ2

32mc (∇µθσλ)Sσλ ,

∇Sµν =
√
−ẋ2

4mc θ
[µ
αS

ν]α.

Denoting θµν = RµναβS
αβ , the Lagrangian equations read (1/c2 -approximation):

MPTD equations

∇
[

Tµ
ν ẋ

ν√
−ẋ(g+h)ẋ

]
= − 1

4mc (θẋ)µ

∇Sµν = 1

4mc
√
−ẋ(g+h)ẋ

ẋ[µ(Sθẋ)ν] ∼ 1√
−ẋGẋ .


↔



Improved equations

∇
[

ẋµ
√
−ẋgẋ

]
= − 1

4mc (θẋ)µ −
√
−ẋgẋ

32m2c2∇
µ(Sθ)

∇Sµν =
√
−ẋgẋ
4mc θ[µσS

ν]σ ∼
√
−ẋgẋ.

Even in homogeneous field we have modified dynamics for both x and S. In the modified theory:

1. Longitudinal acceleration vanishes as v → c.

2. Time interval and distance are unambiguously defined within the initial space-time metric gµν .

Contrary to MPTD-equations, the modified theory is consistent with respect to the initial metric.
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(8) EFFECTIVE 1/c2 -HAMILTONIAN

Consider gravimagnetic gyroscope in the metric of spherical body with mass M and angular mo-
mentum J

ds2 =

(
−1 +

2GM

c2r
− 2G2M2

c4r2

)
(dx0)2 − 4G

εijkJ
jxk

c3r3
dx0dxi +

(
1 +

2GM

c2r
+

3G2M2

2c4r2

)
dxidxi.

With angular momentum J we assiciate the potential AJ of gravitomagnetic field BJ :
AJ = 2G

c [J× r
r3 ], BJ = [∇×AJ ];

and associate similar quantities with spin S of the particle:
AS = M

m
G
c [S× r

r3 ], BS = [∇×AS ].
With these notation, 1/c2 -Hamiltonian becomes similar to that of spinning particle in a magnetic
field

H =
c√
−g00

√
(mc)2 + gijΠiΠj +

1

2c
(BJ + BS) · S, where Π ≡ p +

m

c
(AJ + 2AS).

The approximate Hamiltonian (1) can be thought as describing a gyroscope orbiting in the field of
Schwarzschild space-time gµν , and interacting with the gravitomagnetic field BJ of central body
and with fictitious gravitomagnetic field BS due to spin of gyroscope. The only effect of non-
minimsal interaction is the deformation of gravitomagnetic field of central body according to the
rule

BJ → BJ + BS .
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(9) 1/c2 -CORRECTIONS TO TRAJECTORY (LENSE-THIRRING)

Denoting r̂ = r/|r|, total acceleration of gravimagnetic particle in 1
c2 -approximation reads

a = −MG

r2
r̂ +

4GM

c2r2
(r̂ · v)v − GM

c2r2
v2r̂ +

4G2M2

c2r3
r̂+

1

c
(BJ + BS)× v +

GM

mc2r3
[S× v + 3(S · (r̂× v))r̂]−

1

2mc
∇([BJ + BS ] · S).

The new term due to gravimagnetic moment is − 1
2mc∇(BS · S). As it should be expected, other

terms coincide with those of known from analysis of MPTD equations Einstein 1915, de Sitter
1916, Thirring-Lense 1918, Schiff 1960, Wald 1972.
The first term represents the standard limit of Newtonian gravity and implies an elliptical orbit.
The next three terms represent an acceleration in the plane of orbit and are responsible for the
precession of perihelia.
The term 1

cBJ×v represents the acceleration due to Lense-Thirring rotation of central body, while
the remaining terms describe influence of the gyroscopes spin on its trajectory.
The gravitational dipole-dipole contribution to Lense-Thirring effect 1

2mc∇(BJ ·S) has been com-
puted by Wald.
The new contribution due to non minimal interaction, 1

2mc∇(BS ·S), is similar to the Wald term.
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(10) 1/c2 -CORRECTIONS TO SPIN (FRAME DRAGGING)

In a co-moving frame, our effective Hamiltonian implies precession of spin dS
dt = [Ω × S] with

angular velocity vector

Ω =
3GM

2c2r2
[r̂× v] +

1

2c
BJ +

1

c
BS .

The first term represents geodetic precession of gyroscope.
The second term represents frame-dragging precession. The two terms are the same for both gra-
vimagnetic and MPTD body. They have been computed by Schiff, and measured during Stanford
Gravity Probe B experiment (2011).
The last term appears only for gravimagnetic particle and depends on gyroscopes spin S. Hence,
two gyroscopes with different magnitudes and directions of spin will precess around different rota-
tion axes. Then the angle between their own rotation axes will change with time in Schwarzschild
or Kerr space-time.
Comparing the last two terms, we conclude that precession of spin S due to gravimagnetic moment
is equivalent to that of caused by rotation of central body with fictitious momentum

Jfict = M
mS.

Taking J = 0 in the Hamiltonian, we conclude that, due to the term 1
2cBS ·S, spin of gravimagnetic

particle will experience frame-dragging effect 1
cBS×S even in the field of non rotating central body.
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(11) CONCLUSION

1. Rotating body with minimal spin-gravity interaction (MPTD-body) has unexpected ultra-
relativistic limit.

2. Gravimagnetic body (non-minimal interaction through unit gravimagnetic moment) has consis-
tent ultra-relativistic limit.

3. For small velocities, behavior of gravimagnetic body is different from MPTD-body already in
the leading post-Newtonian approximation.

THANKS
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