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MOTIVATIONS.
 A. The experimental revolution-the enormous 

improvements in experimental techniques it 
became feasible to control quantum systems 
with many degrees of  freedom. An entirely new 
arena for the study of physics of interacting 
quantum many-body systems.

 B. New mashines -Supercomputers and novel 
numerical techniques(tensor network , density 
matrix renormalization, Bethe Ansatz)

 C. Understanding of the quantum mechanics has 
improved significantly since the of von 
Neumann!! The new mathematical methods.



MOTIVATIONS.

 D. And finally –the problem of quantum gravity 
and black holes . There is the speculation that 
black holes should be most quantum chaotic 
system  with maximal scrambling time t*=ß/2π 
.

t



 ARTIN DYNAMICAL SYSTEM ON LOBACHEVSKI PLANE-
POINCARE METRIC.

 In 1924 Emil Artin introduced  an example of 
Ergodic  Dynamical system which is realized  as 
geodesic flow on a compact surface  of the Ƒ
Lobachevsky  plane. The aim of this article was to 
construct an example of a dynamical system in 
which “almost all” geodesic trajectories are quasi-
ergodic , meaning that all trajectories with the 
exception of measure zero , during their time 
evolution will approach infinitely close any point 
and given direction on surface   . Let us consider  Ƒ
Lobachevsky plane realized in the upper half-plane 
y>0 of the complex plane z=x+iy with 



ARTIN SYSTEM

 The Poincare metric which is given by the line 
element
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The Lobachevsky  plane is a surface a constant negative curvature , 
because its curvature Is equal to R=-2 and it is twice the Gaussian 
curvature K=-1. This metric has well known  properties: it is invariant 
with respect to all linear substitution ,which form the group G of 
isometries of the Lobachevsky plane



ARTIN SYSTEM
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Where  ,,,
are real coefficients of the matrix g and the determinant of g is 
positive.



ARTIN SYSTEM

 The equation for the geodesic lines on 
curved surface the form
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THE SOLUTION OF THE GEODESIC EQUATIONS

 The geodesic equation takes the form
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and has two solutions



THE SOLUTION OF GEODESIC EQUATIONS
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First is the orthogonal semi-circles and second is perpendicular rays. Here 
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THE SOLUTION OF THE GEODESIC EQUATION 

 Using this solution one can check the points on 
the geodesics curves move with unit velocity

1dt
ds

One can also observe  that if we in the geodesic equation check the 
proper time,
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Then the geodesic equation is coincide with equation of motion-the Newton equation.

In this case the potential is  
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THE FUNDAMENTAL REGION Ƒ
 In order to construct a compact surface  on Ƒ

Lobachevsky  plane , one can identify all 
points in upper half of the plane which are 
related to each other by the substitution g 
with integer coefficient and a unit 
determinant . These transformation form a 
modular group .Thus we consider two points 
z and w to be “identical” if

qpz
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THE FUNDAMENTAL REGION Ƒ
 With integers m,n,p,q constrained by the 

condition mq-pn=1 which is unit 
determinant condition-w=dz ,det( d)=1. 
These elements d form discrete group 
SL(2,Z) which is discrete subgroup of the 
isometry  transformation SL(2,R).The 
identification creates a regular tessellation 
of the Lobachevsky plane by congrouent 
hyperbolic triangles. The Lobachevsky plane 
is covered by the infinite-order triangular 
tiling.



THE FUNDAMENTAL REGION



THE FUNDAMENTAL REGION Ƒ
 One of these triangles can be chosen as a 

fundamental region. That fundamental region
  of the modular group SL(2,Z),is the well Ƒ

known  “modular triangle” consisting of those
 Points between lines x=- 1/2,  and x==1/2 

which lie outside the unit circle in the Fig.The 
modular triangle  has two equal angles

 and with the third one equal  to zero,
3
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THE FUNDAMENTAL REGION 
 Thus    3

2

The area of the fundamental region is finite and 
equal to
 

Inside the modular triangle  there is exactly one Ƒ
representative among all equivalent points of the 
Lobachevsky plane with exception of the points on 
the triangle edges are opposite to each other  . 
These points should be identified to form a closed 
compact surface 
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THE FUNDAMENTAL REGION

 By “gluing” the opposite edges of the  mudular triangle 
together. The main goal of the construction is to 
consider now the behavior of the geodesic trajectories 
defined on the surface

 constant negative curvature.
 In order to describe the behaviour of the geodesic 

trajectories on the fundamental region one can use 
the knowledge of the geodesic trajectories on whole 
Lobachevsky plane. Arbitrary point on (x,y)     and Ƒ
velocity vector  



CHAOS IN ARTIN SYSTEM
)sin,(cos v
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These  are the coordinates of the phase space  x,y, and 
theta  belong to phase space M. and they uniquely 
determine  the geodesic trajectory as the orthogonal circle 
K in the whole Lobachevsky plane. As trajectory “hits” the 
edges of the fundamental region and goes outside of it, 
one should apply the modular transformation to that parts 
of the circle K which are outside of  in order to return Ƒ
them back to  the . That algorithm will define the whole Ƒ
trajectory on fundamental region for arbitrary time . One 
should observe that this description  of the trajectory on 
fundamental region is equivalent to the set of geodesic 
circles which appear



CHAOS IN ARTIN SYSTEM
 Under the action of the modular group on the
  initial circle K.  One should join together the 
 parts of the geodesic circles K’ which lie inside
  of  into a unique continues trajectory on Ƒ Ƒ
  with boundaries . In this context the quasi-

ergodicity  of the trajectory K on compact 
 surface will mean that among all circle {K’} 
 there are those which are approaching 

arbitrary close to any given circle C!!



CHAOS IN ARTIN SYSTEM
 The geodesic trajectories are bounded to 

propagate on the fundamental hyperbolic 
triangle.

   The geodesic flow in this fundamental region 
represents one of the most chaotic dynamical 
systems with exponential instability of its 
trajectories , has mixing of all orders , Lebesgue 
spectrum and non-zero Kolmogorov  entropy---
Hedlund, Anosov, Hopf,Gelfand,Fomin,

 Kolmogorov…



THE  TWO POINT CORRELATION FUNCTIONS 
 The earlier investigation of the correlation functions such a 

Anosov  systems was performed by- Pollicot , Moore , 
Dolgopyat…

 using different approaches including Fourier series for the 
SL(2,R) group , the  methods unitary representation 
theory. In our analyses we shall use the time evolution 
equation, the properties

 of automorphic functions on  and shall estimate a Ƒ
 decay exponent in terms of the phase space curvature and 

the transformation properties of function . The correlation 
function can be defined as an integral over 

 a pair of functions/observables in which the first one is 
stationary and the  second one evolves with geodesic flow:



THE TWO POINT FUNCTION

The f’ s are our  physical observables  and are the  function 
on 
phase space . Here the measure and  integral are 



THE TWO POINT FUNCTION
 The SL(2,R)(SL(2,Z)) invariants fix the 

functions/observables in upper half plane , 
these are [Gelfand ,Fomin] Poincare theta 
function of weight n -



THE TWO POINT FUNCTION

 This theta function satisfy the condition

Still the last point , we should define the time  evolution of 
 the physical observables . The simplest evolution is



THE TWO POINT FUNCTION

 The general evolution which map any geodesic  
to other and is the element of the isometry  
group SL(2,R) is

Now we can combine all these things together and after some calculation we will arrive
the final formula for the two point function when the time is  



THE TWO POINT FUNCTION

In order to exclude the apparent singularity at the angle which solves the 
equation
 

If the surface has  a negative curvature K



THE POINT FUNCTION

Then in last formula the exponential factor will take the form

Which shoes that when surface has larger negative curvature, then divergency 
of the trajectories is stronger.



THE QUANTUM ARTIN SYSTEM

This the action of the Artin system with equation of motion . We should notice 
the
 invariance of the action and equation of motions under time reparametrizations 
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THE QUANTUM ARTIN SYSTEM

 Presence of a local “gauge” symmetry 
indicates that we have a constrained 
dynamical system . One particularly 
convenient  choice of gauge fixing specifying  
the time parameter t proportional to the 
proper time , is  archived by imposing the 
condition
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THE QUANTUM ARTIN SYSTEM
 Where H is a constant . Defining the canonical
 momenta conjugate to the coordinates x , y as
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We shall get the geodesic equations in the Hamiltionian form
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THE QUANTUM ARTIN SYSTEM

 Indeed , after defining the Hamiltonian as
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The corresponding equation of motions will take the form as above , and 
advantage
Of the gauge which we have,is that the Hamiltonian coincides with the constraint.
Now it is fairly standard to quantize this Hamiltonian system we simply replace
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THE QUANTUM ARTIN SYSTEM 

 And consider the Schrodinger equation
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In this equation one easily recognises  the Laplace operator with an extra minus sign,in
Poincare metric. It is convenient to introduce parametrization E=s(1-s), as far E is real and
Semi-positive and parametrization is symmetric with respect to s to 1-s and opposite .So , the
 the parameter s should be chosen within the range
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THE QUANTUM ARTIN SYSTEM

 One should impose the “periodic” boundary 
condition on the wave function with respect to 
the modular group
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In order to have wave function which is propoerly defined on the fundamental region.
Taking into account that transformation T:z to z+1 belongs to SL(2,Z),one has to impose 
the periodicity condition 
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Thus we have a Fourier expansion



THE QUANTUM ARTIN SYSTEM
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Inserting this to Schrodinger equation one get the solution for Fourier component
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THE QUANTUM ARTIN SYSTEM

  For the case  n=0 one simply gets and 
combining all together we get
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THE QUANTUM ARTIN SYSTEM

 Where all c’s should be defined such that the 
wave function will fulfill the boundary 
conditions
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How we should solve this 
problem???
H.Maas(1949) 



THE QUANTUM ARTIN SYSTEM AND THE
MAAS FORMULA  
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THE MAAS FORMULA

 Where we should define the several  functions 
and element of SL(2,Z)
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THE CONTINUOUS  AND DISCRETE SPECTRUM
 This wave function is well defined in the 

complex s plane and has a simple pole at 
s=1. The physical continuous spectrum is 
defined by
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THE DISCRETE SPECTRUM
 The wave function of the discrete spectrum 

has a form
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And the coefficients c’s are not known analytically but where computed numerically
 for many values of n [D.A.Hejhal]. For the calculation they use the condition
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CORRELATION FUNCTIONS
 The Two –point Functions.
 Having explicit expressions of the wave functions 

one can analyze the quantum-mechanical  
behavior of the correlation functions .
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CORRELATION FUNCTIONS

 The energy eigenvalues  are parametrized
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CORRELATION FUNCTIONS

 Defining the basic matrix element as
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CORRELATION FUNCTIONS
   This expression is very convenient for the numerical calculation .One 

should choose also appropriate observables A and B . The operator

    seems very appropriate  because  ,the convergence of the integrals 
over fundamental region F will be much stronger. 

   It is expected that the two point correlation function should decay as

 . In figure one can see the exponential decay of the two-point 
correlation function with time at different temperatures  with the 

2y

)exp(),(2 dt
tKtD 

dt



THE TWO POINT FUNCTION



THE FOUR- POINT FUNCTION
 The out-of-time order four-point correlation 

function is[ Maldacena , Shenker , Stenford]
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As well as the behavior of the  commutator  and square of commutator. 
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THE FOUR POINT FUNCTION
 It was speculated in [Maldacena , Shenker , 

Stenford] , that the most important correlation 
functions including the races of the classical 
chaotic dynamics in quantum regime is
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THE SCRAMLING TIME
 These formulas and the explicit form of the wave 

functions allow to calculate the above correlation 
functions at least using numerical integration. 
Where we use so called plane wave 
approximation(we use only first two terms in 
wave function).Thus by performing numerical 
integration we observed that a two point 
correlation functions decays exponentially and 
that a four-point function  demonstrate tendency 
to decay with a lower pace. With numerical data 
available to us it is impossible to estimate the 
scrambling time 
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THE SCRAMBLING TIME

 Where the scrambling time is define as
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   CONCLUSION 

 1.We recall the classical Artin system which is defined 
on the Lobachevsky plane .This system is one of the 
most chaotic dynamical system with exponential 
instability, has mixing of all order.

 2.Using the Gelfand-Fomin differential  geometry 
methods we calculate two point correlation function . 
This two point function decay exponentially.

 3.  We consider the quantization of the Artin system 
defined on the fundamental region of the Lobachevsky 
 plane.



CONCLUSION
 4.By performing a numerical integration we  observed that the two 

point correlation function of the quantum Artin system decays 
exponentially .

 5.The  four-point function demonstrates tendency to decay with a 
lower pace(in short time).

 6. With a the numerical data available to us it is impossible to 
estimate scrambling time or to confirm its existence in the hyperbolic 
system , but qualitatively we observe a short time exponential decay 
of the out-of-time correlation function to almost zero value and then 
an essential increase with the subsequent large fluctuations.

 7.In next we will continue  to calculate the  out –time- order four point 
correlation function in more details.
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