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Conformal Mechanics (some basic references)

F. Calogero (1969) - sl2-invariance, 1
x2 potential.

de Alfaro-Fubini-Furlan (1976) - oscillator damping term
(discrete, grounded from below spectrum, ground state).

Conformal Mechanics in the new Millennium (motivations):

Holography: AdS2 − CFT1

test particle close to RN BH horizon (Britto-Pacumio et al. 1999).

2012 State of the art review: Fedoruk-Ivanov-Lechtenfeld



Based on (d ,N ,N − d), N = 1, 2, 4, 8 worldline
supermultiplets:

Existence of Critical scaling dimensions in N = 4 and N = 8
Superconformal Mechanics:
Z. Kuznetsova & F.T., JMP 53 (2012) 043513.

Classification of critical scaling dimensions for N = 7,N = 8:
S. Khodaee & F.T., JMP 53 (2012) 103518.

Recognition of the existence of extra allowed potentials,
Papadopoulos CQG 2013

Two classes of superconformal mechanics, parabolic versus
trigonometric/hyperbolic:
N. L. Holanda & F.T., JMP 55 (2014) 061703.



Quantization of superconformal mechanics
(both cases, parabolic & trigonometric)

Part I of the talk:
Quantization of world-line superconformal actions (1D
sigma-models), based on
I. E. Cunha, N. L. Holanda & F.T., arXiv:1610.07205

Part II of the talk:
Symmetries of Matrix PDEs, based on
F.T. & M. Valenzuela, arXiv:1705.04004



sl(2) algebra:

[D,H] = H,

[D,K ] = −K ,
[H,K ] = 2D.

par vs hyp/tri D-module reps (Papadopoulos & Holanda-F.T.)

H = ∂t ,

D = t∂t + λ,

K = t2∂t + 2λt.

H = e−µτ (
1

µ
∂τ − λ),

D =
1

µ
∂τ ,

K = eµτ (
1

µ
∂τ + λ).



Comments:

par ↔ hyp/tri connection via similarity transformations and
t 7→ t = ln τ change of the time coordinate.

λ is the scaling dimension: for sl(2) is non-critical.

µ is a dimensional parameter (i.e.: it allows extra potential terms),
µ real: trigonometric case,
µ imaginary: hyperbolic case.



Clifford algebras encode worldline supersymmetry:

N operators Qi such that

{Qi ,Qj} = 2δijH ,

[H ,Qi ] = 0

“usually” H = i∂t .

N = 1 example

Q =

(
0 1
i∂t 0

)
,



Worldine supermultiplets

N = 3 (2, 4, 2):



Equivalent N = 4 (4, 8, 4) Worldine supermultiplets:
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Inequivalent N = 4 (4, 8, 4) Worldine supermultiplets:



Properties of finite SCA’s:

Even sector Geven : sl(2)⊕ R (R is the R-symmetry).

Odd sector Godd : 2N generators.

The dilatation operator D induces the grading

G = G−1 ⊕ G− 1
2
⊕ G0 ⊕ G 1

2
⊕ G1.

The sector G1 (G−1) containes a unique generator given by H (K ).
The G0 sector is given by the union of D and the R-symmetry
subalgebra (G0 = {D}

⋃
{R}).

The odd sectors G 1
2

and G− 1
2

are spanned by the supercharges Qi ’s

and their superconformal partners Q̃i ’s, respectively.
The invariance under the global supercharges Qi ’s and the
generator K implies the invariance under the full superconformal
algebra G.



Most relevant cases: N = 4, 7, 8 finite SCA’s

N = 4: simple SCA’s are A(1, 1) and the exceptional superalgebras
D(2, 1;α), for α ∈ C\{0,−1}.

Superalgebra isomorphism for α’s connected via an S3 group
transformation:

α(1) = α, α(3) = −(1 + α), α(5) = −1+α
α ,

α(2) = 1
α , α(4) = − 1

(1+α) , α(6) = − α
(1+α) .

A(1, 1) can be regarded as a degenerate superalgebra recovered
from D(2, 1;α) at the special values α = 0,−1.
For α real (α ∈ R) a fundamental domain under the action of the
S3 group can be chosen to be the closed interval

α ∈ [0, 1].



Over C, there are four finite N = 8 SCA’s and one finite
N = 7 SCA.

The finite N = 8 superconformal algebras are:

i) the A(3, 1) = sl(4|2) superalgebra, possessing 19 even generators
and bosonic sector given by sl(2)⊕ sl(4)⊕ u(1),
ii) the D(4, 1) = osp(8, 2) superalgebra, possessing 31 even
generators and bosonic sector given by sl(2)⊕ so(8),
iii) the D(2, 2) = osp(4|4) superalgebra, possessing 16 even
generators and bosonic sector given by sl(2)⊕ so(3)⊕ sp(4),
iv) the F (4) exceptional superalgebra, possessing 24 even
generators and bosonic sector given by sl(2)⊕ so(7).

The finite N = 7 superconformal algebra is the exceptional
superalgebra G (3), possessing 17 even generators and bosonic
sector given by sl(2)⊕ g2.



Existence of critical scaling dimension λ’s:

N = 4: D(2, 1;α) reps are recovered from the (k , 4, 4− k)
supermultiplets, with a relation between α and the scaling
dimension given by α = (2− k)λ.

N = 8: for k 6= 4, all four N = 8 finite superconformal algebras
are recovered, at the critical values λk = 1

k−4 , with the
identifications:
D(4, 1) for k = 0, 8, F (4) for k = 1, 7,
A(3, 1) for k = 2, 6 and D(2, 2) for k = 3, 5.

N = 7: the global supermultiplet (1, 7, 7, 1) induces, at λ = −1
4 , a

D-module representation of the exceptional superalgebra G (3).



The D(2, 1;α)-invariant actions are

parabolic case:

L = A(ϕ̇2 + ψI ψ̇I + g2
i ) + Aϕ(ψ0ψigi +

1

2
εijkψiψjgk) +

1

6
Aϕϕε

ijkψ0ψiψjψk ,

with A = Cϕ−
1+2α
α

hyperbolic case:

L = A(ϕ̇2 + µψI ψ̇I + µ2g2
i ) + µ2Aϕ(ψ0ψigi +

1

2
εijkψiψjgk) +

1

6
µ2Aϕϕε

ijkψ0ψiψjψk + µ2α2Aϕ2,

with A = Cϕ−
1+2α
α .



Fields redefinitions:
(constant kinetic basis, non-linear realization of supersymmetry)

φ = −2αφ−
1

2α ,

ψI = φ−
1+2α

2α ψI ,

g i = φ−
1+2α

2α gi .



Lagrangians for Superconformal Mechanics

(D(2, 1;α)-invariance, from Holanda-F.T., JMP 2014)

(1, 4, 3) supermultiplet with Q2 = H:

L = ( ˙̄φ2 + ψ̄I
˙̄ψI + ḡi

2) +
2(1 + 2α)

φ̄

(
ψ̄0ψ̄i ḡi +

1

2
εijk ψ̄i ψ̄j ḡk

)
+

2(1 + 2α)(1 + 3α)

3φ̄2
εijk ψ̄0ψ̄i ψ̄j ψ̄k .

(1, 4, 3) supermultiplet with Q2 = Z 6= H:

L = ( ˙̄φ2 + µψ̄I
˙̄ψI + µ2ḡi

2) +
2(1 + 2α)µ2

φ̄

(
ψ̄0ψ̄i ḡi +

1

2
εijk ψ̄i ψ̄j ḡk

)
+

2(1 + 2α)(1 + 3α)µ2

3φ̄2
εijk ψ̄0ψ̄i ψ̄j ψ̄k +

µ2

4
φ̄2.



1D superconformal invariance does not imply supersymmetry:
osp(1|2)-invariant example

The hyperbolic action is

S =

∫
dt(ϕ̇2 − ψψ̇ + ϕ2).

The five invariant operators (closing the osp(1|2) algebra) are

Q±ϕ = e±tψ, Q±ψ = e±t(ϕ̇∓ ϕ),

Z±ϕ = e±2t(ϕ̇∓ ϕ), Z±ψ = e±2tψ̇,

Hϕ = ϕ̇, Hψ = ψ̇.

One shoulde note that Z± = (Q±)2.
No change of time variable t 7→ τ(t) allows to represent either Z+

or Z− as a time-derivative operator with respect to the new time τ .



Simplest example of “fermionization”

Wigner’s dual picture of the harmonic oscillator from

“Do the Equations of Motion Determine the Quantum Mechanical

Commutation Relations?” E.P. Wigner, Phys. Rev. 77 (1950) 711.

(Wigner discovered osp(1|2) as a byproduct).

H =
1

2
{a, a†}, [H , a±] = ±a±,

(also E± = {a±, a±}).

The Fock vacuum a|vac >= 0 is replaced
by a lowest weight representation of osp(1|2).



Where is the supersymmetry in the harmonic oscillator?

1) The action is invariant under osp(1|2).

2) The supersymmetry is “weak” (Q2 = Z 6= H).

3) The supersymmetry is spontaneously broken:
(a + a†)|vac >6= 0.

4) Supersymmetry as spectrum-generating algebra.

5) Fermion parity ⇔ eigenfunction’s parity.



SPECTRUM GENERATING ALGEBRA OF THE HARMONIC OSCILLATOR :



TRIANGULAR NUMBERS (AKA 2D HARMONIC OSCILLATOR) :



SUPERSYMMETRIC CARPETS (N=2):



From Lagrangian to Hamiltonian framework (classical)
osp(1|2) example

S =
∫
dtL =

∫
dt 1

2 (ẏ2 + iχχ̇),

with χ a Grassmann variable.
The classical Noether charges ar:e

CH = ẏ2

2 , CD = tẏ2

2 −
yẏ
2 , CK = t2ẏ2

2 − ty ẏ + y2

2 ,

CQ = ẏχ, CQ̄ = tẏχ+ yχ.

The Hamiltonian formalism requires the conjugate momenta:

p = ∂L
∂ẏ = ẏ , π = ∂L

∂χ̇ = − iχ
2 .

The last step requires defining the Dirac brackets:
The conjugate momentum π to the Grassmann variable χ is not an
invertible function of the velocity χ̇. The second equation is a
second class constraint on the phase space:

u = π +
iχ

2
.



The non-vanishing Dirac brackets are

{y , p}D = 1, {χ, χ}D = −i .

Canonical Quantization:

{A,B}D → 1

i~
[A,B}.

The non-vanishing (anti)commutators are

[ŷ , p̂] = i~, {χ̂, χ̂} = ~.

In the position-space representation the above operators are

ŷ = y , p̂ = −i~∂y , χ̂ =
√

~
2 .

Comment: the fermionic field χ, classically represented by a
Grassmann variable, is a Clifford variable χ̂ in the quantum case.



The DFF Quantum D(2, 1;α) (1, 4, 3) Model:
It is obtained from the h1 ⊕ C4 superalgebra.
The Hamiltonian is the Cartan operator

D̂ = (
p̂2

2
+

ŷ2

8
+

(1 + 2α)2

8ŷ2
)I4 +

(1 + 2α)

4ŷ2
F4.

(F4 is the Fermion Parity Operator.
Explicitly,

D̂ =

(
( p̂

2

2 + 4α2+8α+3
8ŷ2 + ŷ2

8 )I2 0

0 ( p̂
2

2 + 4α2−1
8ŷ2 + ŷ2

8 )I2

)
.

Both upper (bosonic) and lower (fermionic) diagonal blocks of D̂
contain a Calogero Hamiltonian with the DFF term

ĤDFF =
1

2
p̂2 +

g2

ŷ2
+

ŷ2

8
.

The inequality g2 > −1
8 guarantees the existence of physically

acceptable solutions.



The discrete spectrum is

En =
1

2
(n + ν + 1).

The parameter ν entering the Casimir energy 1
2 (ν + 1) is

ν =
1

2
(1 + 8g2)

1
2 .

α 6= 0,−1 ensures that both g2
b and g2

f are greater than −1
8 .

The scaling dimension α can be regarded as an external control
parameter of the theory, so that the vacuum energy can be
interpreted as a Casimir energy.
The Casimir energy of the (1, 4, 3) D(2, 1;α) (un)deformed
oscillator admits a very nice expression in terms of α:

Evac =
1

4
(1 + |2α + 1|).



Part II: Analysis from PDE’s symmetries

Ω = Ω† is a hermitian (matrix) PDE, a first-order differential
operator Σ is a symmetry operator if it satisfies the equation

[Σ,Ω] = ΦΣ · Ω,

for a given matrix-valued function ΦΣ.

2× 2-matrix differential operator containing Calogero potentials:

Ω = (e11 + e22)(i∂t +
1

2
∂2
x )− v1(x)e11 − v2(x)e22.

4 + 4 diagonal symmetry generators and non-diagonal symmetry
operators [Σup,Ω] = 0, [Σdown,Ω] = 0 for

vi (x) =
ai
x2

+ bix
2 + ci ,

a1 + a2 − a2
1 − a2

2 + 2a1a2 = 0, b2 = b1 and, without loss of
generality via similarity transformations, c1 = c2 = 0.



After setting ν = 2(a2 − a1),

a1 =
1

8
ν(ν − 2), a2 =

1

8
ν(ν + 2).

we have

Ωε = (e11 + e22)(i∂t +
1

2
∂2
x −

1

2
εx2 − ν2

8x2
) + (e11 − e22)

ν

4x2
,

with ε = 0, 1.
The operator K ,

K = e11 − e22,

plays different roles, depending on the context:
- either the Fermion Parity Operator (SQM) or
- Klein Operator (entering deformed oscillators).



Triplet of operators, Ω±1,Ω0.

They carry an sl(2) representation generated by z ′±I2, z0I2:

[z ′−I2,Ω+1] = Ω0 = 2itΩ+1, [z ′−I2,Ω0] = Ω−1 = −2t2Ω+1.

Ω±1,Ω0 close an sl(2) algebra:

[Ω0,Ω±1] = ±2Ω±1, [Ω+1,Ω−1] = −2Ω0.

Under redefinition of the time coordinate and a similarity
transformation Ω0 is mapped into Ωε=1.



ε = 0 example:

Σ1 = e12(∂x +
ν

2x
),

Σ2 = e12(t∂x + t
ν

2x
− ix),

Σ3 = e21(∂x −
ν

2x
),

Σ4 = e21(t∂x − t
ν

2x
− ix).

Basis of 4 off-diagonal hermitian operators:

Q1 =
i√
2

(Σ1 + Σ3),

Q2 = iKQ1 =
1√
2

(Σ3 − Σ1),

Q̃1 =
i√
2

(Σ2 + Σ4),

Q̃2 = iKQ̃1 =
1√
2

(Σ4 − Σ2).



Several symmetry (super)algebras:

N = 2 supersymmetry:

{Qi ,Qj} = 2δijH.

osp(2|2) superalgebra:

{Qi ,Qj} = 2δijH,

{Q̃i , Q̃j} = 2δijK,

{Qi , Q̃j} = δijD + εijJ.

Deformed Heisenberg algebra induced by

[Q1, Q̃1] = [Q2, Q̃2] = i
2 (I2 + νK ).



Connection with higher spin:

From

Q1
α := Qα, Q2

α := iKQα,

Associative algebra Aq(2; ν) (introduced by Vasiliev 1989)
of Weyl ordered (hermitian) monomials

Qα(n) = Q12···n :=
∑
1̄,2;σ

1

n!
Qσ(1)Qσ(2) · · · Qσ(n) , n = 0, 1, . . . ,

As a vector space Aq(2; ν) can be endowed with two different
types of brackets:
i) either ordinary brackets realized by commutators (deformed
Schrödinger algebra) or
ii) Z2-graded brackets realized by (anti)commutators. It is the
Vasiliev’s higher spin superalgebra

q(2; ν) := {Aq(2; ν) | [a, b} ∈ Aq(2; ν) , ∀ a, b}.



Covariant form of osp(2|2) ⊂ q(2; ν)
osp(2|2) admits a covariant description in terms of three types of
indices: vector indices µ, λ, . . . = 0, 1, 2 labeling a
three-dimensional Minkowski space, the (Majorana) spinorial
indices α, β, . . . = 1, 2 labeling the associated real 2-component
spinors and the scalar indices A,B, . . . = 1, 2 labeling an internal
space.
If we set Q1

α := Qα, Q2
α := iKQα. then

{QA
α,QB

β } = δAB(Cγµ)αβJ
µ + εABCαβR

is a generalized supersymmetry.
The closure of the osp(2|2) superalgebra is guaranteed by the
non-vanishing commutators

[Jµ, Jν ] = 4iεµνλJ
λ,

[Jµ,QA
α] = 2i(γµ)α

βQA
β ,

[R,QA
α] = −2iSA

BQB
α .

In the last equation the matrix SA
B is given by S = e12 − e21.



Topological conformal mechanics

Part III of the talk:

L. Baulieu & F.T., Nucl. Phys. B 2017



Witten’s type Topological Quantum Field Theory (1988)

grs background metric independence.

Stress-energy tensor Trs = δS
δgrs

independent of local metric
fluctuations.
Concrete implementation: Witten’s TFT.

Trs = δGrs ,

δ2 = 0

δ is a nilpotent operator.

Physical condition (cohomology):

δ|Ψ >= 0, |Ψ >6= δ|something > .



Spinorial properties encoded in classical system
Example: Balinese Candle Dance

(the Balinese dancer is a classical, not a quantum-mechanical system!)



Kitaev:
emergent Majorana fermions embodied in

Topological Quantum Computers
(offering topological protection from decoherence)



Braids



and



Knots:



Connection with Clifford algebras

γiγj + γjγi = 2ηij ,

ηij = diag(+ . . . ,− . . .).

Cl(p, q): p +’s, q −’s.

“almost” Pauli matrices:

I =

(
1 0
0 1

)
, X =

(
1 0
0 −1

)
, Y =

(
0 1
1 0

)
, A =

(
0 1
−1 0

)
,

They are Cl(2, 1) split-quaternions



Braid reps from Majorana fermions (Clifford algebras):

From

bkbk+1bk = bk+1bkbk+1,

bibj = bjbi , |i − j | > 1,

and

γ†i = γi ,

{γi , γj} = 2δij ,

then bk = 1√
2
(1 + γk+1γk), with b8

k = I.



Ordinary supersymmetry ⇒ supersymmetric σ-models

Pseudo-supersymmetry ⇒ topological σ-models

Pseudo-supersymmetry:

{Qi ,Qj} = 2ηijH .

From γ2
1 = −γ2

2 = I, γ1γ2 + γ2γ1 = 0
one construct the nilpotent operators γ±:

γ± =
1

2
(γ1 ± γ2), γ2

± = 0.



Question

Which topological mechanics should be used?

1) ordinary supersymmetry applied to the
vacuum (⇒ 2nd-order differential equations):

Q2 = H , H |vac >= 0,

2) or cohomological mechanics
(⇒ 1st-order differential equations):

Q2 = 0.



Is it supersymmetry realized in Nature (maybe at LHC)?



Exact supersymmetry cannot be realized

1) From observation: we do not see same mass superparticles
⇒ supersymmetry must be (spontaneously) broken (which scale?).

2) From anthropic considerations: exact supersymmetry cannot be
observed: Ordinary chemistry is not supported.
⇒ in a supersymmetric world we are simply not there.



Intriguing possibility:

maybe some supersymmetry is already there and we are
observing it without realizing that we are seeing it.



“Beauty is in the eye of the beholder”
from Molly Bawn (1878) by Margaret Wolfe Hungerford née Hamilton:

Confront the complementarity principle:
is light a wave or a particle?

It depends from the observer!



Is supersymmetry in the eye of the beholder?

Keyword: fermionization (rather than bosonization)

Coleman’s observation:
sine-Gordon model and massive Thirring models are equivalent.

Fermionic System A ⇒ Bosonic System B,

(Bosonization)

Fermionic System A ⇐ Bosonic System B,

(Fermionization)

A ⇔ B

(Bosonization/Fermionization works fine in d = 1, 2 dimensions.)



If supersymmetry is not found (yet) at LHC,
could be found in some other place?

A trip to LEGOLAND:



2012 Kane-Lubensky:
modeling topological insulators through mechanical models

(e.g.: 1D polyacetylene with springs)

2014 Vitelli:
no-energy cost zero-modes ⇒ rods can replace strings

metamaterials (lego)



Lagrangians for Topological Conformal Mechanics
(from Baulieu-Holanda-F.T., JMP 2015)

(2, 2, 0) supermultiplet:

L = ẏ ˙̄y + χ̇χ̄+
ε

4
y ȳ + (1 + 2λ)

χχ̄ ˙̄y

ȳ
.

(1, 2, 1) supermultiplet:

L = a2 + aẏ + χ̇χ̄+
ε

2
ya +

ε

2
(1 + 2λ)χ̄χ+ 2(1 + 2λ)

χ̄χa

y
.

- either ε = 0 (parabolic) or ε = 1 (hyperbolic) case.
- 2λ+ 1 is a coupling constant.
- The actions are invariant under sl(2|1).



Thanks a lot for the attention!


