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Why higher-derivatives invariants?

String theory effective action: modified supergravity (SUGRA) by an
infinite series of higher derivative quantum corrections

Llowstring = LSG +
∑

[DpRq
...] + forms + susy completion

SUSY higher-derivatives terms are poorly understood but, e. g.:

important for phenomenological applications of string theory, see
compactifications with fluxes.

important for black-hole physics within string theory.
indeed for computing higher-order corrections to black-hole entropy
needed for precision tests of AdS/CFT in SUSY (treatable) cases.

Counterterms for UV divergencies in SUGRA
see open debate on finiteness in, e.g., 4D N = 8 sugra

[Stelle, Howe, Kallosh, Bern, ...]

even the simple SUSY R2 case is not fully understood in general (see for
example 6D) but



R2? in 4D

For instance R2 gravity attracted attention for over 50 years:

renormalization of QFT in curved spacetime requires counterterms
containing R2 [Utiyama & DeWitt (’62)]

In 4D, R2 terms govern the structure of QFT conformal anomalies
relevant in studying renormalization group flows, see 4D a-theorem
[Komargodski and Schwimmer (’11)]

Renormalizable (not unitary) α(Cabcd)2 + β(Rab)2 + γR2, [Stelle (’77)]

R+R2 Starobinsky model of inflation [Starobinsky (’80)]

Interestingly, R+R2 SUGRA models are promising inflationary
candidates for CMB data.



Gauss-Bonnet: RabcdRabcd − 4RabRab +R2

An interesting curvature squared combination is Gauss-Bonnet

In 4D it is a topological term (Euler characteristic) arising as the
Type A conformal anomaly.

Governs α′-corrections in compactified string theory
[Zweibach (85)]......

In D>4 it is involved in the definition of ghost free critical gravities

In general its structure for any space-time dimensions and amount of
susy is not known. In particular, the dependence upon the extra
sugra matter fields, see the dilaton σ and NSNS b2 2-form

In 4D [Butter-deWit-Kuzenko-Lodato (13)] and 5D [Ozkan-Pang (13)] the
Gauss-Bonnet was constructed off-shell.

In 6D a full classification of the R2 invariants is missing and in particular
the GB invariant has never been fully constructed. We will fill this gap



DpRq with p + q ≥ 2?

How about interesting invariants beyond R2?
⇓

six derivatives ∝ R3 +D2R2

6D conformal supergravity invariants were not known

In 6D they play a special role parametrizing conformal anomalies

of importance in studying renormalization group flows and dilaton
effective action of 6D QFT;

Structure of anomalies can help understanding mysterious (1,0) and
(2,0) 6D CFT as for instance in the context of AdS/CFT,
M5-branes, ...



how higher-derivatives SUGRA?

Once convinced about the importance of higher derivative supergravity
the question is: how to efficiently construct them?

Best approach would be to possess a formalism that guarantees
manifest supersymmetry in a model independent way

⇓
An off-shell approach to SUGRA, when available, can be used for
general supergravity-matter couplings with model independent susy.

Two possibilities:
− component fields superconformal tensor calculus
See “Supergravity” book by [Freedman & Van Proeyen (12)]

− superspace approaches See classic books [Gates, Grisaru, Roček, Siegel

(83)], [Wess-Bagger (92)], [Buchbinder, Kuzenko (98)], [Galperin, Ivanov,

Ogievetsky, Sokatchev (2001)]



how off-shell SUGRA?

The two approaches can be linked and powerfully used together through
conformal superspace

manifestly gauge entire superconformal algebra in superspace
[Kugo-Uehara (85)] and combine advantages of both approaches

Constructed first by Butter 4D N = 1 in 2009 and N = 2 in 2011

developed and extended to 3D N − extended and 5D N = 1
SUGRA [Butter-Kuzenko-Novak-GTM (’13), (’14)]

recently 6D N = (1, 0) [Butter-Kuzenko-Novak-Theisen (’16)]

see also [Butter-Novak-GTM (’17)]



how higher derivatives off-shell SUGRA? outline

In superspace one efficiently:

Describes off-shell supermultiplets, SUGRA, matter

Provides manifestly supersymmetric off-shell action principles

powerful cohomological “superform” techniques to construct and
classify SUSY invariants including their component reduction.

reduces to components and derives superconformal tensor calculus

With these techniques, one can in principle have a systematic approach
for higher derivative off-shell invariants.

Examples:

6D N = (1, 0) (four-derivatives) curvature squared terms;

6D N = (1, 0) (six-derivatives) conformal supergravity invariants
and informations about N = (2, 0) case.



Review: standard (1,0) Poincaré Supergravity



An interlude: Conformal gravity

Conformal gravity in six dimensions may be viewed as gauging the
entire conformal group SO(6,2), Xa = {Pa,Mab,D,Ka}
The vielbein ea

m is associated with Pa (diff.=local-translations)

gauge connections are associated with the other generators which
can be used to construct covariant derivatives

∇a = ea
m∂m −

1

2
ωa

bcMbc − baD− fa
bKb

The covariant derivative algebra is constrained to be expressed
entirely in terms of the Weyl tensor Cabcd

Kf Cabcd = 0 , Cabcd = C[ab][cd ] , ηacCabcd = 0 , C[abc]d = 0

ωa
bc and fa

b are composite function of ea
m while ba is pure gauge



An interlude: Poincaré gravity

So far conformal gravity with the full conformal group gauged.

Poincaré gravity: conformal gravity coupled to a dilaton field φ
transforming under dilatation as φ′ = e2τφ.
choose a gauge in which ba = 0 and φ = 1:
standard gravity invariant only under diffeomorphisms and Lorentz.
For example, the Einstein-Hilbert term:
action for a conformally coupled scalar compensator

I =

∫
d6x e φ∇a∇aφ , if ba = 0, φ = 1 =⇒ IEH ∝

∫
d6x eR

For example, scalar curvature squared:

I =

∫
d6x e φ−1(∇a∇aφ)2 , if ba = 0, φ = 1 =⇒ IR2 ∝

∫
d6x eR2

Analogously, a natural way to describe the multiplets of off-shell Poincaré
supergravity, and general supergravity-matter couplings, is to couple
off-shell conformal SUGRA to compensators see, e.g.:

superconformal tensor calculus



The standard Weyl multiplet of (1,0) conformal SUGRA

Multiplet of local off-shell gauging of OSp(6, 2|1), the N = (1, 0)
superconformal group in 6D. [Bergshoeff-Sezgin-VanProeyen (86)]

off-shell physical multiplet composed by independent gauge fields

vielbein em
a;

the gravitino ψm
α
i ;

SU(2) gauge field Vmij ;

a dilatation gauge field bm;

and a set of covariant “auxiliary/matter” fields (to close algebra off-shell)

real anti-self-dual tensor T−abc ;

a chiral fermion χαi ;

a real scalar field D.

How is this described in superspace?



6D conformal supergravity in conformal superspace

[Butter-Kuzenko-Novak-Theisen (16)]

Take a N = (1, 0) curved superspace M6|8 parametrised by coordinates

zM = (xm, θµi ) , m = 0, 1, 2, 3, 4, 5 , µ = 1, 2, 3, 4 , i = 1, 2

Choose the structure group X to contain
SO(5, 1) + SU(2)+(Dilatations)+(S−susy) + (K−boosts).
The superspace covariant derivatives are

∇A = EA
M∂M −ωA

bXb = EA
M∂M −

1

2
ΩA

abMab−ΦA
ijJij −BAD−FABK

B

- EA
M(z) supervielbein associated with PA = (Pa,Q

i
α), ∂M = ∂/∂zM ,

- ΩA
cd(z) Lorentz connection,

- ΦA(z) SU(2)-connection, - BA dilatation connection
- FAB special superconformal connection, KA = (K a,Sαi )

conformal SUGRA local gauge transformations:

K := ξA∇A +
1

2
ΛbcMbc + ΛijJij + τD + ΛAK

A , δK∇A = [K,∇A]



6D conformal supergravity in conformal superspace

One constrains the algebra [∇A,∇B} to be completely determined in
terms of the super-Weyl tensor:

W αβ = (γ̃abc)αβWabc

W αβ is a dimension-1 primary superfield

KAW βγ = 0 , DW αβ = W αβ

Jacobi/Bianchi Identities impose differential constraints on W αβ

The standard Weyl multiplet of 6D N = (1, 0) conformal
supergravity is encoded in the superspace geometry.
Component fields, identified as θ = 0 projections of the superspace
one-forms and descendants of W αβ [Butter-Novak-GTM (17)], e. g.:

T−abc := −2Wabc | , χαi := −3i

4
∇i
βW

αβ | , D := − 3i

16
∇k
α∇βkW αβ |



The tensor multiplet and dilaton-Weyl multiplet

So far we have considered only the standard Weyl multiplet which
possesses the covariant component fields: T−abc , χαi and D

A variant representation of the off-shell conformal supergravity multiplet:

The dilaton-Weyl multiplet is obtained by coupling the standard
Weyl multiplet to a (on-shell) tensor multiplet with scalar field Φ
Φ may be described by introducing a gauge (NSNS) two-form B2 in
superspace. Its field strength is the super 3-form H3 = dB2

H i
α
j
β
k
γ = 0 , Ha

i
α
j
β = 2iεij(γa)αβΦ , Hab

i
α = (γab)α

β∇i
βΦ ,

Habc = − i

8
(γ̃abc)γδ∇k

γ∇δkΦ− 4WabcΦ ,

where Φ is primary, DΦ = 2Φ, satisfying ∇(i
α∇j)

βΦ = 0

One can express Wabc = − 1
4Habc − i

32 (γ̃abc)γδ∇k
γ∇δkΦ

and then (σ := Φ|):

T−abc =
1

2σ
H−abc , D =

15

4σ
(∇̂a∇̂aσ +

1

3
T−abcHabc) + fermion terms

T−abc , χαi and D are exchanged with σ, ψi
α and bmn (Habc ' 3∇[abbc])



Action principles in six dimensions

So far multiplets, geometry and kinematics; how action principles?

We use the superform approach to engineer invariant actions from
closed super six-forms

This approach has been rediscovered a number of times:
[Hasler (1996)]; “Ectoplasm” [Gates-Grisaru-Knutt–Wehlau-Siegel

(1997)]; Rheonomic approach [Castellani-D’Auria-Fré (book-1991)]

The approach has been developed and used in e.g. the study of the
properties of UV counterterms in maximally supersymmetric
Yang-Mills theories [Bossard-Howe-Stelle (’09, ’10, ’13)] and N = 4
supergravity theories [Bossard-Howe-Lindström-Stelle-Wulff (’11)] ...

Since 2009 it has been employed and developed also by
Butter, Kuzenko, Novak, GTM to construct off-shell higher derivative
invariants



Superform approach to constructing actions I

In 6D, take a closed super 6-form J = 1
6!dz

M6 ∧ · · · ∧ dzM1JM1···M6 ,

dJ =
1

6!
dzM6 ∧ · · · ∧ dzM0∂M0JM1···M6 = 0

Action principle:

S =

∫
d6x ∗J|θ=0 ,

∗J =
1

6!
εmnpqrsJmnpqrs

Under a superdiffeomorphism with ξ = ξAEA = ξM∂M ,

δξJ = LξJ ≡ iξdJ + diξJ = diξJ .

We also require the action to be invariant under the the structure
group X and any additional gauge transformations

This means that J should transform by (at most) an exact form
under these transformations

δX J = dΞ , for some 5−form Ξ



Superform approach to constructing actions II

Expressing the action in terms of the tangent frame and by using
definition of the gravitini ψm

α
i (x) := 2Em

α
i (z)|

S =

∫
d6x

1

6!
εm1···m6Em6

A6 · · ·Em1

A1JA1···A6 |θ=0 ,

∝
∫

d6x e εa1···a6

[
Ja1···a6 + 3ψa1

α
i J

i
αa2···a6 +

15

4
ψa2

β
j ψa1

α
i J

i
α
j
βa3···a6

+
5

2
ψa3

γ
kψa2

β
j ψa1

α
i J

i
α
j
β
k
γa4a5a6 +O(ψ4)

]
|θ=0

Natural way to compute invariants reduced to component fields

the action S is invariant under the full local supergravity gauge
transformations K and any additional gauge transformations

Classifying closed super 6-forms J
one classifies supersymmetric invariants



(1,0) Poincaré EH R action: B4 ∧ F2 action principle

N = (1, 0) Einstein-Hilbert R term? [Bergshoeff-Sezgin-VanProeyen (’86)]

Use the Dilaton-Weyl multiplet

consider a “Linear-multiplet” conformal compensator based on a

scalar isotriplet G ij , ∇(i
αG jk) = 0 formulated as a closed super 5-form

H5 = dB4, Habc
i
α
j
β = −2i(γabc)αβG

ij

Construct an invariant action based on the closed 6-form J

J = B4 ∧ F2 − Σ , dΣ = −F2 ∧ H5

F2, dF2 = 0 a vector multiplet 2-form based on a superfield W αi

and Σ covariant 6-form (constructed from G ij , W αi and descendants)

=⇒ B4 ∧ F2 action principle:

SB4∧F2 =
1

2

∫
d6x e

( 1

4!
εabcdef fabbcdef + X ijGij + fermions

)
X ij is a scalar component of the vector multiplet X ij := i

4
∇(i
γW

γj)|



(1,0) Poincaré EH R action

Consider a composite vector multiplet of the linear multiplet

Wαi =
1

G
∇αβχi

β +
4

G

(
Wαβχi

β + 10iXαj G ji
)
−

1

2G3
Gjk (∇αβG ij )χk

β

+
1

2G3
G ijEαβχβj +

i

16G5
εαβγδχβjχγkχδlG

ijG kl

where

∇(i
αG

jk) = 0 , χi
α =

2

3
∇αjG ij , Eαβ =

i

8
εαβγδ∇k

[γχδ]k ; Xαi := −
i

10
∇i
βW

αβ

Plug it back in the vector multiplet part of the B4 ∧ F2 action and,
after gauge fixing, you get EH Poincaré SUGRA action

SEH = −1

2

∫
d6x eR+ · · ·



(1,0) SUGRA curvature squared invariants?

Novak, Ozkan, Pang & GTM arXiv:1706.09330;
Butter, Novak, Ozkan, Pang & GTM to appear



SUSY 6D R2?

supersymmetric extensions of general curvature squared Lagrangian?

LR2 ∝ a CabcdCabcd + bRabcdRabcd + cR2 + · · ·

Weyl tensor: Cab
cd = Rab

cd − δ[a
[cRb]

d ] + 1
10δ[a

[cδb]
d ]R

with Rab
cd component Riemann tensor

Ricci tensor: Ra
b := Rad

bd

Ricci scalar: R := Ra
a

All based on a new action principle
[Butter-Novak-Kuzenko-Theisen (16)]

[Novak-Ozkan-Pang-GTM (17)]



A new B2 ∧ H4 action principle

It turns out that we can construct all invariants by using an action
corresponding to the supersymmetrization of B2 ∧ H4

2-form B2 of tensor multiplet with H3 = dB2

H4 a closed 4-form dH4 = 0 based on Ba
ij = Ba

(ij)

H i
α
j
β
k
γ
l
δ = Ha

j
β
k
γ
l
δ = 0 , Hab

k
γ
l
δ = i(γabc )γδB

c kl

Habc
l
δ = − 1

12
εabcdef (γde)δ

ρ∇ρpB f lp , Habcd = i
48
εabcdef (γ̃e)αβ∇αk∇βlB f kl

where Bαβ ij = (γ̃a)αβBa
ij is a dimension 3 primary superfield

∇(i
αB

βγjk) = −
2

3
δ

[β
α ∇

(i
δB

γ]jk) , [∇(i
α,∇βk ]Bαβj)k = −8i∇αβBαβij

Construct an invariant action based on the closed 6-form J

J = B2 ∧ H4 − Σ′ , dΣ′ = H3 ∧ H4

Σ′ is covariant constructed only from field strengths of H3 and H4

=⇒ locally superconformal invariant action principle:

SB2∧H4
=

∫
d6x e

{1

4

(
bab − ηabσ

)
C ab + fermions

}
, Cab :=

i

12
(γ̃a)αβ∇αk∇βlBb

kl |



Riemann2

It was first constructed by [Bergshoeff-Rakowski (87)].
We can reproduce it by using the B2 ∧ H4 action principle with

Bαβij = − i

2
Λα(i

γ
δΛβj)δ

γ

and the primary

Λαiβ
γ = X i

β
αγ −

1

3
δαβX

γi +
1

12
δγβX

αi +
i

4
Φ−1ψi

βW
αγ +

i

12
Φ−1δαβW

γδψi
δ

−
i

12
Φ−1δγβW

αδψi
δ +

i

12
εαγδρΦ−1∇δ(ρψ

i
β) −

i

8
εαγδρΦ−2(∇δ(ρΦ)ψi

β)

+
i

32
εαγδρΦ−2Hρβψ

i
δ −

1

16
εαγδρΦ−3ψi

δψ
k
(ρψβ)k

where

Xαi := − i
10
∇i
βW

αβ , X k
γ
αβ = − i

4
∇k
γW

αβ − δ(α
γ Xβ)k

ψi
α = ∇i

αΦ , ∇i
αψ

j
β = − i

2
εij (γabc )αβH

+
abc − iεij (γa)αβ∇aΦ

Then, in the gauge σ = 1, bm = 0

LRiem2 = RabcdRabcd +O(bab) + fermions



scalar2

A R2 invariant was constructed in components by [Ozkan (13)] by using
results of [Bergshoeff-Sezgin-VanProeyen (86)]

We can reproduce it from superspace by using the B2 ∧ H4 action and

Bαβij = − i

2
Wα(iWβj)

with Wαi the same composite vector multiplet used for the EH term.



A new curvature squared invariant

A new curvature squared invariant by using the B2 ∧ H4 action and the
superfield [Butter-Kuzenko-Novak-Theisen (16)] (Yαβij = −5/2∇(i

αX
βj))

Bαβ ij = −4W γ[αYγ
β]ij − 32iXγ

αδ(iXδ
βγj) + 10iXα(iXβj)

this leads to a new independent off-shell R2 invariant
[Novak-Ozkan-Pang-GTM (17)]

Snew =
1

32

∫
d6x e

{
σCab

cdCcd
ab + 3σRab

ijRab
ij +

4

15
σD2 − 8σT−dab∇̂d ∇̂cT−abc

+4σ(∇̂cT
−abc )∇̂dT−abd + 4σT−abcT−ab

dT−ef
cT
−
efd −

8

45
HabcT

−abcD

−2HabcC
ab

deT
−cde + 4HabcT

−
d

ab∇̂eT
−cde −

4

3
HabcT

−deaT−bcf T−def

−
1

4
εabcdef bab

(
Ccd

ghCefgh −Rcd
ijRef ij

)}
+ fermions

In the gauge σ = 1 , ba = 0

Snew =
1

32

∫
d6x e

{
Rab

cdRcd
ab −Rb

dRd
b +

1

4
R2 + · · ·

}



Application: Gauss-Bonnet N = (1, 0) invariant

Constructed the new curvature squared invariant, we can describe an
off-shell extension of the Gauss-Bonnet combination in six dimensions:

SGB = −3SRiem2 + 128Snew

In the gauge σ = 1 , ba = 0

e−1LGB = RabcdRabcd − 4RabRab +R2

+ 1
2
RabcdH

abeHcd
e −RabH2

ab + 1
6
RH2 + 1

144
(H2)2 − 1

8
(H2

ab)2 + 5
24
H4

− 1
4
εabcdef babRcd

gh(ω+)Ref gh(ω+) + εabcdef babRcd
ijRef ij + fermions

where

ω+m
cd := ω+m

cd + 1
2
em

aHa
cd

H2 := HabcH
abc , H2

ab := Ha
cdHbcd , H4 := HabeHcd

eHacfHbd
f

Advantages to know the off-shell (1,0) Gauss-Bonnet invariant:

possible to add the invariant to general sugra-matter couplings

complete off-shell descriptions of NSNS b2-form

supersymmetry transformations completely under control.



Application: EH + Gauss-Bonnet supergravity

We can now consider the combination L = LEH + 1
16α
′LGB .

off-shell extension of α′-corrected string theory effective action:
On-shell (integrate auxiliary fields as pure EH, no ghosts!) and in a
particular gauge:

e−1L = e−2ϕ[R+ 4∂mϕ∂
mϕ− 1

12
HabcH

abc ]

+
1

16
α′
[
RabcdRabcd − 4RabRab +R2 + 1

2
RabcdH

abeHcd
e −RabH2

ab + 1
6
RH2

+ 1
144

(H2)2 − 1
8

(H2
ab)2 + 5

24
H4 − 1

4
εabcdef babRcd

gh(ω+)Ref gh(ω+)
]

It matches with on-shell string theory derivation of [Liu-Minasian (13)]

α′-corrected Type IIA reduced on K3, dual to Heterotic on T4.
Action possesses an AdS3 × S3 solution analogue of the famous
AdS5 × S5 solution in IIB string theory.
First time the α′-corrected KK spectrum of fluctuations around
AdS3 × S3 organized in short and long multiplets of
SU(1, 1|2)× SL(2,R)× SU(2).
Hints on the dynamics of strings in AdS3× S3× K3 background.
[Novak-Ozkan-Pang-GTM (17)]



6D (1,0) conformal supergravity actions?

Butter, Novak, & GTM JHEP 1705 (2017) 133; arXiv:1701.08163;



Conformal gravity invariants

We introduced conformal gravity

The conformal gravity actions may be written as

I =

∫
d6x e L , KaL = 0 , DL = 6L

with

L
(1)
C 3 = CabcdC

aefdCe
bc

f

L
(2)
C 3 = CabcdC

cdef Cef
ab

LC2C = C abcd∇2Cabcd +
1

2
(∇eCabcd)∇eC abcd

+
8

9
(∇dCabcd)∇eC

abce ,

and ∇2 := ∇a∇a

We seek to find supersymmetric extensions of the previous actions



A-action principle 6-form

A primary super 6-form can be constructed by choosing the first
non-vanishing component [Arias-Linch-Ridgway(’14)]

Jabc
i
α
j
β
k
γ = 3(γabc)(αβAγ)

ijk

where
∇(i

(αAβ)
jkl) = 0 , KBAα

ijk = 0

Closure, dJ = 0, fixes the remaining components of the superform
e.g. the top component of the superform is

Jabcdef = − i

244!
εαβγδεabcdef∇αi∇βj∇γkAδ ijk

The idea is that making Aα
ijk composite allows one to describe

locally superconformal invariants



6D N = (1, 0): C 3

It was proven in [Butter-Kuzenko-Novak-Theisen (16)] that only one cubic
composite primary can be constructed for C 3 based on the super-Weyl
tensor and its descendant

Aα
ijk = 5iεαβγδX

β(iX γjX δk) − 8iεαβγδX
β(iX j

α′
γβ′X

k)
β′
δα′

+
64i

3
εαβγδX

(i
α′
ββ′X j

β′
γγ′X

k)
γ′
δα′ + 4εαβγδYρ

β(ijX k)
η
ργW ηδ

−3εαβγδYρ
β(ijX γk)W ρδ

where we used descendants of W αβ

Xk
γ
αβ = −

i

4
∇k
γWαβ − δ(α

γ Xβ)k
, Xαi := −

i

10
∇i
βWαβ , Y :=

1

4
∇k
γX
γ
k
,

Yα
β ij := −

5

2

(
∇(i
αXβj) −

1

4
δ
β
α∇

(i
γXγj)

)
= −

5

2
∇(i
αXβj) ,

Yαβ
γδ := ∇k

(αXβ)k
γδ −

1

6
δ

(γ
β
∇k
ρXαk

δ)ρ −
1

6
δ

(γ
α ∇

k
ρXβk

δ)ρ

Plug it in the superform action principle, compute a LARGE NUMBER
(good decision of component frame; handle with a computer program;
group theory simplifications; ...) of descendant terms and you get:
[Butter-Novak-GTM (17)]



6D N = (1, 0): C 3 (bosonic +...)
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+ fermion terms



How about C2C?

Superspace ingredients from [Butter-Kuzenko-Novak-Theisen (16)],
B-action 6-form and gravitational composite:

based on a primary dimension 3,
Bαβ ij = (γ̃a)αβBa

ij = Bαβ(ij), ∇(i
αB

βγjk) = − 2
3
δ

[β
α ∇(i

δB
γ]jk)

yet another closed 6-form J, dJ = 0, now from Ba
ij ,

Superforms action principle =⇒ another components action principle
[Butter-Novak-GTM (17)]

a gravitational composite (same as new curvature squared)

Bαβ ij = W γ[αYγ
β]ij + 8iXγ

δ[α(iXδ
β]γj) − 5i

2 X
[α(iXβ]j)

Plug it in the superform action principle, compute descendants and get:



6D N = (1, 0): C2C (bosonic +...)
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6D N = (2, 0) in N = (1, 0):

How about the conformal supergravity action in the N = (2, 0) case?

By comparing our results with the purely gravitational part of known
anomalies for the N = (2, 0) tensor multiplet,
see heat-kernel calculations [Bastianelli-Frolov-Tseytlin (10)],
or holographic results [Kulaxizi-Parnachev (09)],
we can infer that the N = (1, 0) truncation of the unique N = (2, 0)
conformal supergravity action is given by the combination

S(2,0) =
1

2
SC 3 + SC2C

We can actually do more, and give a first proof based on
supersymmetry that the N = (2, 0) conformal supergravity action is
unique and fix most of its bosonic terms.



6D N = (2, 0) conformal SUGRA

We can construct with the following steps:

Assume that a (2,0) action exists;

Reduce the known (2,0) Weyl multiplet to (1,0)
[Bergshoeff-Sezgin-VanProeyen (99)];

Write the most general purely bosonic terms covariant under,
diffeomorphisms, Lorentz and R-symmetry group USp(4);

Reduce USp(4) to SU(2), the (1,0) R-symmetry group;

Compare with a combination of the SC 3 and SC2C (1,0) action;

Note that a DC abcdCabcd term, appearing in both (1,0) invariants,
cannot be lifted to (2,0);

To cancel these two in the (2,0) action reduced to (1,0) one has to
choose

S(2,0) =
1

2
SC 3 + SC2C



6D N = (2, 0)

All the terms then naturally lift form (1,0) to (2,0)
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Red terms consistent with known results in literature.
The rest is new although bosonic action is not fixed being α a free
parameter and O(T 4) still undetermined.



Conclusion and Outlook

The examples given indicate that there exist powerful techniques to
construct higher derivative sugra invariants off-shell.

can potentially improve the classification and construction of new
higher derivative invariants in various dimensions

The new 6D curvature-squared invariant complete an element
missing since the 80s, see the Gauss-Bonnet

Of importance in studying low energy String Theory and
α′-corrected AdS/CFT, ...

The new conformal supergravities in 6D are of importance in
studying anomalies in 6D QFT, possibly CFT and AdS/CFT, ...

next?

Extensions of N = (1, 0) curvature squared? general matter coupled
and...
How about N = (1, 1) (arising from Type IIA/Heterotic)?
and N = (2, 0) (arising from Type IIB)?

Complete the construction of the N = (2, 0) conformal supergravity
invariant in (2,0) conformal superspace. This would give a final
proof of its existence
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