## Higher derivatives invariants in $6 \mathrm{D} \mathcal{N}=(1,0)$ supergravity

## Gabriele Tartaglino-Mazzucchelli

ITF KU Leuven, Leuven

## SQS'2017

Dubna August 2, 2017
Based on:
Butter, Novak \& GTM, JHEP 1705 (2017) 133; arXiv:1701.08163
Novak, Ozkan, Pang \& GTM arXiv:1706.09330; Butter, Novak, Ozkan, Pang \& GTM to appear
see also:
Butter, Kuzenko, Novak \& Theisen JHEP 1612 (2016) 072; arXiv:1606.02921

## Outline

(1) Introduction and Motivations
(2) $6 \mathrm{D} \mathcal{N}=(1,0)$ Poincaré SUGRA
(3) $6 \mathrm{D} \mathcal{N}=(1,0)$ curvature squared invariants
(4) Application: Gauss-Bonnet supergravity
(5) $6 \mathrm{D} \mathcal{N}=(1,0)$ conformal supergravity actions
(6) Application: $6 \mathrm{D} \mathcal{N}=(2,0)$ conformal SUGRA
(7) Conclusion and Outlook

## Why higher-derivatives invariants?

- String theory effective action: modified supergravity (SUGRA) by an infinite series of higher derivative quantum corrections

$$
L_{\text {string }}^{\text {low }}=L_{S G}+\sum\left[\mathcal{D}^{p} \mathcal{R}_{\ldots}^{q}\right]+\text { forms }+ \text { susy completion }
$$

SUSY higher-derivatives terms are poorly understood but, e. g.:

- important for phenomenological applications of string theory, see compactifications with fluxes.
- important for black-hole physics within string theory. indeed for computing higher-order corrections to black-hole entropy needed for precision tests of AdS/CFT in SUSY (treatable) cases.
- Counterterms for UV divergencies in SUGRA see open debate on finiteness in, e.g., 4D $\mathcal{N}=8$ sugra [Stelle, Howe, Kallosh, Bern, ...]
even the simple SUSY $\mathcal{R}^{2}$ case is not fully understood in general (see for example 6D) but

For instance $\mathcal{R}^{2}$ gravity attracted attention for over 50 years:

- renormalization of QFT in curved spacetime requires counterterms containing $\mathcal{R}^{2}$ [Utiyama \& DeWitt ('62)]
- In 4D, $\mathcal{R}^{2}$ terms govern the structure of QFT conformal anomalies relevant in studying renormalization group flows, see 4D a-theorem [Komargodski and Schwimmer ('11)]
- Renormalizable (not unitary) $\alpha\left(\mathcal{C}_{a b c d}\right)^{2}+\beta\left(\mathcal{R}_{a b}\right)^{2}+\gamma \mathcal{R}^{2}$, [Stelle ('77)]
- $\mathcal{R}+\mathcal{R}^{2}$ Starobinsky model of inflation [Starobinsky ('80)] Interestingly, $\mathcal{R}+\mathcal{R}^{2}$ SUGRA models are promising inflationary candidates for CMB data.


## Gauss-Bonnet: $\mathcal{R}_{a b c d} \mathcal{R}^{a b c d}-4 \mathcal{R}_{a b} \mathcal{R}^{a b}+\mathcal{R}^{2}$

An interesting curvature squared combination is Gauss-Bonnet

- In 4D it is a topological term (Euler characteristic) arising as the Type A conformal anomaly.
- Governs $\alpha^{\prime}$-corrections in compactified string theory [Zweibach (85)]......
- In $\mathrm{D}>4$ it is involved in the definition of ghost free critical gravities
- In general its structure for any space-time dimensions and amount of susy is not known. In particular, the dependence upon the extra sugra matter fields, see the dilaton $\sigma$ and NSNS $b_{2}$ 2-form
In 4D [Butter-deWit-Kuzenko-Lodato (13)] and 5D [Ozkan-Pang (13)] the Gauss-Bonnet was constructed off-shell.

In 6D a full classification of the $\mathcal{R}^{2}$ invariants is missing and in particular the GB invariant has never been fully constructed. We will fill this gap

## $\mathcal{D}^{p} \mathcal{R}^{q}$ with $p+q \geq 2$ ?

How about interesting invariants beyond $\mathcal{R}^{2}$ ?

$$
\text { six derivatives } \propto \mathcal{R}^{3}+\mathcal{D}^{2} \mathcal{R}^{2}
$$

6D conformal supergravity invariants were not known

- In 6D they play a special role parametrizing conformal anomalies
- of importance in studying renormalization group flows and dilaton effective action of 6D QFT;
- Structure of anomalies can help understanding mysterious $(1,0)$ and $(2,0)$ 6D CFT as for instance in the context of AdS/CFT, M5-branes, ...


## how higher-derivatives SUGRA?

Once convinced about the importance of higher derivative supergravity the question is: how to efficiently construct them?

- Best approach would be to possess a formalism that guarantees manifest supersymmetry in a model independent way
$\Downarrow$
An off-shell approach to SUGRA, when available, can be used for general supergravity-matter couplings with model independent susy.
- Two possibilities:
- component fields superconformal tensor calculus

See "Supergravity" book by [Freedman \& Van Proeyen (12)]

- superspace approaches See classic books [Gates, Grisaru, Roček, Siegel
(83)], [Wess-Bagger (92)], [Buchbinder, Kuzenko (98)], [Galperin, Ivanov, Ogievetsky, Sokatchev (2001)]


## how off-shell SUGRA?

The two approaches can be linked and powerfully used together through conformal superspace

- manifestly gauge entire superconformal algebra in superspace [Kugo-Uehara (85)] and combine advantages of both approaches
- Constructed first by Butter 4D $\mathcal{N}=1$ in 2009 and $\mathcal{N}=2$ in 2011
- developed and extended to 3D $\mathcal{N}$ - extended and 5D $\mathcal{N}=1$ SUGRA [Butter-Kuzenko-Novak-GTM ('13), ('14)]
- recently $6 \mathrm{D} \boldsymbol{\mathcal { N }}=(1,0)$ [Butter-Kuzenko-Novak-Theisen ('16)] see also [Butter-Novak-GTM ('17)]


## how higher derivatives off-shell SUGRA? outline

In superspace one efficiently:

- Describes off-shell supermultiplets, SUGRA, matter
- Provides manifestly supersymmetric off-shell action principles
- powerful cohomological "superform" techniques to construct and classify SUSY invariants including their component reduction.
- reduces to components and derives superconformal tensor calculus

With these techniques, one can in principle have a systematic approach for higher derivative off-shell invariants.

Examples:

- $6 \mathrm{D} \mathcal{N}=(1,0)$ (four-derivatives) curvature squared terms;
- $6 \mathrm{D} \mathcal{N}=(1,0)$ (six-derivatives) conformal supergravity invariants and informations about $\mathcal{N}=(2,0)$ case.

Review: standard $(1,0)$ Poincaré Supergravity

## An interlude: Conformal gravity

- Conformal gravity in six dimensions may be viewed as gauging the entire conformal group $\mathrm{SO}(6,2), X_{\underline{a}}=\left\{P_{a}, M_{a b}, \mathbb{D}, K_{a}\right\}$
- The vielbein $e_{a}{ }^{m}$ is associated with $P_{a}$ (diff.=local-translations) gauge connections are associated with the other generators which can be used to construct covariant derivatives

$$
\nabla_{a}=e_{a}^{m} \partial_{m}-\frac{1}{2} \omega_{a}^{b c} M_{b c}-b_{a} \mathbb{D}-f_{a}^{b} K_{b}
$$

- The covariant derivative algebra is constrained to be expressed entirely in terms of the Weyl tensor $C_{a b c d}$

$$
K_{f} C_{a b c d}=0, \quad C_{a b c d}=C_{[a b][c d]}, \quad \eta^{a c} C_{a b c d}=0, \quad C_{[a b c] d}=0
$$

- $\omega_{a}{ }^{b c}$ and $f_{a}{ }^{b}$ are composite function of $e_{a}^{m}$ while $b_{a}$ is pure gauge


## An interlude: Poincaré gravity

So far conformal gravity with the full conformal group gauged.

- Poincaré gravity: conformal gravity coupled to a dilaton field $\phi$ transforming under dilatation as $\phi^{\prime}=\mathrm{e}^{2 \tau} \phi$.
- choose a gauge in which $b_{a}=0$ and $\phi=1$ : standard gravity invariant only under diffeomorphisms and Lorentz.
- For example, the Einstein-Hilbert term: action for a conformally coupled scalar compensator

$$
I=\int \mathrm{d}^{6} \times e \phi \nabla^{a} \nabla_{a} \phi, \quad \text { if } b_{a}=0, \phi=1 \Longrightarrow \quad I_{E H} \propto \int \mathrm{~d}^{6} \times e \mathcal{R}
$$

- For example, scalar curvature squared:

$$
I=\int \mathrm{d}^{6} \times e \phi^{-1}\left(\nabla^{a} \nabla_{a} \phi\right)^{2}, \text { if } b_{a}=0, \phi=1 \Longrightarrow \quad I_{\mathcal{R}^{2}} \propto \int \mathrm{~d}^{6} \times e \mathcal{R}^{2}
$$

Analogously, a natural way to describe the multiplets of off-shell Poincaré supergravity, and general supergravity-matter couplings, is to couple off-shell conformal SUGRA to compensators see, e.g.:

## The standard Weyl multiplet of $(1,0)$ conformal SUGRA

Multiplet of local off-shell gauging of $\operatorname{OSp}(6,2 \mid 1)$, the $\mathcal{N}=(1,0)$ superconformal group in 6D. [Bergshoeff-Sezgin-VanProeyen (86)] off-shell physical multiplet composed by independent gauge fields

- vielbein $e_{m}{ }^{a}$;
- the gravitino $\psi_{m_{i}}^{\alpha}$;
- $\operatorname{SU}(2)$ gauge field $\mathcal{V}_{m}{ }^{i j}$;
- a dilatation gauge field $b_{m}$;
and a set of covariant "auxiliary/matter" fields (to close algebra off-shell)
- real anti-self-dual tensor $T_{a b c}^{-}$;
- a chiral fermion $\chi^{\alpha i}$;
- a real scalar field $D$.

How is this described in superspace?

## 6D conformal supergravity in conformal superspace

## [Butter-Kuzenko-Novak-Theisen (16)]

Take a $\mathcal{N}=(1,0)$ curved superspace $\mathcal{M}^{6 \mid 8}$ parametrised by coordinates

$$
z^{M}=\left(x^{m}, \theta_{i}^{\mu}\right), \quad m=0,1,2,3,4,5, \quad \mu=1,2,3,4, \quad \mathbf{i}=\underline{1}, \underline{2}
$$

Choose the structure group $X$ to contain
$\mathrm{SO}(5,1)+\mathrm{SU}(2)+$ (Dilatations) $)+(S$-susy $)+(K$-boosts $)$.
The superspace covariant derivatives are

$$
\nabla_{A}=E_{A}{ }^{M} \partial_{M}-\omega_{A}^{\underline{b}} X_{\underline{b}}=E_{A}{ }^{M} \partial_{M}-\frac{1}{2} \Omega_{A}^{a b} M_{a b}-\Phi_{A}{ }^{i j} J_{i j}-B_{A} \mathbb{D}-\mathfrak{F}_{A B} K^{B}
$$

- $E_{A}{ }^{M}(z)$ supervielbein associated with $P_{A}=\left(P_{a}, Q_{\alpha}^{i}\right), \quad \partial_{M}=\partial / \partial z^{M}$,
$-\Omega_{A}^{c d}(z)$ Lorentz connection,
- $\Phi_{A}(z) S U(2)$-connection, - $B_{A}$ dilatation connection
- $\mathfrak{F}_{A B}$ special superconformal connection, $K^{A}=\left(K^{a}, S_{i}^{\alpha}\right)$
- conformal SUGRA local gauge transformations:

$$
\mathcal{K}:=\xi^{A} \nabla_{A}+\frac{1}{2} \Lambda^{b c} M_{b c}+\Lambda^{i j} J_{i j}+\tau \mathbb{D}+\Lambda_{A} K^{A}, \quad \delta_{\mathcal{K}} \nabla_{A}=\left[\mathcal{K}, \nabla_{A}\right]
$$

## 6D conformal supergravity in conformal superspace

One constrains the algebra $\left[\nabla_{A}, \nabla_{B}\right\}$ to be completely determined in terms of the super-Weyl tensor:

$$
W^{\alpha \beta}=\left(\tilde{\gamma}^{a b c}\right)^{\alpha \beta} W_{a b c}
$$

- $W^{\alpha \beta}$ is a dimension-1 primary superfield

$$
K^{A} W^{\beta \gamma}=0, \quad \mathbb{D} W^{\alpha \beta}=W^{\alpha \beta}
$$

Jacobi/Bianchi Identities impose differential constraints on $W^{\alpha \beta}$

- The standard Weyl multiplet of $6 D \mathcal{N}=(1,0)$ conformal supergravity is encoded in the superspace geometry.
Component fields, identified as $\theta=0$ projections of the superspace one-forms and descendants of $W^{\alpha \beta}$ [Butter-Novak-GTM (17)], e. g.:

$$
T_{a b c}^{-}:=-2 W_{a b c}\left|, \quad \chi^{\alpha i}:=-\frac{3 \mathrm{i}}{4} \nabla_{\beta}^{i} W^{\alpha \beta}\right|, \quad D:=-\frac{3 \mathrm{i}}{16} \nabla_{\alpha}^{k} \nabla_{\beta k} W^{\alpha \beta}
$$

## The tensor multiplet and dilaton-Weyl multiplet

So far we have considered only the standard Weyl multiplet which possesses the covariant component fields: $T_{a b c}^{-}, \chi^{\alpha i}$ and $D$
A variant representation of the off-shell conformal supergravity multiplet:

- The dilaton-Weyl multiplet is obtained by coupling the standard Weyl multiplet to a (on-shell) tensor multiplet with scalar field $\Phi$
- $\Phi$ may be described by introducing a gauge (NSNS) two-form $B_{2}$ in superspace. Its field strength is the super 3 -form $H_{3}=\mathrm{d} B_{2}$

$$
\begin{aligned}
H_{\alpha \beta \gamma}^{i j k} & =0, \quad H_{a \alpha \beta}^{i j}=2 i \varepsilon^{i j}\left(\gamma_{a}\right)_{\alpha \beta} \Phi, \quad H_{a b \alpha}^{i}=\left(\gamma_{a b}\right)_{\alpha}{ }^{\beta} \nabla_{\beta}^{i} \Phi, \\
H_{a b c} & =-\frac{i}{8}\left(\tilde{\gamma}_{a b c}\right)^{\gamma \delta} \nabla_{\gamma}^{k} \nabla_{\delta k} \Phi-4 W_{a b c} \Phi,
\end{aligned}
$$

where $\Phi$ is primary, $\mathbb{D} \Phi=2 \Phi$, satisfying $\nabla_{\alpha}^{(i} \nabla_{\beta}^{j)} \Phi=0$

- One can express $W_{a b c}=-\frac{1}{4} H_{a b c}-\frac{i}{32}\left(\tilde{\gamma}_{a b c}\right)^{\gamma \delta} \nabla_{\gamma}^{k} \nabla_{\delta k} \Phi$ and then $(\sigma:=\Phi \mid)$ :
$T_{a b c}^{-}=\frac{1}{2 \sigma} H_{a b c}^{-}, \quad D=\frac{15}{4 \sigma}\left(\hat{\nabla}^{a} \hat{\nabla}_{a} \sigma+\frac{1}{3} T^{-a b c} H_{a b c}\right)+$ fermion terms
- $T_{a b c}^{-}, \chi^{\alpha i}$ and $D$ are exchanged with $\sigma, \psi_{\alpha}^{i}$ and $b_{m n}\left(H_{a b c} \simeq 3 \nabla_{[a} b_{b c]}\right)$


## Action principles in six dimensions

So far multiplets, geometry and kinematics; how action principles?

- We use the superform approach to engineer invariant actions from closed super six-forms
- This approach has been rediscovered a number of times:
[Hasler (1996)]; "Ectoplasm" [Gates-Grisaru-Knutt-Wehlau-Siegel (1997)]; Rheonomic approach [Castellani-D'Auria-Fré (book-1991)]
- The approach has been developed and used in e.g. the study of the properties of UV counterterms in maximally supersymmetric Yang-Mills theories [Bossard-Howe-Stelle ('09, '10, '13)] and $\mathrm{N}=4$ supergravity theories [Bossard-Howe-Lindström-Stelle-Wulff ('11)] ...
- Since 2009 it has been employed and developed also by Butter, Kuzenko, Novak, GTM to construct off-shell higher derivative invariants


## Superform approach to constructing actions I

- In 6D, take a closed super 6-form $J=\frac{1}{6!} \mathrm{d} z^{M_{6}} \wedge \cdots \wedge \mathrm{~d} z^{M_{1}} J_{M_{1} \cdots M_{6}}$,

$$
\mathrm{d} J=\frac{1}{6!} \mathrm{d} z^{M_{6}} \wedge \cdots \wedge \mathrm{~d} z^{M_{0}} \partial_{M_{0}} J_{M_{1} \cdots M_{6}}=0
$$

- Action principle:

$$
S=\left.\int \mathrm{d}^{6} x^{*} J\right|_{\theta=0}, \quad{ }^{*} J=\frac{1}{6!} \varepsilon^{m n p q r s} J_{m n p q r s}
$$

Under a superdiffeomorphism with $\xi=\xi^{A} E_{A}=\xi^{M} \partial_{M}$,

$$
\delta_{\xi} J=\mathcal{L}_{\xi} J \equiv i_{\xi} \mathrm{d} J+\mathrm{d} i_{\xi} J=\mathrm{d} i_{\xi} J .
$$

- We also require the action to be invariant under the the structure group $X$ and any additional gauge transformations
- This means that $J$ should transform by (at most) an exact form under these transformations

$$
\delta_{X} J=\mathrm{d} \equiv, \quad \text { for some } 5 \text {-form } \equiv
$$

## Superform approach to constructing actions II

- Expressing the action in terms of the tangent frame and by using definition of the gravitini $\psi_{m i}^{\alpha}(x):=2 E_{m i}^{\alpha}(z) \mid$

$$
\begin{aligned}
S= & \int \mathrm{d}^{6} \times\left.\frac{1}{6!} \varepsilon^{m_{1} \cdots m_{6}} E_{m_{6}}{ }^{A_{6}} \cdots E_{m_{1}}{ }^{A_{1}} J_{A_{1} \cdots A_{6}}\right|_{\theta=0}, \\
\propto & \int \mathrm{~d}^{6} \times \mathrm{e} \varepsilon^{a_{1} \cdots a_{6}}\left[J_{a_{1} \cdots a_{6}}+3 \psi_{a_{1} i}{ }^{\alpha} J_{\alpha a_{2} \cdots a_{6}}^{i}+\frac{15}{4} \psi_{a_{2} j}{ }^{\beta} \psi_{a_{1} i}{ }^{\alpha} j_{\alpha \beta \beta a_{3} \cdots a_{6}}^{j}\right. \\
& \left.+\frac{5}{2} \psi_{a_{3} k}{ }^{\gamma} \psi_{a_{2} j}{ }^{\beta} \psi_{a_{1} i}{ }^{\alpha} j_{\alpha \beta}^{i j}{ }^{k} \gamma{ }_{4 a 45 a_{6}}+\mathcal{O}\left(\psi^{4}\right)\right]\left.\right|_{\theta=0}
\end{aligned}
$$

Natural way to compute invariants reduced to component fields
the action $S$ is invariant under the full local supergravity gauge transformations $\mathcal{K}$ and any additional gauge transformations

Classifying closed super 6-forms J one classifies supersymmetric invariants

## $(1,0)$ Poincaré EH $\mathcal{R}$ action: $B_{4} \wedge F_{2}$ action principle

$\mathcal{N}=(1,0)$ Einstein-Hilbert $\mathcal{R}$ term? [Bergshoeff-Sezgin-VanProeyen ('86)]

- Use the Dilaton-Weyl multiplet
- consider a "Linear-multiplet" conformal compensator based on a scalar isotriplet $G^{i j}, \nabla_{\alpha}^{(i} G^{j k)}=0$ formulated as a closed super 5-form

$$
H_{5}=\mathrm{d} B_{4}, \quad H_{a b c}{ }_{c}^{i j}=-2 \mathrm{i}\left(\gamma_{a b c}\right)_{\alpha \beta} G^{i j}
$$

- Construct an invariant action based on the closed 6 -form J

$$
J=B_{4} \wedge F_{2}-\Sigma, \quad \mathrm{d} \Sigma=-F_{2} \wedge H_{5}
$$

$F_{2}, \mathrm{~d} F_{2}=0$ a vector multiplet 2 -form based on a superfield $W^{\alpha i}$ and $\Sigma$ covariant 6 -form (constructed from $G^{i j}, W^{\alpha i}$ and descendants)
$\Longrightarrow B_{4} \wedge F_{2}$ action principle:

$$
S_{B_{4} \wedge F_{2}}=\frac{1}{2} \int \mathrm{~d}^{6} \times e\left(\frac{1}{4!} \varepsilon^{\text {abcdef }} f_{a b} b_{c d e f}+X^{i j} G_{i j}+\text { fermions }\right)
$$

$X^{i j}$ is a scalar component of the vector multiplet $X^{i j}:=\frac{i}{4} \nabla_{\gamma}^{(i} W^{\gamma j)}$

## (1,0) Poincaré EH $\mathcal{R}$ action

- Consider a composite vector multiplet of the linear multiplet

$$
\begin{aligned}
\mathbb{W}^{\alpha i}= & \frac{1}{G} \nabla^{\alpha \beta} \chi_{\beta}^{i}+\frac{4}{G}\left(W^{\alpha \beta} \chi_{\beta}^{i}+10 i X_{j}^{\alpha} G^{j i}\right)-\frac{1}{2 G^{3}} G_{j k}\left(\nabla^{\alpha \beta} G^{i j}\right) \chi_{\beta}^{k} \\
& +\frac{1}{2 G^{3}} G^{i j} E^{\alpha \beta} \chi_{\beta j}+\frac{i}{16 G^{5}} \varepsilon^{\alpha \beta \gamma \delta} \chi_{\beta j} \chi_{\gamma k} \chi_{\delta l} G^{i j} G^{k l}
\end{aligned}
$$

where
$\nabla_{\alpha}^{(i} G^{j k)}=0, \quad \chi_{\alpha}^{i}=\frac{2}{3} \nabla_{\alpha j} G^{i j}, \quad E^{\alpha \beta}=\frac{i}{8} \varepsilon^{\alpha \beta \gamma \delta} \nabla_{[\gamma}^{k} \chi_{\delta] k} ; \quad X^{\alpha i}:=-\frac{i}{10} \nabla_{\beta}^{i} W^{\alpha \beta}$

- Plug it back in the vector multiplet part of the $B_{4} \wedge F_{2}$ action and, after gauge fixing, you get EH Poincaré SUGRA action

$$
S_{E H}=-\frac{1}{2} \int \mathrm{~d}^{6} \times e \mathcal{R}+\cdots
$$

# $(1,0)$ SUGRA curvature squared invariants? 

Novak, Ozkan, Pang \& GTM arXiv:1706.09330; Butter, Novak, Ozkan, Pang \& GTM to appear

## SUSY 6D $\mathcal{R}^{2} ?$

supersymmetric extensions of general curvature squared Lagrangian?

$$
\mathcal{L}_{R^{2}} \propto a \mathcal{C}^{a b c d} \mathcal{C}_{a b c d}+b \mathcal{R}^{a b c d} \mathcal{R}_{a b c d}+c \mathcal{R}^{2}+\cdots
$$

- Weyl tensor: $C_{a b}{ }^{c d}=\mathcal{R}_{a b}{ }^{c d}-\delta_{[a}{ }^{[c} \mathcal{R}_{b]}{ }^{d]}+\frac{1}{10} \delta_{[a}{ }^{[c} \delta_{b]}{ }^{d]} \mathcal{R}$ with $\mathcal{R}_{a b}{ }^{c d}$ component Riemann tensor
- Ricci tensor: $\mathcal{R}_{a}{ }^{b}:=\mathcal{R}_{a d}{ }^{b d}$
- Ricci scalar: $\mathcal{R}:=\mathcal{R}_{a}{ }^{a}$

All based on a new action principle [Butter-Novak-Kuzenko-Theisen (16)]
[Novak-Ozkan-Pang-GTM (17)]

## A new $B_{2} \wedge H_{4}$ action principle

It turns out that we can construct all invariants by using an action corresponding to the supersymmetrization of $B_{2} \wedge H_{4}$

- 2-form $B_{2}$ of tensor multiplet with $H_{3}=\mathrm{d} B_{2}$
- $H_{4}$ a closed 4-form $\mathrm{d}_{4}=0$ based on $B_{a}{ }^{i j}=B_{a}{ }^{(i j)}$

$$
\begin{aligned}
H_{\alpha}^{i j}{ }_{\beta}^{k I}{ }_{\gamma \delta}=H_{a}^{j}{ }_{\beta}{ }_{\gamma \delta}{ }^{\prime}=0, & H_{a b}{ }_{\gamma \delta}^{k I}=\mathrm{i}\left(\gamma_{a b c}\right)_{\gamma \delta} B^{c k l} \\
H_{a b c}{ }_{\delta}^{\prime}=-\frac{1}{12} \varepsilon_{a b c d e f}\left(\gamma^{d e}\right)_{\delta}{ }^{\rho} \nabla_{\rho p} B^{f l \rho}, & H_{a b c d}=\frac{\mathrm{i}}{48} \varepsilon_{a b c d e f}\left(\tilde{\gamma}^{e}\right)^{\alpha \beta} \nabla_{\alpha k} \nabla_{\beta l} B^{f k l}
\end{aligned}
$$

where $B^{\alpha \beta i j}=\left(\tilde{\gamma}^{a}\right)^{\alpha \beta} B_{a}{ }^{i j}$ is a dimension 3 primary superfield

$$
\nabla_{\alpha}^{(i} B^{\beta \gamma j k)}=-\frac{2}{3} \delta_{\alpha}^{[\beta} \nabla_{\delta}^{(i} B^{\gamma] j k)}, \quad\left[\nabla_{\alpha}^{(i}, \nabla_{\beta k}\right] B^{\alpha \beta j) k}=-8 i \nabla_{\alpha \beta} B^{\alpha \beta i j}
$$

- Construct an invariant action based on the closed 6-form J

$$
J=B_{2} \wedge H_{4}-\Sigma^{\prime}, \quad \mathrm{d} \Sigma^{\prime}=H_{3} \wedge H_{4}
$$

$\Sigma^{\prime}$ is covariant constructed only from field strengths of $H_{3}$ and $H_{4}$
$\Longrightarrow$ locally superconformal invariant action principle:

$$
S_{B_{2} \wedge H_{4}}=\int \mathrm{d}^{6} \times e\left\{\frac{1}{4}\left(b_{a b}-\eta_{a b} \sigma\right) C^{a b}+\text { fermions }\right\}, \quad C_{a b}: \left.=\frac{\mathrm{i}}{12}\left(\tilde{\gamma}_{a}\right)^{\alpha \beta} \nabla_{\alpha k} \nabla_{\beta \mid} B_{b}^{k l} \right\rvert\,
$$

## Riemann²

It was first constructed by [Bergshoeff-Rakowski (87)].
We can reproduce it by using the $B_{2} \wedge H_{4}$ action principle with

$$
B^{\alpha \beta i j}=-\frac{i}{2} \Lambda^{\alpha(i}{ }_{\gamma}{ }^{\delta} \Lambda^{\beta j)}{ }_{\delta}{ }^{\gamma}
$$

and the primary

$$
\begin{aligned}
\Lambda^{\alpha i}{ }_{\beta}^{\gamma}= & X_{\beta}^{i \alpha \gamma}-\frac{1}{3} \delta_{\beta}^{\alpha} X^{\gamma i}+\frac{1}{12} \delta_{\beta}^{\gamma} X^{\alpha i}+\frac{\mathrm{i}}{4} \Phi^{-1} \psi_{\beta}^{i} W^{\alpha \gamma}+\frac{\mathrm{i}}{12} \Phi^{-1} \delta_{\beta}^{\alpha} W^{\gamma \delta} \psi_{\delta}^{i} \\
& -\frac{\mathrm{i}}{12} \Phi^{-1} \delta_{\beta}^{\gamma} W^{\alpha \delta} \psi_{\delta}^{i}+\frac{\mathrm{i}}{12} \varepsilon^{\alpha \gamma \delta \rho} \Phi^{-1} \nabla_{\delta(\rho} \psi_{\beta)}^{i}-\frac{\mathrm{i}}{8} \varepsilon^{\alpha \gamma \delta \rho} \Phi^{-2}\left(\nabla_{\delta(\rho} \Phi\right) \psi_{\beta)}^{i} \\
& +\frac{\mathrm{i}}{32} \varepsilon^{\alpha \gamma \delta \rho} \Phi^{-2} H_{\rho \beta} \psi_{\delta}^{i}-\frac{1}{16} \varepsilon^{\alpha \gamma \delta \rho} \Phi^{-3} \psi_{\delta}^{i} \psi_{(\rho}^{k} \psi_{\beta) k}
\end{aligned}
$$

where

$$
\begin{gathered}
X^{\alpha i}:=-\frac{\mathrm{i}}{10} \nabla_{\beta}^{i} W^{\alpha \beta}, \quad X_{\gamma}^{k \alpha \beta}=-\frac{\mathrm{i}}{4} \nabla_{\gamma}^{k} W^{\alpha \beta}-\delta_{\gamma}^{(\alpha} X^{\beta) k} \\
\psi_{\alpha}^{i}=\nabla_{\alpha}^{i} \Phi, \quad \nabla_{\alpha}^{i} \psi_{\beta}^{j}=-\frac{\mathrm{i}}{2} \varepsilon^{i j}\left(\gamma^{a b c}\right)_{\alpha \beta} H_{a b c}^{+}-\mathrm{i} \varepsilon^{i j}\left(\gamma^{a}\right)_{\alpha \beta} \nabla_{a} \Phi
\end{gathered}
$$

Then, in the gauge $\sigma=1, b_{m}=0$

$$
\mathcal{L}_{\text {Riem }^{2}}=\mathcal{R}^{a b c d} \mathcal{R}_{a b c d}+\mathcal{O}\left(b_{a b}\right)+\text { fermions }
$$

## scalar ${ }^{2}$

A $\mathcal{R}^{2}$ invariant was constructed in components by [Ozkan (13)] by using results of [Bergshoeff-Sezgin-VanProeyen (86)]
We can reproduce it from superspace by using the $B_{2} \wedge H_{4}$ action and

$$
B^{\alpha \beta i j}=-\frac{\mathrm{i}}{2} \mathbb{W}^{\alpha(i} \mathbb{W}^{\beta j)}
$$

with $\mathbb{W}^{\alpha i}$ the same composite vector multiplet used for the EH term.

## A new curvature squared invariant

A new curvature squared invariant by using the $B_{2} \wedge H_{4}$ action and the superfield [Butter-Kuzenko-Novak-Theisen (16)] ( $\left.Y_{\alpha}{ }^{\beta i j}=-5 / 2 \nabla_{\alpha}^{i} X^{\beta j}\right)$

$$
B^{\alpha \beta i j}=-4 W^{\gamma[\alpha} Y_{\gamma}{ }^{\beta] j}-32 \mathrm{i} X_{\gamma}{ }^{\alpha \delta(i} X_{\delta}{ }^{\beta \gamma j)}+10 \mathrm{i} X^{\alpha(i} X^{\beta j)}
$$

this leads to a new independent off-shell $\mathcal{R}^{2}$ invariant [Novak-Ozkan-Pang-GTM (17)]

$$
\begin{aligned}
S_{\text {new }}= & \frac{1}{32} \\
& \int \mathrm{~d}^{6} \times e\left\{\sigma C_{a b}{ }^{c d} C_{c d}{ }^{a b}+3 \sigma \mathcal{R}_{a b}{ }^{i j} \mathcal{R}^{a b}{ }_{i j}+\frac{4}{15} \sigma D^{2}-8 \sigma T^{-d a b} \hat{\nabla}_{d} \hat{\nabla}^{c} T_{a b c}^{-}\right. \\
& +4 \sigma\left(\hat{\nabla}_{c} T^{-a b c}\right) \hat{\nabla}^{d} T_{a b d}^{-}+4 \sigma T^{-a b c} T_{a b}^{-d} T^{-e f}{ }_{c} T_{e f d}^{-}-\frac{8}{45} H_{a b c} T^{-a b c} D \\
& -2 H_{a b c} C^{a b}{ }_{d e} T^{-c d e}+4 H_{a b c} T_{d}^{-a b} \hat{\nabla}_{e} T^{-c d e}-\frac{4}{3} H_{a b c} T^{-d e a} T^{-b c f} T_{d e f}^{-} \\
& \left.-\frac{1}{4} \varepsilon^{a b c d e f} b_{a b}\left(C_{c d}{ }^{g h} C_{e f g h}-\mathcal{R}_{c d}{ }^{i j} \mathcal{R}_{e f} i j\right)\right\}+ \text { fermions }
\end{aligned}
$$

In the gauge $\sigma=1, b_{a}=0$

$$
S_{\text {new }}=\frac{1}{32} \int \mathrm{~d}^{6} \times e\left\{\mathcal{R}_{a b}{ }^{c d} \mathcal{R}_{c d}{ }^{a b}-\mathcal{R}_{b}{ }^{d} \mathcal{R}_{d}{ }^{b}+\frac{1}{4} \mathcal{R}^{2}+\cdots\right\}
$$

## Application: Gauss-Bonnet $\mathcal{N}=(1,0)$ invariant

Constructed the new curvature squared invariant, we can describe an off-shell extension of the Gauss-Bonnet combination in six dimensions:

$$
S_{\mathrm{GB}}=-3 S_{\mathrm{Riem}^{2}}+128 S_{\text {new }}
$$

In the gauge $\sigma=1, b_{a}=0$
$e^{-1} \mathcal{L}_{\mathrm{GB}}=\mathcal{R}_{a b c d} \mathcal{R}^{a b c d}-4 \mathcal{R}_{a b} \mathcal{R}^{a b}+\mathcal{R}^{2}$
$+\frac{1}{2} \mathcal{R}_{a b c d} H^{a b e} H^{c d}{ }_{e}-\mathcal{R}^{a b} H_{a b}^{2}+\frac{1}{6} \mathcal{R} H^{2}+\frac{1}{144}\left(H^{2}\right)^{2}-\frac{1}{8}\left(H_{a b}^{2}\right)^{2}+\frac{5}{24} H^{4}$

$$
-\frac{1}{4} \epsilon^{a b c d e f} b_{a b} \mathcal{R}_{c d}{ }^{g h}\left(\omega_{+}\right) \mathcal{R}_{e f g h}\left(\omega_{+}\right)+\epsilon^{a b c d e f} b_{a b} \mathcal{R}_{c d}{ }^{i j} \mathcal{R}_{e f ~} i j+\text { fermions }
$$

where

$$
\begin{gathered}
\omega_{+m}^{c d}:=\omega_{+m}{ }^{c d}+\frac{1}{2} e_{m}{ }^{a} H_{a}^{c d} \\
H^{2}:=H_{a b c} H^{a b c}, \quad H_{a b}^{2}:=H_{a}^{c d} H_{b c d}, \quad H^{4}:=H_{a b e} H_{c d}{ }^{e} H^{a c f} H^{b d}{ }_{f}
\end{gathered}
$$

Advantages to know the off-shell $(1,0)$ Gauss-Bonnet invariant:

- possible to add the invariant to general sugra-matter couplings
- complete off-shell descriptions of NSNS $b_{2}$-form
- supersymmetry transformations completely under control.


## Application: EH + Gauss-Bonnet supergravity

We can now consider the combination $\mathcal{L}=\mathcal{L}_{\mathrm{EH}}+\frac{1}{16} \alpha^{\prime} \mathcal{L}_{\mathrm{GB}}$. off-shell extension of $\alpha^{\prime}$-corrected string theory effective action: On-shell (integrate auxiliary fields as pure EH, no ghosts!) and in a particular gauge:
$e^{-1} \mathcal{L}=e^{-2 \varphi}\left[\mathcal{R}+4 \partial_{m} \varphi \partial^{m} \varphi-\frac{1}{12} H_{a b c} H^{a b c}\right]$

$$
\begin{aligned}
&+\frac{1}{16} \alpha^{\prime} {\left[\mathcal{R}_{a b c d} \mathcal{R}^{a b c d}-4 \mathcal{R}_{a b} \mathcal{R}^{a b}+\mathcal{R}^{2}+\frac{1}{2} \mathcal{R}_{a b c d} H^{a b e} H^{c d}{ }_{e}-\mathcal{R}^{a b} H_{a b}^{2}+\frac{1}{6} \mathcal{R} H^{2}\right.} \\
&\left.+\frac{1}{144}\left(H^{2}\right)^{2}-\frac{1}{8}\left(H_{a b}^{2}\right)^{2}+\frac{5}{24} H^{4}-\frac{1}{4} \epsilon^{a b c d e f} b_{a b} \mathcal{R}_{c d}{ }^{g h}\left(\omega_{+}\right) \mathcal{R}_{e f g h}\left(\omega_{+}\right)\right]
\end{aligned}
$$

- It matches with on-shell string theory derivation of [Liu-Minasian (13)] $\alpha^{\prime}$-corrected Type IIA reduced on K3, dual to Heterotic on T4.
- Action possesses an $\mathrm{AdS}_{3} \times \mathrm{S}^{3}$ solution analogue of the famous $\operatorname{AdS}_{5} \times \mathrm{S}^{5}$ solution in IIB string theory.
- First time the $\alpha^{\prime}$-corrected KK spectrum of fluctuations around $\mathrm{AdS}_{3} \times \mathrm{S}^{3}$ organized in short and long multiplets of $\mathrm{SU}(1,1 \mid 2) \times \mathrm{SL}(2, R) \times \mathrm{SU}(2)$.
Hints on the dynamics of strings in $\mathrm{AdS}_{3} \times \mathrm{S}^{3} \times \mathrm{K} 3$ background.
[Novak-Ozkan-Pang-GTM (17)]


## $6 D(1,0)$ conformal supergravity actions?

Butter, Novak, \& GTM JHEP 1705 (2017) 133; arXiv:1701.08163;

## Conformal gravity invariants

We introduced conformal gravity

- The conformal gravity actions may be written as

$$
I=\int \mathrm{d}^{6} \times e L, \quad K_{a} L=0, \quad \mathbb{D} L=6 L
$$

with

$$
\begin{aligned}
L_{C^{3}}^{(1)}= & C_{a b c d} C^{a e f d} C_{e}{ }^{b c} f \\
L_{C^{3}}^{(2)}= & C_{a b c d} C^{c d e f} C_{e f}^{a b} \\
L_{C \square C}= & C^{a b c d} \nabla^{2} C_{a b c d}+\frac{1}{2}\left(\nabla_{e} C_{a b c d}\right) \nabla^{e} C^{a b c d} \\
& +\frac{8}{9}\left(\nabla^{d} C_{a b c d}\right) \nabla_{e} C^{a b c e},
\end{aligned}
$$

and $\nabla^{2}:=\nabla^{a} \nabla_{a}$

- We seek to find supersymmetric extensions of the previous actions


## A-action principle 6-form

- A primary super 6-form can be constructed by choosing the first non-vanishing component [Arias-Linch-Ridgway('14)]

$$
J_{a b c}{ }_{\alpha \beta \gamma}^{i j k}=3\left(\gamma_{a b c}\right)_{(\alpha \beta} A_{\gamma)}{ }^{i j k}
$$

where

$$
\nabla_{(\alpha}^{(i} A_{\beta)}^{j k l)}=0, \quad K^{B} A_{\alpha}^{i j k}=0
$$

- Closure, $\mathrm{d} J=0$, fixes the remaining components of the superform e.g. the top component of the superform is

$$
J_{a b c d e f}=-\frac{\mathrm{i}}{2^{4} 4!} \varepsilon^{\alpha \beta \gamma \delta} \varepsilon_{a b c d e f} \nabla_{\alpha i} \nabla_{\beta j} \nabla_{\gamma k} A_{\delta}^{i j k}
$$

- The idea is that making $A_{\alpha}{ }^{i j k}$ composite allows one to describe locally superconformal invariants


## $6 \mathrm{D} \mathcal{N}=(1,0): C^{3}$

It was proven in [Butter-Kuzenko-Novak-Theisen (16)] that only one cubic composite primary can be constructed for $C^{3}$ based on the super-Weyl tensor and its descendant

$$
\begin{aligned}
& A_{\alpha}^{i j k}= 5 \mathrm{i} \varepsilon_{\alpha \beta \gamma \delta} X^{\beta(i} X^{\gamma j} X^{\delta k)}-8 \mathrm{i} \varepsilon_{\alpha \beta \gamma \delta} X^{\beta(i} X_{\alpha^{\prime}}^{j}, \beta^{\prime} \\
&\left.X_{\beta^{\prime}}^{k)}\right) \alpha^{\prime} \\
&+\frac{64 \mathrm{i}}{3} \varepsilon_{\alpha \beta \gamma \delta} X_{\alpha^{\prime}}^{\left(i, \beta \beta^{\prime}\right.} X_{\beta^{\prime}}^{j} \gamma \gamma^{\prime} X_{\gamma^{\prime}}^{k) \delta \alpha^{\prime}}+4 \varepsilon_{\alpha \beta \gamma \delta} Y_{\rho^{\beta}(i j} X_{\eta}^{k) \rho \gamma} W^{\eta \delta} \\
&-3 \varepsilon_{\alpha \beta \gamma \delta} Y_{\rho}{ }^{\beta(i j} X^{\gamma k)} W^{\rho \delta}
\end{aligned}
$$

where we used descendants of $W^{\alpha \beta}$

$$
\begin{aligned}
x_{\gamma}^{k \alpha \beta} & =-\frac{i}{4} \nabla_{\gamma}^{k} w^{\alpha \beta}-\delta_{\gamma}^{(\alpha} x^{\beta) k}, \quad x^{\alpha i}:=-\frac{\mathrm{i}}{10} \nabla_{\beta}^{i} w^{\alpha \beta}, \quad Y:=\frac{1}{4} \nabla_{\gamma}^{k} x_{k}^{\gamma}, \\
Y_{\alpha}{ }^{\beta i j} & :=-\frac{5}{2}\left(\nabla_{\alpha}^{(i} x^{\beta j)}-\frac{1}{4} \delta_{\alpha}^{\beta} \nabla_{\gamma}^{(i} x^{\gamma j)}\right)=-\frac{5}{2} \nabla_{\alpha}^{(i} x^{\beta j)}, \\
Y_{\alpha \beta}{ }^{\gamma \delta} & :=\nabla_{(\alpha}^{k} x_{\beta) k}{ }^{\gamma \delta}-\frac{1}{6} \delta_{\beta}^{(\gamma} \nabla_{\rho}^{k} x_{\alpha k}{ }^{\delta) \rho}-\frac{1}{6} \delta_{\alpha}^{(\gamma} \nabla_{\rho}^{k} x_{\beta k}{ }^{\delta) \rho}
\end{aligned}
$$

Plug it in the superform action principle, compute a LARGE NUMBER (good decision of component frame; handle with a computer program; group theory simplifications; ...) of descendant terms and you get: [Butter-Novak-GTM (17)]

## $6 \mathrm{D} \mathcal{N}=(1,0): C^{3}($ bosonic $+\ldots)$

$$
\begin{aligned}
& \mathcal{L}=\frac{8}{3} C_{a b c d} C^{a b e f} C^{c d}{ }_{e f}-\frac{16}{3} C_{a b c d} C^{a e c f} C^{b} e^{d}{ }_{f}-2 C_{a b c d} \mathcal{R}^{a b i j} \mathcal{R}^{c d}{ }_{i j}+4 \mathcal{R}_{a b}{ }^{i j} \mathcal{R}^{a c}{ }_{i}{ }^{k} \mathcal{R}^{b}{ }_{c}{ }_{j k} \\
& -\frac{32}{225} D^{3}-\frac{4}{15} D C_{a b c d} C^{a b c d}+\frac{8 \mathrm{i}}{5} D \mathcal{R}_{a b}{ }^{i j} \mathcal{R}^{a b}{ }_{i j}+\frac{128}{15} T_{a b c}^{-} T^{-a d e} D C^{b}{ }_{d}{ }^{c} e_{e}+\frac{64}{15} T_{a b c}^{-} D \hat{\nabla}^{a} \hat{\nabla}_{d} T^{-b c d} \\
& -\frac{4}{5} D \hat{\nabla}^{a} T_{a b c}^{-} \hat{\nabla}_{d} T^{-b c d}+\frac{4}{15} D \hat{\nabla}_{a} T_{b c d}^{-} \hat{\nabla}^{a} T^{-b c d}-\frac{4}{3} D \hat{\nabla}_{a} T_{b c d}^{-} \hat{\nabla}^{b} T^{-a c d}-\frac{16}{5} T_{a b c}^{-} T^{-a b d} T^{-c e f} T_{d e f}^{-} D \\
& -\frac{32}{3} T_{a b c}^{-} C^{a b d e} \hat{\nabla}^{f} C^{c}{ }_{d e f}+\frac{16}{3} C_{a b c d} C^{a b e f} \hat{\nabla}^{c} T^{-d}{ }_{e f}-16 T_{a b c}^{-} \hat{\nabla}_{d} T^{-a b e} \hat{\nabla}_{e} \hat{\nabla}_{f} T^{-c d f} \\
& -16 T_{a b c}^{-} \hat{\nabla}_{d} T^{-a d e} \hat{\nabla}_{e} \hat{\nabla}_{f} T^{-b c f}-48 T_{a b c}^{-} \hat{\nabla}_{d} T^{-a d e} \hat{\nabla}^{b} \hat{\nabla}^{f} T^{-c}{ }_{e f}+16 \hat{\nabla}^{e} T_{e a b}^{-} \hat{\nabla}^{f} T_{f c d}^{-} \hat{\nabla}^{a} T^{-b c d} \\
& -40 T_{a b e}^{-} T^{-c d e} \hat{\nabla}_{f} T^{-f a b} \hat{\nabla}^{g} T_{g c d}^{-}+16 T_{a b c}^{-} C^{a b d e} \hat{\nabla}^{c} \hat{\nabla}^{f} T_{d e f}^{-}-16 T_{a b c}^{-} C^{a b d e} \hat{\nabla}_{d} \hat{\nabla}^{f} T^{-c}{ }_{e f} \\
& -4 C_{a b c d} \hat{\nabla}_{e} T^{-a b e} \hat{\nabla}_{f} T^{-c d f}+8 C_{a b c d} \hat{\nabla}_{e} T^{-a b f} \hat{\nabla}_{f} T^{-c d e}-\frac{64}{3} T^{-f b}{ }_{d} \hat{\nabla}^{e} C_{e a b c} \hat{\nabla}_{f} T^{-a c d} \\
& +32 T^{-a b}{ }_{d} \hat{\nabla}^{e} C_{e a b c} \hat{\nabla}_{f} T^{-f c d}-32 T_{f g c}^{-} T^{-f g d} \hat{\nabla}^{c} T_{d a b}^{-} \hat{\nabla}_{e} T^{-e a b}-8 \hat{\nabla}_{e} T_{b a d}^{-} \hat{\nabla}^{e} T^{-c a d} T^{-f g b} T_{f g c}^{-} \\
& -8 T_{a b c}^{-} T^{-a b d} C^{c e f g} \hat{\nabla}_{e} T_{d f g}^{-}-\frac{8}{3} T_{a b c}^{-} \mathcal{R}^{a b i j} \hat{\nabla}_{d} \mathcal{R}^{c d}{ }_{i j}+\frac{28}{3} T_{a b c}^{-} \mathcal{R}^{a d} i j \hat{\nabla}_{d} \mathcal{R}^{b c}{ }_{i j} \\
& -\frac{32}{9} \mathcal{R}_{a b}{ }^{i j} \mathcal{R}_{c d}{ }_{i j} \hat{\nabla}^{a} T^{-b c d}+4 T_{e f b}^{-} T^{-e f c} T_{g h a}^{-} T^{-g h}{ }_{c} \hat{\nabla}_{d} T^{-d a b}-8 T_{a b c}^{-} T^{-a b d} T_{e f g}^{-} T^{-e f h} C^{c g}{ }_{d h} \\
& +12 T_{a b c}^{-} T^{-a d e} \mathcal{R}^{b c i j} \mathcal{R}_{\text {de } i j} \\
& + \text { fermion terms }
\end{aligned}
$$

## How about $C \square C$ ?

Superspace ingredients from [Butter-Kuzenko-Novak-Theisen (16)], $B$-action 6 -form and gravitational composite:

- based on a primary dimension 3, $\mathrm{B}^{\alpha \beta i j}=\left(\tilde{\gamma}^{\mathrm{a}}\right)^{\alpha \beta} \mathrm{B}_{a}{ }^{i j}=\mathrm{B}^{\alpha \beta(i j)}, \nabla_{\alpha}^{(i} \mathrm{B}^{\beta \gamma j k)}=-\frac{2}{3} \delta_{\alpha}^{[\beta} \nabla_{\delta}^{(i} \mathrm{B}^{\gamma] j k}$
- yet another closed 6 -form $J, d J=0$, now from $B_{a}{ }^{i j}$,
- Superforms action principle $\Longrightarrow$ another components action principle [Butter-Novak-GTM (17)]
- a gravitational composite (same as new curvature squared)

$$
\mathrm{B}^{\alpha \beta i j}=W^{\gamma[\alpha} Y_{\gamma}{ }^{\beta] i j}+8 \mathrm{i} X_{\gamma}{ }^{\delta[\alpha(i} X_{\delta}{ }^{\beta] \gamma j)}-\frac{5 \mathrm{i}}{2} X^{[\alpha(i} X^{\beta] j)}
$$

Plug it in the superform action principle, compute descendants and get:

## $6 \mathrm{D} \mathcal{N}=(1,0): C \square C($ bosonic $+\ldots)$

$$
\begin{aligned}
& \mathcal{L}=\frac{1}{3} C_{a b c d} \hat{\nabla}^{2} C^{a b c d}-\frac{1}{3} C_{a b}{ }^{c d} C_{c d}{ }^{e f} C_{e f}{ }^{a b}-\frac{4}{3} C_{a b c d} C^{a e c f} C^{b} e^{d}{ }_{f} \\
& -\mathcal{R}^{b c}{ }^{i j} \hat{\nabla}^{2} \mathcal{R}_{b c}{ }_{i j}-2 \mathcal{R}_{a b}{ }^{j} \mathcal{R}_{a c}{ }_{j}{ }^{k} \mathcal{R}_{b c k}{ }^{i}+2 C^{a b c d} \mathcal{R}_{a b}{ }^{i j} \mathcal{R}_{c d}{ }^{i j} \\
& +\hat{\mathrm{f}}_{a}{ }^{b}\left(\frac{32}{3} C^{a c d e} C_{b c d e}-8 \mathcal{R}_{b c}{ }^{i j} \mathcal{R}^{a c}{ }_{i j}\right)-4 \hat{\mathrm{f}}_{a}{ }^{a}\left(C_{b c d e} C^{b c d e}-\mathcal{R}_{b c}{ }^{i j} \mathcal{R}^{b c}{ }_{i j}\right) \\
& +\frac{4}{45} D \hat{\nabla}^{2} D+\frac{8}{225} D^{3}+\frac{2}{15} D C_{a b c d} C^{a b c d}-\frac{14}{15} D \mathcal{R}_{a b}{ }^{i j} \mathcal{R}^{a b}{ }_{i j}+\frac{20}{3} T^{-a b e} C_{a b}{ }^{c d} \hat{\nabla}^{f} C_{f e c d} \\
& +4 T^{-a b e} \hat{\nabla}^{f} C_{a b}{ }^{c d} C_{f e c d}+2 T_{a b c}^{-} \hat{\nabla}_{d} \mathcal{R}^{a b i j} \mathcal{R}^{c d}{ }_{i j}+4 T_{a b c}^{-} \hat{\nabla}_{d} \mathcal{R}^{a d} i j \mathcal{R}^{b c}{ }_{i j} \\
& -4 T^{-a b c}\left(\hat{\nabla}_{a} \hat{\nabla}^{d} \hat{\nabla}^{2} T_{b c d}^{-}+\hat{\nabla}^{2} \hat{\nabla}_{a} \hat{\nabla}^{d} T_{b c d}^{-}+\frac{1}{3} \hat{\nabla}_{a} \hat{\nabla}^{2} \hat{\nabla}^{d} T_{b c d}^{-}-\frac{4}{3} \hat{\nabla}_{e} \hat{\nabla}_{a} \hat{\nabla}^{d} \hat{\nabla}^{e} T_{b c d}^{-}\right) \\
& -\frac{16}{3} C_{a b c d} T^{-a b e} \hat{\nabla}_{e} \hat{\nabla}_{f} T^{-c d f}-\frac{8}{3} C_{a b c d} T^{-a b e} \hat{\nabla}_{f} \hat{\nabla}_{e} T^{-c d f}+\frac{16}{3} C_{a b}^{c d} T^{-a e f} \hat{\nabla}^{b} \hat{\nabla}_{c} T_{d e f}^{-} \\
& -4 C_{a b}{ }^{c d} \hat{\nabla}^{a} T^{-b e f} \hat{\nabla}_{c} T_{d e f}^{-}-6 C_{a b}{ }^{c d} \hat{\nabla}_{e} T^{-a b f} \hat{\nabla}_{f} T^{-c d e}-\frac{16}{15} D T_{a b c}^{-} \hat{\nabla}^{a} \hat{\nabla}_{d} T^{-b c d} \\
& +\frac{8}{15} D \hat{\nabla}^{a} T_{a b c}^{-} \hat{\nabla}_{d} T^{-b c d}-2 T_{a b c}^{-} T^{-a d e} \mathcal{R}^{b c}{ }_{i j} \mathcal{R}_{d e}{ }^{i j}-\frac{4}{3} C_{a b e f} C^{c d e f} T_{a b g}^{-} T^{-c d g} \\
& -\frac{1}{2} \hat{\nabla}^{a_{1}} T_{a_{1} a b}^{-} \hat{\nabla}^{a_{2}} T_{a_{2} c d}^{-} \hat{\nabla}^{a_{3}} T_{a_{3} e f}^{-} \varepsilon^{a b c d e f}-6 T_{a b}^{-g} \hat{\nabla}^{a_{1}} T_{a_{1} g c}^{-} \hat{\nabla}_{d} \hat{\nabla}^{a_{2}} T_{a_{2} e f}^{-} \varepsilon^{a b c d e f} \\
& +8 C_{a b c d} T^{-e c d} T_{e f g}^{-} \hat{\nabla}^{a} T^{-b f g}+\frac{10}{3} T_{a b c}^{-} T^{-a e d} T^{-b f}{ }_{d} \hat{\nabla}^{2} T^{-c}{ }_{e f} \\
& -2 T_{a b c}^{-} T^{-a b d} \hat{\nabla}^{c} T_{d e f}^{-} \hat{\nabla}_{g} T^{-e f g}+4 T_{a b c}^{-} T^{-a}{ }_{d e} \hat{\nabla}^{f} T^{-b d g} \hat{\nabla}_{f} T^{-c e}{ }_{g} \\
& +2 C_{a b c d} T^{-a b e} T^{-c f g} T^{-d}{ }_{f h} T_{e g}^{-h}+\frac{8}{15} D T_{a b c}^{-} T^{-a b d} T^{-c e f} T_{d e f}^{-} \\
& + \text {fermion terms }
\end{aligned}
$$

## 6D $\mathcal{N}=(2,0)$ in $\mathcal{N}=(1,0)$ :

How about the conformal supergravity action in the $\mathcal{N}=(2,0)$ case?

- By comparing our results with the purely gravitational part of known anomalies for the $\mathcal{N}=(2,0)$ tensor multiplet, see heat-kernel calculations [Bastianelli-Frolov-Tseytlin (10)], or holographic results [Kulaxizi-Parnachev (09)], we can infer that the $\mathcal{N}=(1,0)$ truncation of the unique $\mathcal{N}=(2,0)$ conformal supergravity action is given by the combination

$$
S_{(2,0)}=\frac{1}{2} S_{C^{3}}+S_{C \square C}
$$

- We can actually do more, and give a first proof based on supersymmetry that the $\mathcal{N}=(2,0)$ conformal supergravity action is unique and fix most of its bosonic terms.


## 6D $\mathcal{N}=(2,0)$ conformal SUGRA

We can construct with the following steps:

- Assume that a $(2,0)$ action exists;
- Reduce the known $(2,0)$ Weyl multiplet to $(1,0)$ [Bergshoeff-Sezgin-VanProeyen (99)];
- Write the most general purely bosonic terms covariant under, diffeomorphisms, Lorentz and $R$-symmetry group USp(4);
- Reduce $U S p(4)$ to $S U(2)$, the $(1,0) R$-symmetry group;
- Compare with a combination of the $S_{C^{3}}$ and $S_{C \square C}(1,0)$ action;
- Note that a $D C^{a b c d} C_{a b c d}$ term, appearing in both $(1,0)$ invariants, cannot be lifted to $(2,0)$;
- To cancel these two in the $(2,0)$ action reduced to $(1,0)$ one has to choose

$$
S_{(2,0)}=\frac{1}{2} S_{C^{3}}+S_{C \square C}
$$

## $6 \mathrm{D} \mathcal{N}=(2,0)$

All the terms then naturally lift form $(1,0)$ to $(2,0)$

$$
\begin{aligned}
& \mathcal{L}=\frac{1}{3} C_{a b c d} \hat{\nabla}^{2} C^{a b c d}+C_{a b}{ }^{c d} C^{a b e f} C_{c d e f}-4 C_{a b c d} C^{\text {aecf }} C^{b} e^{d}{ }_{f} \\
& -R(V)_{b c}{ }^{i j} \hat{\nabla}^{2} R(V)_{b c} \text { ij }-2 R(V)_{a b}{ }_{i}{ }^{j} R(V)_{a c}{ }_{j}{ }^{k} R(V)_{b c}{ }^{i}+C^{a b c d} R(V)_{a b}{ }^{i j} R(V)_{c d} \text { ij } \\
& +\hat{f}_{a}^{b}\left(\frac{32}{3} C^{a c d e} C_{b c d e}-8 R(V)_{b c}{ }^{i j} R(V)^{a c}{ }_{i j}\right)-4 \hat{f}_{a}^{a}\left(C_{b c d e} C^{b c d e}-R(V)_{b c}{ }^{i j} R(V)^{b c}{ }_{i j}\right) \\
& +\frac{1}{225} D^{i j}{ }_{k l} \hat{\nabla}^{2} D^{k l}{ }_{i j}-\frac{2}{3375} D^{i j}{ }_{k l} D^{k l}{ }_{p q} D^{p q}{ }_{i j}-\frac{2}{15} D^{i j}{ }_{k l} R(V)_{a b}{ }^{k}{ }_{i} R(V)^{a b j}{ }_{I}+4 T_{a b c}{ }^{i j} \hat{\nabla}_{d} R(V)^{a b}{ }_{j k} R(V)^{c d} k_{i} \\
& +8 T_{a b c}{ }^{i j} \hat{\nabla}_{d} R(V)^{a d}{ }_{j k} R(V)^{b c k}{ }_{i}-T_{a b c}{ }^{i j} \Delta^{4} T^{a b c}{ }_{i j}+\frac{8}{3} C_{a b c d} T^{a b e}{ }_{i j} \hat{\nabla}_{e} \hat{\nabla}_{f} T^{c d f} i j+\frac{4}{3} C_{a b c d} T^{a b e}{ }_{i j} \hat{\nabla}_{f} \hat{\nabla}_{e} T^{c d f} i j \\
& -\frac{8}{3} C^{a b c d} T_{\text {aef } i j} \hat{\nabla}_{b} \hat{\nabla}_{c} T_{d}{ }^{e f} i j+2 C_{a b}{ }^{c d} \hat{\nabla}^{a} T^{b e f}{ }_{i j} \hat{\nabla}_{c} T_{d e f}{ }^{i j}+3 C_{a b}{ }^{c d} \hat{\nabla}_{e} T^{a b f}{ }_{i j} \hat{\nabla}_{f} T^{c d e} i j \\
& -\frac{4}{3} C_{a b e f} C^{c d e f} T_{a b g}{ }^{i j} T^{c d g}{ }_{i j}+4 \alpha T_{a b c}{ }^{i j} T^{a d e} k l \quad R(V)^{b c}{ }_{i k} R(V)_{d e j l}+2(1-\alpha) T_{a b c}{ }^{i j} T^{a d e}{ }_{i j} R(V)^{b c}{ }_{k l} R(V)_{d e}{ }^{k l} \\
& +\frac{2}{15} D^{i j}{ }_{k l}\left(T_{a b c}{ }^{k l} \hat{\nabla}^{a} \hat{\nabla}_{d} T^{b c d}{ }_{i j}-\frac{1}{2} \hat{\nabla}^{a} T_{a b c}{ }^{k l} \hat{\nabla}_{d} T^{b c d}{ }_{i j}\right)-\frac{1}{60} D^{i j}{ }_{k l} T_{a b c}{ }^{k l} T^{a b d}{ }_{i j} T^{c e f}{ }_{p q} T_{d e f}{ }^{p q}+\mathcal{O}\left(T^{4}\right)
\end{aligned}
$$

Red terms consistent with known results in literature.
The rest is new although bosonic action is not fixed being $\alpha$ a free parameter and $\mathcal{O}\left(T^{4}\right)$ still undetermined.

## Conclusion and Outlook

- The examples given indicate that there exist powerful techniques to construct higher derivative sugra invariants off-shell.
- can potentially improve the classification and construction of new higher derivative invariants in various dimensions
- The new 6D curvature-squared invariant complete an element missing since the 80s, see the Gauss-Bonnet
- Of importance in studying low energy String Theory and $\alpha^{\prime}$-corrected AdS/CFT, ...
- The new conformal supergravities in 6D are of importance in studying anomalies in 6D QFT, possibly CFT and AdS/CFT, ...
next?
- Extensions of $\mathcal{N}=(1,0)$ curvature squared? general matter coupled and...
How about $\mathcal{N}=(1,1)$ (arising from Type IIA/Heterotic)? and $\mathcal{N}=(2,0)$ (arising from Type IIB)?
- Complete the construction of the $\mathcal{N}=(2,0)$ conformal supergravity invariant in $(2,0)$ conformal superspace. This would give a final proof of its existence

