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Basic object

Figure: Monge and Ampère
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Monge-Ampère structure

Definition
A Monge-Ampère structure on a 2n-dimensional manifold X is a
pair of differential form (Ω, ω) ∈ Ω2(X )× Ωn(X ) such that Ω is
symplectic and ω is Ω-effective i.e. Ω ∧ ω = 0.



Main idea

I Let F : Rn → (i)Rn be a vector-function and its graph is a
subspace in T ∗(Rn) = Rn ⊕ (i)Rn.

I The tangent space to the graph at the point (x ,F (x)) is the
graph of (dF )x - the differential of F at the point x .

I This graph is a Lagrangian subspace in T ∗(Rn) iff (dF )x is a
symmetric endomorphism . The matrix || ∂Fi

∂xj
|| is symmetric

∀x iff the differential form
∑

i Fidxi ∈ Λ1(Rn) is closed or,
equivalently, exact:

Fi =
∂f

∂xi
=⇒ F = ∇f .

I The projection of the graph of ∇f on (Rn)x is given in
coordinates by ∇2(f ) = det || ∂

2fi
∂x2

j
|| .
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Correspondence: Forms -Symplectic MAO

Let M be a smooth n−dimensional manifold and ω is a differential
n-form on T ∗M. A (symplectic) Monge-Ampère operator
∆ω : C∞(M)→ Ωn(M) is the differential operator defined by

∆ω(f ) = (df )∗(ω),

where df : M → T ∗M is the natural section associated to f .



Examples

ω ∆ω = 0

dq1 ∧ dp2 − dq2 ∧ dp1 ∆f = 0
dq1 ∧ dp2 + dq2 ∧ dp1 �f = 0

dp1 ∧ dp2 ∧ dp3 − dq1 ∧ dq2 ∧ dq3 Hess(f ) = 1
dp1 ∧ dq2 ∧ dq3 − dp2 ∧ dq1 ∧ dq3 ∆f − Hess(f ) = 0

+dp3 ∧ dq1 ∧ dq2 − dp1 ∧ dp2 ∧ dp3



Hodge-Lepage-Lychagin theorem

Figure: Lepage, Hodge and Lychagin

The next theorem stresses the fundamental role played by the
effective forms in the theory of Monge-Ampère operators :

Theorem (Hodge-Lepage-Lychagin)

I Every form ω ∈ Λk(V ∗) can be uniquely decomposed into the
finite sum

ω = ω0 +>ω1 +>2ω2 + . . . ,

where all ωi are effective forms.

I If two effective k-forms vanish on the same k-dimensional
isotropic vector subspaces in (V ,Ω), they are proportional.
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Symplectic Monge-Ampère Equations: Solutions

I A generalised solution of a MAE ∆ω = 0 is a lagrangian
submanifold of (T ∗M,Ω) which is an integral manifold for the
MA differential form ω:

ω|L = 0.

I A (generic) generalised solution locally is the graph of an
1-form df for a regular solution f .
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Generalized solution
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Figure: Generalised solution of a MAE



Generic types of singularities for Generalized solutions of
MAE

Specific property of the graph-like Lagrangian submanifolds: their
projection on the "configuration space" Rn is a diffeomorphism.
Our generalised solutions are general Lagrangian immersions and
they have Arnold’s lagrangian singularities.

Figure: Lagrangian singularities (Wave fronts, foldings etc.)

This singularities describe the formation of atmospheric fronts
(Chynoweth, Porter, Sewell 1988)



Symplectic Equivalence-1

I Two SMAE ∆ω1 = 0 and ∆ω2 = 0 are locally equivalent iff
there is exist a local symplectomorphism
F : (T ∗M,Ω)→ (T ∗M,Ω) such that

F ∗ω1 = ω2.

I L is a generalised solution of ∆F∗ω1 = 0 iff F (L) is a
generalised solution of ∆ω = 0.
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Legendre partial transformation

Figure: Legendre

uq1q1 + uq2q2 = 0 oo //_________

��

vq1q1vq2q2 − v2
q1q2

= 1

��
ω = dq1 ∧ dp2 − dq2 ∧ dp1 ω̃ = dp1 ∧ dp2 − dq1 ∧ dq2

Φ∗oo



Legendre partial transformation-2

Lu =
(
q1, q2, uq1 , uq2

) Φ //

��

Lv =
(
q̃1, q̃2, vq̃1 , vq̃2

)
=
(
q1,−uq2 , uq1 , q2

)

��

eq1 cos(q2) oo //_________
q2 arcsin(q2e

−q1)

+
√
e2q1 − q2

2

with Φ : T ∗R2 → T ∗R2, (q1, q2, p1, p2) 7→ (q1,−p2, p1, q2).



Sewell-Chynoweth SG- equation

Figure: Numerical Solution of the semi-geostrophic 3D equation (Cullen,
Sewell-Chynoweth...)

hessx ,y (u) +
∂2u

∂z2 = hess(u) (1)



Sewell-Chynoweth MAO form and its equivalence
I The effective form of (1):

ω = dp ∧ dq ∧ dz + dx ∧ dy ∧ dr − γdx ∧ dy ∧ dz ,

(x , y , z , p, q, r)− canonical coordinates system of T ∗R3.

I This form is a sum of two decomposable 3-forms:

ω = dp ∧ dq ∧ dz + dx ∧ dy ∧ (dr − γdz).

I φ∗(ω) = dp ∧ dq ∧ dr − dx ∧ dy ∧ dz where φ is the
symplectomorphism

φ(x , y , z , p, q, r) = (x , y , r , p, q, γr − z).

I The equation (1) is symplectically equivalent to the equation

hess(u) = 1. (2)
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An exact solution of the SG 3D equation

f (x , y , z) =

∫ √xy+yz+zx

a
(b + 4ξ3)1/3dξ

is a regular solution of (2). Therefore,

L =
{

(x , y , (x + y)α, (y + z)α, (z + x)α, γ(x + y)α− z)
}

is a generalised solution of (1) with

α =
1
2

(
b

(xy + yz + zx)
3
2

+ 4)
1
3 .



Hoskins geostrophic coordinate transformation

I The SG equations are used like a good approximation to the
Boussinesq primitive equations when the rate of the flow
momentum is smaller than the Coriolis force, or in other
words, when the Rossby number Ro << 1.

I Potential vorticity is a fundamental concept for understanding
the generation of vorticity in cyclogenesis (the birth and
development of a cyclone), especially along the polar front,
and in analyzing flow in the ocean.

I B. Hoskins (1975) had proposed a remarkable coordinate
transformation ( a passage to geostrophic coordinates in x − y
directions) such that the geostrophic velocity and potential
temperature may be represented in terms of one function both
in the transformed coordinates as in physical ones
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X := x +

vg
f = x + 1

f 2
∂φ
∂x

Y := y − ug
f = y + 1

f 2
∂φ
∂y

Z := z ; T := t.



Hoskins geostrophic 3D equation

I Let Φ := φ+ 1
2(u2

g + v2
g ) then ∇Φ = ∇φ and

I if the potential vorticity is uniform (qg = f θ0
g N2) then one

have in the interior of the fluid for any time T = t

1
f 2 (ΦXX + ΦYY )− 1

f 4 (ΦXXΦYY − Φ2
XY ) +

1
N2 ΦZZ = 1. (3)

I Here (and in what follows) f is the Coriolis parameter taking
as a constant and N is the Brunt - Väisälä frequency:

N =

√
qgg

f θ0
,

for the uniform potential vorticity qg and the constant
potential temperature θ0.



Hoskins geostrophic 3D equation

I Let Φ := φ+ 1
2(u2

g + v2
g ) then ∇Φ = ∇φ and

I if the potential vorticity is uniform (qg = f θ0
g N2) then one

have in the interior of the fluid for any time T = t

1
f 2 (ΦXX + ΦYY )− 1

f 4 (ΦXXΦYY − Φ2
XY ) +

1
N2 ΦZZ = 1. (3)

I Here (and in what follows) f is the Coriolis parameter taking
as a constant and N is the Brunt - Väisälä frequency:
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Hoskins geostrophic MA effective form

I This is a 3D Monge-Ampére equation with the effective form

ω =
1
f 2 (dp ∧ dy ∧ dz + dx ∧ dq ∧ dz) +

1
N2 dx ∧ dy ∧ dr−

− 1
f 4 dp ∧ dq ∧ dz − dx ∧ dy ∧ dz .

I This form is the sum of two decomposable forms:

ω =
1
N2 dx ∧ dy ∧ dr − (dx − 1

f 2 dp) ∧ (dy − 1
f 2 dq) ∧ dz .
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Hoskins geostrophic MA effective form : equivalence
I Consider the symplectomorphism

F (x , y , z , p, q, r) = (p, q, z ,−x + f 2p,−y + f 2q, r). (4)

I The new canonical coordinate system (x̃ , ỹ , z̃ , p̃, q̃, r̃)
p̃ := −x + f 2p; x̃ := p;

q̃ := −y + f 2q; ỹ := q;

r̃ := r ; z̃ := z

with Ω̃ = Ω, provides the following effective form:
I

ω̃ =
1
N2 dp̃ ∧ dq̃ ∧ dr̃ − 1

f 4 dx̃ ∧ dỹ ∧ dz̃ .

I The Hoskins SG (3) is equivalent to the (1):

hess(u) =
N2

f 4 =
(qgg)2

f 6(θ0)2 (5)

by the symplectomorphism (4).
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I The Hoskins SG (3) is equivalent to the (1):

hess(u) =
N2

f 4 =
(qgg)2

f 6(θ0)2 (5)

by the symplectomorphism (4).



Hoskins geostrophic MA effective form : equivalence
I Consider the symplectomorphism

F (x , y , z , p, q, r) = (p, q, z ,−x + f 2p,−y + f 2q, r). (4)

I The new canonical coordinate system (x̃ , ỹ , z̃ , p̃, q̃, r̃)
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Geometric Structures on T ∗R2.

Let (Ω, ω) be a Monge-Ampère structure on X = R4. The field of
endomorphisms Aω : X → TX ⊗ T ∗X is defined by

ω(·, ·) = Ω(Aω·, ·).

REMARK The tensor

Jω =
Aω√
|pf (ω)|

gives
I an almost-complex structure on X if pf (ω) > 0.

I an almost-product structure on X if pf (ω) < 0.
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THEOREM (Lychagin-R.)

Let ω ∈ Ω2
ε(R4) be an effective non-degenerate 2-form on (R4,Ω).

I The following assertions are equivalent:

I The equation ∆ω = 0 is locally equivalent to one of two linear
equations: ∆f = 0 ou �f = 0;

I The tensor Jω is integrable;
I the normalized form ω√

|pf (ω)|
is closed.
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Table 1. Effective forms with constant coefficients in 2D

∆ω = 0 ω pf (ω)

∆f = 0 dq1 ∧ dp2 − dq2 ∧ dp1 1
�f = 0 dq1 ∧ dp2 + dq2 ∧ dp1 −1
∂2f
∂q2

1
= 0 dq1 ∧ dp2 0



HyperKäler triple of MAE

The conservation law of the potential vorticity (the Ertel’s theorem)
obtains (using the Hamiltonian representation of the system):

d

dt

(
∂(q1, q2)

∂(a, b)

)
=

d

dt
(1 + φq1q1 + φq2q2 + detHessφ ) = 0,

This equation is a part of the HyperKähler triple of MAEs (R. and
Roulstone 1997, 2001):
ωI =

[
1 + a(p11 + p22) + (a2 − c2)(p11p22 − p2

12)dq1
]
∧ dq2 ,

ωJ =
[
2cp12 + ac(p11p22 − p2

12)
]
dq1 ∧ dq2 ,

ωK = −cΩ



2D balanced model MAE

I The general family of (elliptic) MAE with constant coefficients
carries all flat balanced models:

1 + φq1q1 + aφq2q2 + (a2 − c2) detHessφ = ζC/f , (6)

Among them are:

I The semi-geostrophic model (a = 1, c = 0 with ζC/f
positive);

I The L1 Salmon dynamics with a = c = 1;
I The

√
3 dynamics of McIntyre - Roulstone for a = 1, c =

√
3

and ζC/f < 3/2;
Our classification theorem in 2D gives a classification of all
"almost-balanced"(0 < c <

√
3) models with a uniform

potential vorticity.
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Courant Bracket

T−tangent bundle of M and T ∗− cotangent bundle.

(X + ξ,Y + η) =
1
2

(ξ(Y ) + η(X )),

-natural indefinite scalar product on T ⊕ T ∗.
The Courant bracket on sections of T ⊕ T ∗ is

[X + ξ,Y + η] = [X ,Y ] + LXη − LY ξ −
1
2
d(ιXη − ιY ξ).



Generalized Complex Geometry

Figure: Hitchin

DEFINITION [Hitchin]: An almost generalized complex structure
is a bundle map J : T ⊕ T ∗ → T ⊕ T ∗ with

J2 = −1, (J·, ·) = −(·, J·).

An almost generalized complex structure is integrable if the spaces
of sections of its two eigenspaces are closed under the Courant
bracket.



2D SMAE and Generalized Complex Geometry

I DEFINITION A Monge-Ampère equation ∆ω = 0 has a
divergent type if there existe a function µ such that the form
ω′ = ω + µΩ is closed.

I THEOREM (B.Banos)
Let ∆ω = 0 be a Monge-Ampère divergent type equation on
R2 with closed ω (which might be non-effective). The
generalized almost-complex structure defined by

Jω =

(
Aω Ω−1

−Ω(1 + A2
ω·, ·) −A∗ω

)
is integrable.
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Hitchin pairs (after M.Crainic)

A Hitchin pair is a pair of bivectors π and Π, Π− non-degenerate,
satisfying {

[Π,Π] = [π, π]

[Π, π] = 0.
(7)

PROPOSITION There is a 1-1 correspondence between
Generalized complex structure

J =

(
A πA
σ −A∗

)
with σ non degenerate and Hitchin pairs of bivector (π,Π). In this
correspondence 

σ = Π−1

A = π ◦ Π−1

πA = −(1 + A2)Π



Hitchin pair of bivectors in 4D

Π is non-degenerate ⇒ two 2-forms ω and Ω, not necessarily closed
and ω(·, ·) = Ω(A·, ·).
A generalized lagrangian surface: closed under A, or equivalently,
bilagrangian: ω|L = Ω|L = 0.
Locally, L is defined by two functions u and v satisfying a first
order system:



Jacobi systems

{
a + b ∂u∂x + c ∂u∂y + d ∂v∂x + e ∂v∂y + f det Ju,v = 0

A + B ∂u
∂x + C ∂u

∂y + D ∂v
∂x + E ∂v

∂y + E det Ju,v = 0

Ju,v =

(
∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

)
Such a system generalizes both MAE and Cauchy-Riemann systems
and is called a Jacobi system.



Dritschel-Viudez MAE
Recently a new approach to modelling stably-stratified geophysical
flows was proposed by Dritschel and Viudez. This approach is
based on the explicit conservation of potential vorticity and uses a
change of variables from the usual primitive variables of velocity
and density to the components of ageostrophic horizontal vorticity
and a Monge-Ampère-like nonlinear equation with non-constant
coefficients arises. The equation changes the type from elliptic to
hyperbolic:

E
(
ΦxxΦzz − Φ2

xz

)
+ AΦxx + 2BΦxz + CΦxz + D = 0 (8)

with
E = 1 , A = 1 + ϕxz , B =

1
2

(ϕzz − ϕxx)

C = 1− ϕxz , D = ϕxxϕzz − ϕ2
xz −$

where ϕ is a given potential and the dimensionless PV anomaly $
may be also considered as a given quantity.



The corresponding Monge-Ampère structure


Ω = dx ∧ dp + dz ∧ dr

ω = Edp ∧ dr + Adp ∧ dz + B(dx ∧ dp − dz ∧ dr)+

+Cdx ∧ dr + Ddx ∧ dz

The pfaffian is pf(ω) = R with R the Rellich’s parameter:

R = AC − ED − B2 = 1 +$ −
(

∆ϕ

2

)2

A direct computation gives

dω = d

(
∆ϕ

2

)
∧ Ω (9)



Integrability of the complex/product structure
I THEOREM (B.Banos, V.R.) 2D Dritschel-Viudez equation is

locally equivalent to a Monge-Ampère equation with constant

coefficients if and only if

{
∆ϕ = 2c1
R = c2

I for R > 0, we see that

ω + i
√
R Ω = du ∧ dv

with {
u = x − (c1 − ic2)z − ϕz + p

v = −(c1 + ic2)x + ϕx + r

I ϕ = 2c1 and R = c2 > 0 then 2D Dritschel-Viudez equation is
equivalent to Laplace equation

ϕxx + ϕzz = 0

modulo the Legendre transform

F (x , z , p, r) =
1√
R

(x − c1z − ϕz , c2z ,−c2x ,−c1x + ϕx + r).
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Hitchin hypersymplectic geometry-1
I if our 4-dimensional manifold M, endowed with the

Monge-Ampère structure (Ω, ω) admits a lagrangian fibration
(main example: M is the cotangent bundle of a smooth
2D−manifold), then it exists a conformal split metric on M4.

I When the corresponding Monge-Ampère equation is given by
(8), this metric writes as

g = C (dx)2 − 2Bdxdz + A(dz)2 + E/2(dpdx + dqdz), (10)

Using this metric, we get an additional 2-form ω̂ defined by
I

ω̂(· , ·) = g(Aω· , ·) with ω(· , ·) = Ω(Aω· , ·)

In coordinates,

ω̂ =
(
−2AC + 2B2 + D

)
dx ∧ dz − Bdx ∧ dp − Cdx ∧ dr

+ Adz ∧ dp + Bdz ∧ dr − dp ∧ dr
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Hitchin hypersymplectic geometry-2
I Introducing Θ = Ω√

|R|
, we get an hypersymplectic triple

(Θ, ω, ω̂) satisfying

ω2 = −ω̂2 = ±Θ2

ω ∧ ω̂ = ω ∧Θ = ω̂ ∧Θ = 0

I Equivalently, we obtain 3 tensors I , S and T satisfying

I 2 = −1, S2 = 1, T 2 = 1
ST = −TS = −I
TI = −IT = S

IS = −SI = T

I Moreover we have

d ω̂ = −d
(

∆ϕ

2

)
∧ Ω
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Hitchin hypersymplectic geometry-3
I When ∆ϕ = 0, then ω and ω̂ are closed and satisfy
ω2 = −ω̂2: they define then an integrable product structure.

I In the new coordinates:
X =

∫
R(x , z)dx U = x − ϕz + p

Z = z V = z + ϕx + r
we see that

ω = dU ∧ dV − dX ∧ dZ

ω̂ = −(dU ∧ dV + dX ∧ dZ )

Ω =
1
R

(dX ∧ dU − SdZ ∧ dU + RdZ ∧ dV ) with S =

∫
Rzdx

I In other words, when ϕ is harmonic, a submanifold
L =

{
(Z , ψZ ,U, ψU), (Z ,U) ∈ R2} is a generalized solution

of 2D - Dritschel Viudez equation if and only if the following
Tricomi equation holds:

ψZZ + RψUU = S .
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Invariants for effective 3-forms

I To each effective 3-form ω ∈ Ω3
ε(R6), we assign the following

geometric invariants:

I the Lychagin-R. metric defined by

gω(X ,Y ) =
(ιXω) ∧ (ιYω) ∧ Ω

Ω3 ,

I the Hitchin tensor defined by

gω = Ω(Aω·, ·),

I The Hitchin pfaffian defined by

pf (ω) =
1
6
trA2

ω.
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3D Generalized Calabi-Yau structures

I A generalized almost Calabi-Yau structure on a
6D-manifold X is a 5-uple (g ,Ω,A, α, β) where

I g is a (pseudo) metric on X ,

I Ω is a symplectic on X ,
I A is a smooth section X → TX ⊗ T ∗X such that A2 = ±Id

and such that
g(U,V ) = Ω(AU,V )

for all tangent vectors U,V ,
I α and β are (eventually complex) decomposable 3-forms whose

associated distributions are the distributions of A eigenvectors
and such that

α ∧ β
Ω3 is constant.

I A generalized Calabi-Yau structure (g ,Ω,K , α, β) is integrable
if α and β are closed.
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Generalized CY and MA

Each nondegenerate Monge-Ampère structure (Ω, ω0) defines a
generalized almost Calabi-Yau structure (qω,Ω,Aω, α, β) with

ω =
ω0

4
√
|λ(ω0)|

.



The generalized Calabi-Yau structure associated with the equation

∆(f )− hess(f ) = 0

is the canonical Calabi-Yau structure of C3

g = −
3∑

j=1
dxj .dxj + dyj .dyj

A =
3∑

j=1

∂
∂yj
⊗ dxj − ∂

∂xj
⊗ dyj

Ω =
3∑

j=1
dxj ∧ dyj

α = dz1 ∧ dz2 ∧ dz3

β = α



The generalized Calabi-Yau associated with the equation

�(f ) + hess(f ) = 0

is the pseudo Calabi-Yau structure

g = dx1.dx1 − dx2.dx2 + dx3.dx3 + dy1.dy1 − dy2.dy2 + dx3.dx3

A = ∂
∂x1
⊗ dy1 − ∂

∂y1
⊗ dx1 + ∂

∂y2
⊗ dx2 − ∂

∂x2
⊗ dy2 − ∂

∂y3
⊗ dx3

+ ∂
∂x3
⊗ dy3

Ω =
3∑

j=1
dxj ∧ dyj

α = dz1 ∧ dz2 ∧ dz3

β = α



The generalized Calabi-Yau structure associated with the equation

hess(f ) = 1

is the “real” Calabi-Yau structure

g =
3∑

j=1
dxj .dyj

A =
3∑

j=1

∂
∂xj
⊗ dxj − ∂

∂yj
⊗ dyj

Ω =
3∑

j=1
dxj ∧ dyj

α = dx1 ∧ dx2 ∧ dx3

β = dy1 ∧ dy2 ∧ dy3



I THEOREM A SMAE ∆ω = 0 on R3 associated to an
effective non-degenerated form ω is locally equivalent to on of
three following equations:

I 
hess(f ) = 1
∆f − hess(f ) = 0
�f + hess(f ) = 0

I iff the correspondingly defined generalized Calabi-Yau structure
is integrable and locally flat.
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∆ω = 0 ω ε(qω) pf (ω)

1 ν hess(f ) = 1 −dq1∧dq2∧dq3+ν ·dp1∧dp2∧dp3 (3, 3) ν2

2 ∆f − ν hess(f ) = 0 dp1 ∧ dq2 ∧ dq3 − dp2 ∧ dq1 ∧ dq3 (0, 6) −ν2

+dp3∧dq1∧dq2−ν ·dp1∧dp2∧dp3

3 �f + ν hess(f ) = 0 dp1 ∧ dq2 ∧ dq3 + dp2 ∧ dq1 ∧ dq3 (4, 2) −ν2

+dp3∧dq1∧dq2+ν ·dp1∧dp2∧dp3

4 ∆f = 0 dp1∧dq2∧dq3−dp2∧dq1∧dq3 +
dp3 ∧ dq1 ∧ dq2

(0, 3) 0

5 �f = 0 dp1∧dq2∧dq3 +dp2∧dq1∧dq3 +
dp3 ∧ dq1 ∧ dq2

(2, 1) 0

6 ∆q2,q3f = 0 dp3 ∧ dq1 ∧ dq2 − dp2 ∧ dq1 ∧ dq3 (0, 1) 0
7 �q2,q3f = 0 dp3 ∧ dq1 ∧ dq2 + dp2 ∧ dq1 ∧ dq3 (1, 0) 0
8 ∂2f

∂q2
1

= 0 dp1 ∧ dq2 ∧ dq3 (0, 0) 0

9 0 (0, 0) 0

Table: Classification of effective 3-formes in dimension 6



The subjects which I had no time to describe:

I Symmetries, conservation laws and Noether theorem for MAO
and MAE;

I Self-similar solutions, shock waves and Hugoniot-Rankin
conditions;

I Variational MAE, divergent MAE and Euler-Lagrange
operators;

I 2D Euler equation as a reduction of the 2-nd Plebanski
equation;

I Generalized Calabi-Yau 3D structures and Burgers vortices;
I Many-many other interesting things...



Thank you for your attention!
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