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Introduction

Let us consider a cosmological model, described by the following
action

S =

∫
d4x
√
−g
[
U(σ)R − 1

2
gµνσ,µσ,ν − V (σ)

]
, (1)

where U(σ) and V (σ) are differentiable functions of the scalar field
σ. If U(σ) is a constant: U(σ) = U0, then the scalar field is
minimally coupled to gravity, otherwise we have a model with
non-minimal coupling.

Let us consider the FLRW metric. In this case the interval is

ds2 = N(τ)2dτ 2 − a(τ)2

(
dr2

1− Kr2
− r2dθ2 − r2 sin2(θ)dϕ2

)
, (2)

where a(τ) is the cosmological radius and N(τ) is the lapse function,
K is a constant. As usual K = 0 describes a flat universe, K = 1 a
closed universe, and K = −1 an open one.

A bounce point is defined by two conditions: the Hubble parameter
H = 0 and H > 0.
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Equations in flat Friedmann–Lemâıtre–Robertson–Walker
(FLRW) universe

Firstly we consider the case of the spatially flat
Friedmann–Lemâıtre–Robertson–Walker (FLRW) background

ds2 = − dt2 + a2(t)
(
dx2

1 + dx2
2 + dx2

3

)
the equations are:

6UH2 + 6U̇H − 1

2
σ̇2 − V = 0, (3)

2U
[
2Ḣ + 3H2

]
+ 2U ′ [σ̈ + 2Hσ̇] = V −

[
2U ′′ +

1

2

]
σ̇2, (4)

σ̈ + 3Hσ̇ − 6U ′
[
Ḣ + 2H2

]
+ V ′ = 0, (5)

where a “dot” means a derivative with respect to the cosmic time t
and a “prime” means a derivative with respect to the scalar field σ.
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Bounce Solutions

If a solution of Eqs. (3)–(5) has such a point tb that

H(tb) = ˙a(tb)/a(tb) = 0, Ḣ(tb) > 0,

then it is a bounce solution.

Let us find conditions that are necessary for the existence of a
bounce solution.

Using Eq. (3), we get that from H(tb) = 0 it follows V (ϕ(tb)) 6 0.
Subtracting equation (3) from equation (4), we obtain

4UḢ = − σ̇2 − 2Ü+2HU̇. (6)

Therefore, if U = const > 0 a bounce solution does not exist.
At the bounce point we get

2
(
U + 3U ′2

)
Ḣ(tb) = U ′V ′ +

[
2U ′′ + 1

]
V . (7)

Functions U and V and their derivatives are taken at the point ϕ(tb).
From here the condition Ḣ(tb) > 0 gives the restriction on functions
U and V at the bounce point.
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Equations (3)–(5) can be transformed into the following system of the
first order equations which is useful for numerical calculations and
analysis of stability:

σ̇ = ψ,

ψ̇ = − 3Hψ −
[
(6U ′′ + 1)ψ2 − 4V

]
U ′ + 2UV ′

2
(
3U ′2 + U

) ,

Ḣ =
2U ′Hψ

3U ′2 + U
− [2U ′′ + 1]ψ2

4
(
3U ′2 + U

) − 6U ′
2
H2

3U ′2 + U
+

U ′V ′

2
(
3U ′2 + U

) .
(8)

If Eq. (3) is satisfied in the initial moment of time, then from system (8)
it follows that Eq. (3) is satisfied at any moment of time.
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De Sitter Solutions

We analyze the stability of de Sitter solutions with HdS > 0 and
U(σdS ) > 0 only.
For arbitrary differentiable functions V and U > 0, the model has a
stable de Sitter solution with HdS > 0 only if

V ′′eff (σdS ) > 0, Veff (σdS ) > 0, Veff (σ) =
V (σ)

4U(σ)2
.

The de Sitter point is a stable node (the scalar field decreases
monotonically) at

3
(
U + 3U ′

2
)

8U2
>

V ′′eff

Veff
, (9)

and a stable focus (the scalar field oscillations exist) at

3
(
U + 3U ′

2
)

8U2
<

V ′′eff

Veff
. (10)
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Induce Gravity Model

Let us consider an induced gravity models with

U(σ) =
ξ

2
σ2 ,

where ξ > 0 is the non-minimal coupling constant.
In A.Yu. Kamenshchik, A. Tronconi, G. Venturi, and S.Yu. Vernov,
Phys. Rev. D 87 (2013) 063503 (arXiv:1211.6272)
it has been found that the model with the following sixth degree
polynomial potential:

V (σ) =
(16ξ + 3)(6ξ + 1)ξ

(8ξ + 1)2
C 2

2σ
6 +

[
3ξC 2

1 +
2(6ξ + 1)(20ξ + 3)ξ

(8ξ + 1)(4ξ + 1)
C0C2

]
σ4 +

+
6(6ξ + 1)ξ

8ξ + 1
C1C2σ

5 +
6(6ξ + 1)ξ

4ξ + 1
C0C1σ

3 +
(16ξ + 3)(6ξ + 1)ξ

(4ξ + 1)2
C 2

0σ
2,

where Ci are constants, has exact solution with a non-monotonic Hubble
parameter.
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Exact Bounce Solution

In E.O. Pozdeeva and S.Yu. Vernov, AIP Conf. Proc. 1606 (2014) 48–58
(arXiv:1401.7550) exact bounce solution has been found.
The analytic form of this solution is

σ(t) =

√
(8ξ + 1)C0√

(8ξ + 1)C0e−ω(t−t0) + (4ξ + 1)C2

,

where ω = 4ξC0/(4ξ + 1), t0 is an arbitrary integration constant.

H(t) = C0 + C1σ(t) + C2σ
2(t).

After the bounce point H(t) is a monotonically increasing function.
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H

t

φ

t

Figure: The functions H(t) and σ(t) that correspond to the exact bounce
solution. The values of parameter are ξ = 1, C2 = 7/2, C1 = −3, C0 = 5/8.
Initial conditions is defined by σ0 = 0.5, σ0 = 1/36 ' 0.0278 (t0 = 2 ln(8/9)).

This solution tends to unstable de Sitter solution.
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The Integrable Cosmological Model

In the spatially flat FLRW metric R = 6(Ḣ + 2H2).

From (3)–(5) we get

2R
(
U + 3U ′

2
)

+ (6U ′′ + 1) σ̇2 = 4V + 6V ′U ′ . (11)

From the structure of Eq. (11) it is easy to see 1 that the simplest
way to get a constant R is to choose such U(σ) that

U + 3U ′2 = U0, 6U ′′ + 1 = 0, U0R = 2V + 3V ′U ′.

The solution to the first two equations is

Uc (σ) = U0 −
σ2

12
(12)

1E.O. Pozdeeva, M.A. Skugoreva, A.V. Toporensky, and S.Yu. Vernov, JCAP 1612
(2016) 006 (arXiv:1608.08214)
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For U = Uc Eq. (11) can be simplified:

2U0R = 4V (σ)− σV ′(σ). (13)

and has the following solution:

Vint =
Λ

2U0
+ C4σ

4, Λ =
R

4
. (14)

where C4 is an integration constant.
Thus, requiring that the Ricci scalar is a constant one can define both
functions U(σ) = Uc and V (σ) = Vint . To get a positive Geff = 1

16πU for
some values of σ we choose U0 > 0.
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Using the explicit form of functions Uc and Vint we get that
the condition Ḣb > 0 is equivalent to Λ > 0,
hence, from V (ϕb) < 0 it follows C4 < 0.
This integrable cosmological model has been considered in2, where
the behavior of bounce solutions has been studied in detail.

Considering the equation

R = 6(Ḣ + 2H2) = 4Λ,

such as a differential equation for the Hubble parameter, we obtain
two possible real solutions in dependence of the initial conditions:

H1 =

√
Λ

3
tanh

(
2
√

Λ(t − t0)√
3

)
, H2 =

√
Λ

3
coth

(
2
√

Λ(t − t0)√
3

)
,

where t0 is an integration constant.

2B. Boisseau, H. Giacomini, D. Polarski, and A.A. Starobinsky, J. Cosmol.
Astropart. Phys. 1507 (2015) 002 (arXiv:1504.07927)
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For future analysis let us introduce function P

P ≡ H√
U

+
U ′ϕ̇

2U
√
U
, A ≡ U + 3U ′

2

4U3
(15)

have been introduced. If U(σ) > 0, then A(σ) > 0 as well.
In terms of these functions Eqs. (3) and (6) take the following form:

3P2 = Aσ̇2 + 2Veff , (16)

Ṗ = − A
√
U σ̇2. (17)

Equation (3) is a quadratic equation in H(t) that has the following
solutions:

H± = − U̇

2U
± 1

6U

√
9U ′2σ̇2 + 3Uσ̇2 + 6UV . (18)
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The value of the function P(ϕ) that correspond to H± is

P = ± 1

6U

√√√√3

[
3U ′2

U
σ̇2 + σ̇2 + 2V

]
= ±

√
A

3
σ̇2 +

2

3
Veff , (19)

So, a positive P corresponds to H+ and a negative P corresponds to H−.
If the potential V is negative at some values of ϕ, whereas the function
U is positive at these points, then one should restrict the domain of
absolute values of σ̇ from below to get a real Hubble parameter. In other
words, there exists the unreachable domain on the phase plane. The
boundary of this domain is defined by the condition P = 0. If Veff > 0,
then the sign of the function P cannot be changed. If in some domain
Veff (ϕ) is negative, then the sign of P can be changed from plus to
minus, but not vice verse. So, the sign of P cannot be changed twice.
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Figure: The effective potential (left picture), phase trajectories (middle picture)
and the Hubble parameter H(t) (right picture) for V = C4σ

4 + C0 and
U = U0 − σ2/12. The parameters are U0 = 1/40, C4 = −3, C0 = 0.15. The
initial values are σi = 0.53, and ψi = −0.4164479079 (gold line), ψi = −0.31
(black line), ψi = −0.27 (green line), ψi = −0.15 (blue line). The black dash
curve corresponds to H = 0. The blue point lines correspond to U = 0. The
red dash curve corresponds to P = 0.

The red dash curve, defined by the equation P = 0, is the boundary of
unreachable domain. Any point inside this curve corresponds to a
non-real value of the Hubble parameter.
Such domain exists at any model with action (1) that has a bounce
solution, because V (σb) < 0.
Solutions can touch the boundary of unreachable domain.
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GENERALIZATION OF INTEGRABLE MODEL

There are two way of modification: modify U or modify V .

Let us modify V and consider the model with

Uc (ϕ) = U0 −
σ2

12
, designation U0 =

1

2K
(20)

and
Vc = C4σ

4 + C2σ
2 + C0. (21)

Such as we consider only gravity regime (Geff > 0) Uc > 0,
we use the restriction σ2

b < 6/K .

Veff =
36(C4σ

4 + C2σ
2 + C0)

(Kσ2 − 6)2
. (22)

The even potential Veff has an extremum at σ = 0 and at points

σm = ±

√
−2(3C2 + KC0)

12C4 + KC2
. (23)
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Generalization of bouncing potential

The model with Vc = C4σ
4 + C2σ

2 + C0 has a bounce solution only
if

C4σ
4
b + C2σ

2
b + C0 < 0, C2σ

2
b + 2C0 > 0, C2 + 2C4σ

2
b < 0.

We specify the case C4 < 0. Supposing that φm are real we get

0 > C2 + 2σ2
bC4 > C2 +

12

K
C4.

So, the model with a bounce solution has real σm only at

3C2 + KC0 > 0 and KC2 + 12C4 < 0. (24)
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Using conditions to the model constants, we get

V ′′eff (0) =
C0K

3 + C2

2
> 0,

V ′′eff (σm) = −36(C2K + 12C4)3(C0K + 3C2)

(C0K 2 + 6C2K + 36C4)3
< 0.

Thus, the effective potential has a minimum at ϕ = 0 and maxima
at σ = σm.
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Veff

ϕ

Figure: The effective potential Veff at different values of parameters. In the
picture we choose K = 1/4. The values of parameters are C4 = −1, C2 = 7
(left picture). The parameter C0 = −10 (black curve), −5 (red curve), 0 (blue
curve), 5 (green curve), and 10 (cyan curve).

0 < σm < σ+
1 < σb <

√
6
K , σ

+
1 =

√√√√ 1
2

(√(
C2

C4

)2

− 4 C0

C4
− C2

C4

)
.
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Analysis of numeric solutions

For U = Uc and an arbitrary potential, system (8) has the following form:

σ̇ = ψ,

ψ̇ = − 3Hψ − 1

6

(
6− Kσ2

)
V ′ +

2

3
KσV ,

Ḣ = − K

6

[
2σ2H2 + (4Hψ + V ′ )σ + 2ψ2

]
.

(25)

We integrate this system with V = Vc numerically.
We consider a positive σb such that σ+

1 < σb <
√

6/K . The evolution of
the scalar field starts at the bounce point with a negative velocity,
defined by relation

σ̇b = −
√
− 2V (σb).

The field σ can come to zero passing the maximum of the potential. So,
we keep in mind that the following subsequence of inequalities:

0 < σm < σ+
1 < σb <

√
6

K
.
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Three possible evolutions

In the case C0 > 0 there are three possible evolutions of the bounce
solutions.

ψ

ϕ

ψ

ϕ

Figure: A phase trajectories for the models with Uc and Vc . The values of
constants are K = 1/4, C4 = −4, C2 = 1, and C0 = 0. The initial conditions
are σi = 2.7, ψi = −20.26259608 (blue line), σi = 3.7, ψi = −38.36598493
(cyan line), and σi = 4.8, ψi = −64.81244325 (green line). The black curves
are the lines of the points that correspond to H = 0. The unreachable domain,
defined by P < 0, is in red. The blue point lines are U = 0.
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For C0 > 0 there exists the stable de Sitter solution σdS = 0 and

HdS =
√

C0K
3 . It is a stable node at KC0 − 24C2 > 0 and a stable focus

in the opposite case C0K − 24C2 < 0.
The example of a stable node at σ = 0.

ψ

ϕ H
ϕ

t

Figure: The field ϕ (blue line) and the Hubble parameter (red line) as functions
of the cosmic time are presented in the right picture. The values of parameters
are K = 1, C4 = −2.7, C2 = 1 and C0 = 25. The initial conditions of the
bounce solution are σi = 2.445, ψi = −11.44650941, and Hi = 0.
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The example of a stable focus at ϕ = 0.

ψ

ϕ

H
ϕ

t

Figure: The values of constants are K = 1/4, C4 = −4, C2 = 7, C0 = 0. The
initial conditions are σi = 3.4 and ψi = −30.12023904. A zoom of the central
part of phase plane is presented in the middle picture. The Hubble parameter
(red) and the scalar field (blue) of functions of cosmic time are presented in the
right picture.
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We have presented solutions for models with positive value of C0.
Let us consider now the phase trajectory at C0 = −0.1.
We see that trajectories are similar at the beginning only. The scalar field
tends to infinity and the system comes to antigravity domain with
Uc < 0.

ψ

ϕ

ψ

ϕ

H
ϕ

t

Figure: A phase trajectory for the models with Uc and Vc is presented in the
left picture. The values of constants are K = 1/4, C4 = −4, C2 = 7,
C0 = −0.1. The initial conditions are σi = 3.4 and ψi = −30.12355889. A
zoom of the central part of phase plane is presented in the middle picture. The
Hubble parameter (red) and the scalar field (blue) of functions of cosmic time
are presented in the right picture.
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The difference between the solutions of system (25) with a positive and a
negative C0 is demonstrated. The cyan curves correspond to C0 = 10,
whereas the red curves correspond to C0 = −10.
We see that the phase trajectories and the Hubble parameter are similar
in the beginning, but stand essentially different in the future.

ψ

ϕ

H

t

Figure: The phase trajectories (right picture) and the corresponding Hubble
parameters (left picture) are presented. The values of parameters are K = 1/4,
C4 = −4, C2 = 90. The initial conditions of bounce solution are σi = 4.88,
ψi = −15.17936692 (cyan curve) and ψi = −16.44424459 (red curve).
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General FLRW metric

On substituting FLRW metric into the action (1) and varying it with
respect to N, a and σ, we obtain two Friedmann equations and a
Klein-Gordon equation:

6U

[
ȧ2

a2
+

N2

a2
K

]
+ 6U ′σ̇

ȧ

a
=

1

2
σ̇2 + N2V , (26)

2U

[
2
ä

a
+

ȧ2

a2
− 2

ȧṄ

aN
+

N2

a2
K

]
+2U ′

[
σ̈ + 2

ȧ

a
σ̇ − Ṅ

N
σ̇

]
= N2V−

[
2U ′′ +

1

2

]
σ̇2,

(27)

σ̈ +

(
3
ȧ

a
− Ṅ

N

)
σ̇ − 6U ′

[
ä

a
+

ȧ2

a2
− ȧṄ

aN
+

N2

a2
K

]
+ N2V ′ = 0, (28)

where a “dot” means a derivative with respect to the parametric time τ
and a “prime” means a derivative with respect to the scalar field.

26 / 34



An integrable model with a conformally coupled scalar field

We consider model with U(σ) = Uc and potential

Vc = Λ− cσ4 (29)

Firstly in the case K = 0 the bounce for this model was obtained in
B. Boisseau, H. Giacomini, D. Polarski and A. A. Starobinsky, JCAP
1507 (2015) 002, [arXiv:1504.07927 [gr-qc]].

In our paper A. Y. Kamenshchik, E. O. Pozdeeva, A. Tronconi,
G. Venturi and S. Y. Vernov, Class. Quant. Grav. 33, no. 1, 015004
(2016) [arXiv:1509.00590 [gr-qc]] we look for bounce solutions with
K = ±1
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The first Friedmann equation (26) for this model is

6

(
U0 −

1

12
σ2

)
ȧ2

a2
− ȧσ̇σ

a
+6

(
U0 −

1

12
σ2

)
KN2

a2
=

1

2
σ̇2+N2(Λ−cσ4).

(30)

The Klein-Gordon equation (28) is

σ̈ +

(
3
ȧ

a
− Ṅ

N

)
σ̇ + σ

(
ä

a
+

ȧ2

a2

)
− 6σ

ȧṄ

aN
− 4cN2σ3 +

N2Kσ

a2
= 0.

(31)
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A substitution σ = χ
a , in the Klein-Gordon equation (31), reduces it

to

χ̈+
χ̇ȧ

a
− χ̇Ṅ

N
− 4cχ3

a2
+

N2Kχ

a2
= 0. (32)

On choosing the lapse equation N as N = a, and multiplying
obtained equation by the conformal time derivative of χ, dχ

dη , we find
its first integral

1

2

(
dχ

dη

)2

− cχ4 +
1

2
Kχ2 = A, (33)

where A is a constant.

Here let us now rewrite the expression (33) in terms of the initial
scalar field σ and time derivatives in terms of the cosmic time:

1

2
σ̇2 +

1

2
σ2ȧ2 + σσ̇

ȧ

a
− cσ4 +

Kσ2

2a2
=

A

a4
. (34)

On comparing Eq. (34) with the Friedmann equation (30), we see
that the latter reduces to a very simple form

6U0
ȧ2

a2
+ 6U0

K

a2
= Λ +

A

a4
. (35)
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The equation for possible turning points (bounces or the points of
maximal expansion is

a4 − 6U0K

V0
a2 +

A

V0
= 0 . (36)

Let us give a list of the cosmological evolutions for different choices of
the curvature K and the radiation constant A.
• 1.• (a). K = 0, A < 0. We have a bounce at

aB =

(
−A
V0

)1/4

.

This case was analyzed in detail in papers 3

• (b) K = 0, A = 0. For this case we have an infinite de Sitter expansion
or an infinite de Sitter contraction. The singularity is absent.
• (c) K = 0, A > 0. We have an infinite expansion which begins from
the Big Bang singularity or an infinite contraction which ends in the Big
Crunch singularity.

3B. Boisseau, H. Giacomini, D. Polarski and A. A. Starobinsky, JCAP 1507 (2015)
002.,
B. Boisseau, H. Giacomini and D. Polarski, JCAP 1510, 033 (2015) [arXiv:1507.00792
[gr-qc]]

30 / 34



• 2. • (a) K = 1, A < 0. We have a bounce at

aB =

(
3U0

Λ
+

√
9U2

0

Λ2
− A

Λ

)1/2

.

• (b) K = 1, A = 0. We have a closed de Sitter universe which
contracts, has a bounce at

aB =

(
6U0

Λ

)1/2

, and then expands infinitely.

• (c) K = 1, 0 < A <
9U2

0

Λ . For this case we have two types of possible
evolutions. One begins at the Big Bang singularity, expands until the
point of maximal expansion

aM =

(
3U0

Λ
−
√

9U2
0

Λ2
− A

Λ

)1/2

and then contracts until the encounter with the Big Crunch singularity.
The second type of evolution is that with the bounce at

aB =

(
3U0

Λ
+

√
9U2

0

Λ2
− A

Λ

)1/2

.
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• (d) K = 1, A =
9U2

0

Λ . We have an Einstein static universe with radius

aS =
3U0

V
.

• (e) K = 1, A >
9U2

0

Λ . We have an infinitely expanding or an infinitely
contracting universe.
•3. • (a) K = −1, A < 0. We have a bounce at

aB =

(
−3U0

Λ
+

√
9U2

0

Λ2
− A

Λ

)1/2

.

• (b) K = −1, A ≥ 0. We have an infinite expansion beginning from the
Big Bang or an infinite contraction culminating in the Big Crunch.
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For all these cases the Friedmann equation (35) can be integrated
explicitly, because the Ricci scalar as an integral of motion. Combining
Eqs. (26)–(28) it is easy to show that R = R0 = 2Λ/U0 at all values of
K . We shall write down the explicit solution only for the case 2 (a). The
expression for the cosmological radius is

a(t) =

(
3U0

Λ
+

√
9U2

0

Λ2
− A

Λ
cosh

√
Λ

24U0
t

)1/2

. (37)

The Hubble parameter is

h(t) =
Λ

96U0

√
9U2

0

Λ2 − A
Λ sinh

√
Λ

24U0
t

3U0

Λ +

√
9U2

0

Λ2 − A
Λ cosh

√
Λ

24U0
t
. (38)

Remarkably all the dependence of the cosmological evolution on the
scalar field is encoded in the quantity A, i.e. it is nothing more than the
evolution of the universe filled with the cosmological constant and the
radiation-type fluid.
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Conclusions

The bounce solution with a non-monotonic Hubble parameter has
been obtained.

We shoe that the generalization of bounce potentials and effective
gravity constant leads to the interesting behaviors of the Hubble
parameter.

The bounce are obtained in close and open FLRW universe.
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